
Group Action Induced Distances for Averaging and Clustering Linear
Dynamical Systems with Applications to the Analysis of Dynamic Scenes

Bijan Afsari1 Rizwan Chaudhry1 Avinash Ravichandran2 René Vidal1
1 Center for Imaging Science, Johns Hopkins University

2 Vision Lab, University of California, Los Angeles

Abstract

We introduce a framework for defining a distance on
the (non-Euclidean) space of Linear Dynamical Systems
(LDSs). The proposed distance is induced by the action
of the group of orthogonal matrices on the space of state-
space realizations of LDSs. This distance can be efficiently
computed for large-scale problems, hence it is suitable for
applications in the analysis of dynamic visual scenes and
other high dimensional time series. Based on this distance
we devise a simple LDS averaging algorithm, which can
be used for classification and clustering of time-series data.
We test the validity as well as the performance of our group-
action based distance on synthetic as well as real data and
provide comparison with state-of-the-art methods.

1. Introduction

Analysis of dynamic scenes is an important area of com-
puter vision. Some examples of dynamic scenes are videos
of non-rigid objects such as water, fire, flags fluttering in
the air, etc. (collectively called dynamic textures), videos
of humans performing different actions and videos of lip
articulations. A number of state-of-the-art techniques use
Linear Dynamical Systems (LDSs) to model the temporal
evolution of visual features in dynamic scenes. Further-
more, in template tracking applications, the most common
motion models are based on either LDSs or linearized ver-
sions of more general, nonlinear dynamical systems. Some
of the most important applications of LDS in computer vi-
sion have been in synthesis [11, 20], segmentation [6, 18],
registration [19] and recognition [11, 4, 5, 17, 3, 8, 21] of
human gaits, dynamic textures, face motions and lip articu-
lations. Most of these applications, especially recognition,
require comparison of test data with training data using the
notion of a distance between LDSs. A 1-NN classifier, for
example, computes the distance of the test LDS to all the
training LDSs and assigns the class label of the nearest point
in the training set. As the size of the training data increases,

computing distances to all training data becomes computa-
tionally expensive. If however, a representative point for
a certain class of LDSs were computable, the recognition
problem would be drastically simplified to finding distances
only to these representative points and assigning the label of
the closest class representative.

One such representative point is the mean of the training
samples belonging to a certain class. The space of LDSs,
however, is not a Euclidean space and has a complicated
manifold structure as we will discuss in detail in this paper.
Computing means on this space is therefore not straightfor-
ward. In fact, to the best of our knowledge, there is not a
single approach that correctly models the manifold structure
of multiple-input and multiple-output LDSs and computes
statistics on this space. Recent attempts by Turaga et al.
[21] and Chaudhry et al. [7] (roughly) embed the space of
LDSs in an arbitrarily large Grassmann manifold and per-
form averaging in that space as it has a rather computation-
ally friendly Riemannian structure. However, as we will de-
scribe in this paper, these approaches have some theoretical
and computational drawbacks. Alternatively, approaches
such as [17] approximate the mean of the LDSs by comput-
ing a sample point that is closest to the mean under certain
cord distances.

In this paper, we will formalize the notion of comput-
ing means on a set of LDSs. We will perform a theoretical
analysis of the methods in [21, 7] and discuss the inherent
limitations that have not been addressed by these authors.
We will then propose some changes to fix these limitations.
Our main contribution is the definition of a new method for
computing distances between LDSs based on the notion of
aligning LDSs. This allows us to propose a novel iterative
approach for computing the mean of a set of LDSs. Our ap-
proach is computationally efficient because it requires nei-
ther creating arbitrarily large matrices, as in the approaches
of [21, 7], nor computing an all-pair training data distance
matrix as in [17].

The rest of the paper is structured as follows. In §2, we
will review some of the preliminaries for LDS modeling
and summarize the state-of-the-art algorithms for comput-

ing means of LDSs. We will then describe some of the tech-
nical issues with these approaches, propose corrections, and
motivate the need for a more formal analysis of the space of
LDSs and a proper definition of a distance for LDSs. In §3,
we will propose our method for computing a distance and
average of LDS. We will test our approach on synthetic and
real data in §4 and give concluding remarks in §5.

2. Prior Work: Limitations and Corrections
2.1. Linear Dynamical Systems

Stochastic Linear Dynamical Systems are a class of dy-
namical systems that satisfy the following equations:

xt = Axt−1 +Bvt

yt = µ + Cxt + wt,
∀t = 0, 1, 2, . . . (1)

Here yt ∈ Rp is the p-dimensional stochastic output of the
LDS at time t. For example, in the case of dynamic textures,
yt would represent the stacked vector of image intensities
in a patch or frame. In the case of human activity analy-
sis, yt would be an orientation histogram or joint angles,
etc. xt ∈ Rn is the hidden state of the LDS at time t. The
dimension, n, of xt is also referred to as the order of the
LDS. The output is a linear transformation of the state un-
der the observation matrix, C ∈ Rp×n. x0 is the initial
state of the system and the current state, xt, is linearly re-
lated to the previous state, xt−1, by the dynamics matrix,
A ∈ Rn×n. µ ∈ Rp is the mean output of the dynam-
ical system. vt is the process noise and wt is the output
noise. It is generally assumed that both the process and out-
put noise are white Gaussian and independent. Specifically,
vt ∼ N (0, Im×m) and wt ∼ N (0,Ω). Here In×n is the
n-dimensional identity matrix. Usually, if the output dimen-
sion, p, is very large, it is assumed that Ω = σ2Ip×p.
Equivalent representations and the action of GL(n).
We call the tuple RF = (x0,µ, A,B,C,Ω) a full represen-
tation or realization of the LDS described by Eq. (1), and
we call R = (A,B,C) a (dynamics) representation. A sys-
tem has an equivalent class of representations. The output
of the system described by Eq. (1) does not change (in the
deterministic sense, see below) under state change of basis,
that is, if one replaces the full representation RF by

P ·RF = (P−1x0,µ, P
−1AP,P−1B,CP,Ω), (2)

for every matrix P ∈ GL(n), where GL(n) is the group of
non-singular n × n matrices. More formally, GL(n) acts
on the set of all representations of LDSs of m inputs, order
n and p outputs as above and each system has a family of
equivalent representations related by this action. This sim-
ple fact makes naive comparison of two full representations
R1 and R2, e.g., by measuring the norm of R1 − R2 inad-
equate. In §3 we give a systematic way of comparing two
representations that takes into account the group action.

Deterministic vs. stochastic equivalence. In addition to
the above deterministic invariance, notice that (under our
assumptions about (1)) if B is transformed to BΘ where
Θ is any orthogonal m × m matrix, then the output will
not change in the stochastic sense. We call this stochastic
equivalence. Although our framework can be extended to
full representations (x0,µ, A,B,C,Ω) as well as stochastic
equivalence, in this paper we only focus on comparing rep-
resentations (A,B,C) under the above (deterministic) state
change of basis equivalence. In fact, at the end we just spe-
cialize to comparing the dynamic-observation pairs (A,C).
This will not put our method in disadvantage against exist-
ing methods (e.g., [11, 5, 17, 3, 8, 9]), as all these meth-
ods achieve acceptable performance by merely comparing
the partial representations (A,C). Ignoring the stochas-
tic equivalence, however, could lead to a larger error than
just comparing the pairs (A,C) under deterministic equiv-
alence (because e.g., in the stochastic setting (A,−B,C)
and (A,B,C) are the same while in the deterministic set-
ting they are quite “afar”). Therefore, comparing the triples
(A,B,C) by taking into account the stochastic equivalence
is the correct approach.
Stable and observable LDS. We are mainly interested
in asymptotically stable LDSs, i.e., where ‖A‖2 < 1
(‖A‖2 is the 2-norm (or spectral norm) of A). We call
On,p,k(A,C) = [C>, (CA)>, (CA2)>, . . . , (CAk−1)>]>

the observability matrix of length k. An LDS M is called
observable if for a representation (A,B,C) of M the ob-
servability matrix On,p,n(A,C) has rank n.
System identification. Finding the parameters of model
(1) based on observed data is a well-studied problem known
as system identification. In computer vision applications
such as dynamic texture modeling, a sub-optimal but effi-
cient method proposed by [11] is preferred over optimal but
computationally demanding alternatives. An important fea-
ture of this method is that the matrix C has orthonormal
columns, i.e., C belongs to the (compact) Stiefel manifold
ST(n, p) defined as

ST(n, p) = {C ∈ Rp×n|C>C = In×n}. (3)

2.2. Existing Distances in the Space of LDSs

Throughout this paper, by the space of LDSs we im-
plicitly mean the set of all (or a subset of all) LDSs of
fixed number of inputs m, number of outputs p, and or-
der n. That is, we are only interested in comparing sys-
tems of the same dimensions and order. Defining a notion
of a distance between two LDSs has a rather long history
in the control systems community [14]. Most of the ap-
proaches (e.g., the Riemannian framework in [14]) result
in computationally intensive methods (especially for large
p). Recently, more computationally efficient methodologies
have been proposed (with limited versatility though). For

example, Martin [16] defined a distance between single-
input single-output (SISO) systems (i.e., m = p = 1)
described by transfer functions. The Martin distance en-
joys convolution-invariance, which is very important from
a system-theoretic point of view. In [10], the computation
of the Martin distance is addressed for SISO systems de-
scribed in state-space form. For AR models, the Martin
distance is computed in terms of subspace angles between
the infinite observability subspaces (i.e., O1,1,∞(A,C)). In
computer vision and machine learning communities, other
approaches for comparing LDS have been proposed, such
as Binet-Cauchy kernels [22] and KL-divergence [4]. How-
ever these approaches do not seem to be theoretically or
computationally conducive to a notion of average over the
space of LDSs.

2.3. Distances Based on Observability Matrix and
Grassmann Embedding

An alternative approach to calculating distances be-
tween LDS is to embed a subset of the parameters in an
ambient space and calculate the distance associated with
the ambient space. One such example is the Grassmann
embedding. We assume that the observability matrices,
On,p,k(A,C) are of rank n for some fixed k ≥ 2 which
is true for a general observable LDS at k = n. Fur-
thermore, in our applications of interest we have p ≥ n
and C ∈ ST(n, p), hence, On,p,k(A,C) is full rank at
k = 1. Although for different P the observability ma-
trices generated by P · (A,C) are different, the range of
the observability matrix, R

(
On,p,k(A,C)

)
, is the same

for all P . Therefore, we can identify R
(
On,p,k(A,C)

)
with a point in Gr(n, kp), where Gr(r, q) is the Grasmann
manifold of r-dimensional subspaces of Rq . Note that if
R
(
On,p,k(A1, C1)

)
= R

(
On,p,k(A2, C2)

)
, then there is

P ∈ GL(n) such thatA1 = P−1A2P andC1 = C2P . This
means that a distance in Gr(r, q) induces a distance on the
(partial) LDSs represented by pairs (A,C). The Grassman-
nian Gr(r, q) can be equipped with a standard Riemannian
structure, which results in the standard Riemannian distance
denoted by dGr(·, ·) [12]. Therefore, using the above em-
bedding we can now calculate the Grassmann embedding
or observability subspace partial distance [10, 21, 9]. We
call it a partial distance since it only compares pairs (A,C).

2.4. Averaging in the Space of LDSs

The first step in computing the mean of a set of LDSs is
to have a proper notion of distance between LDSs. Given
the difficulty of defining and computing such a distance,
state-of-the-art methods for averaging LDSs either embed
the space of (partial) LDSs in a Riemannian manifold with
computationally feasible properties, or use approximate
methods to find an LDS from the samples that is the closest
to the “true mean.” We briefly analyze these methods below.

Averaging based on the Grassmann embedding. The
first approach to averaging LDSs presented in [21, 7] uses
the Grassmann embedding distance described in §2.3. To be
more concrete, let us define the observability submanifold
in Gr(n, kp) as

OS(n, p, k) = {R
(
On,p,k(A,C)

)
| (A,C) is observable}.

(4)
Given a set of partial representations {(Ai, Ci)}Ni=1,
for every i we find, Ui, an orthogonal basis for
R
(
On,p,k(Ai, Ci)

)
(Ui is identified with an element of

OS(n, p, k) ⊂ Gr(n, kp)). The methods proposed in
[21, 7], then use the Riemannian geometry of the ambient
space Gr(n, kp) to find Ū ∈ Gr(n, kp), the Riemannian
average or mean of {Ui}Ni=1. Although this approach has
already been applied with acceptable performance for clas-
sification problems [21, 7], this method has several draw-
backs. First, it is not clear that Ū coincides with the range
of an observability matrix R

(
On,p,k(Ā, C̄)) i.e., Ū might

fall out of OS(n, p, k). Therefore, we propose to perform
an extra step of projecting1 onto the submanifold of observ-
ability subspaces (i.e., OS(n, p, k)). We call this method
projected Grassmann averaging. This method is analogous
to finding the so-called extrinsic mean, except that in the
case of the standard extrinsic mean the ambient space is a
Euclidean space [2]. Our experiments in §4 suggest that al-
though the “falling out” might not cause huge errors, it still
introduces some form of bias. The second drawback with
the Grassmann embedding is that in many applications, typ-
ically we have p ≈ 10, 000 and n ≈ k ≈ 5 − 20, which
results in huge matrices Ui. In many circumstances, stor-
ing and manipulating such matrices is very time-consuming
and the computations could even become numerically inac-
curate. Another issue with this approach is that B or the
initial conditions cannot be included in the distance compu-
tation. Work by [10] extends the Martin distance to (SISO)
ARMA models, which account forB. However, the compu-
tation requires solving algebraic Riccati equations with very
large matrices, which becomes too expensive for computer
vision applications.

Approximate averaging. An approximate method for
computing a sample (partial) LDS closest to the mean of
the samples was proposed by Ravichandran et al. [17]. In
this method, the all-pair Martin distance matrix, DM =
[dM (Mi,Mj)] is computed from all the samples. Multi-
Dimensional Scaling (MDS) is then performed to project
the LDSs {Mi}Ni=1 to a low-dimensional Euclidean space
to get {zi}Ni=1. The mean, z̄ is then computed in the low-
dimensional Euclidean space. The LDS Mj where j =
arg mink ‖zk − z̄‖2, k = 1, . . . , N is then chosen as the

1A (suboptimal) way to do this projection is to use C̄ = Ū(1 : p, :),
i.e., the first p rows of Ū . Then Ā can be computed using least-squares as
Ā = argminA ‖Ū(1 : (k − 1)p, :)A− Ū(p + 1 : kp, :)‖2F .

mean. Even though this method is computationally faster
than the Grassmann embedding, it does not scale with the
number of points, because computing the all-pair distance
matrix for a very large number of points is not computa-
tionally tractable.

3. Group Action Induced Distances, Averaging
and Clustering in the Space of LDSs

In this section, we propose a new distance for comparing
dynamical models and show how this distance can be used
for averaging and clustering a set of LDSs.

3.1. Group Action Induced Distances for LDSs

We denote by Lm,n,p the set of all representations of
asymptotically stable observable dynamical systems of m
inputs, order n, and p outputs, that is

Lm,n,p = {(A,B,C) ∈ Rn×n × Rn×m × Rp×n|
‖A‖2 < 1 and (A,B,C) is observable}.

(5)

In analogy with shape analysis theory, we also call the
space of all state space parameterizations Lm,n,p the pre-
LDS space. GL(n) acts on Lm,n,p via the change of coor-
dinates

P ·R ≡ P · (A,B,C) = (P−1AP,P−1B,CP), (6)

where P ∈ GL(n). The space of observable asymptotically
stable LDSs of m inputs, order n, and p outputs is defined
as the quotient space of Lm,n,p with respect to the above
action of GL(n):

Mm,n,p = Lm,n,p/GL(n). (7)

We choose to equip Lm,n,p with the following distance
based on the matrix Frobenius norm ‖ · ‖F :

d2Lm,n,p

(
R1, R2) = ‖C1 − C2‖2F + λA‖A1 −A2‖2F +

λB‖B1 −B2‖2F , (8)

where Ri = (Ai, Bi, Ci) for i = 1, 2 and λA, λB > 0
are weights. Strictly positive weights are required to make
dLm,n,p

a distance. It is easy to see that Lm,n,p has a struc-
ture of a smooth manifold. It is known that Mm,n,p is a
smooth manifold (the observability of elements ofMm,n,p

is crucial for this [14]). Inspired by shape analysis the-
ory [23, Chapter 12], we could attempt to define a distance
dMm,n,p

(M1,M2) onMm,n,p via

d2Mm,n,p
(M1,M2)= inf

P1,P2∈GL(n)
d2Lm,n,p

(
P1 ·R1, P2 ·R2

)
, (9)

where Ri = (Ai, Bi, Ci) is any representation of Mi ∈
Mm,n,p for i = 1, 2. Unfortunately, dMm,n,p

(·, ·) might

not obey the triangle inequality since dLm,n,p is not a
GL(n)-invariant distance [23, Chapter 12]. For such tech-
nical and computational difficulties (stemming fromGL(n)
being non-compact), we leave this approach to further re-
search. However, if we restrict the representations to a
smaller subset of Lm,n,p, then a rather simple computa-
tional framework emerges.

3.1.1 Align distance for LDSs with orthogonal C

Let OLm,n,p = {(A,B,C) ∈ Lm,n,p|C>C = In×n},
where p ≥ n (for dynamic scene applications in fact p�n).
Any system that has a representation with full-rank C has
a family of equivalent representations in OLm,n,p. An im-
portant fact is that if (A,B,C) and P · (A,B,C) are two
equivalent representations in OLm,n,p, then P must be or-
thogonal. Therefore, if we restrict ourselves to the subman-
ifold OLm,n,p ⊂ Lm,n,p, we can assume that GL(n) acts
on it only via orthogonal transformations. Next, we define
OMm,n,p as the quotient space of OLm,n,p under the ac-
tion of O(n) ⊂ GL(n), the subgroup of orthogonal matri-
ces in GL(n). The action of O(n) on OLm,n,p is a free
action, i.e., Q · (A,B,C) = (A,B,C) implies Q = In×n,
because C is full-rank and p ≥ n. It follows from a gen-
eral result in differential geometry thatOLm,n,p is a smooth
manifold [15, Theorem 9.16].

Since OLm,n,p is a subset of Lm,n,p, we endow it with
the same distance, i.e., dOLm,n,p ≡ dLm,n,p . For repre-
sentations Ri = (Ai, Bi, Ci) (i = 1, 2) of two systems
M1,M2 ∈ OMm,n,p, we define the distance between the
two systems as

d2OMm,n,p
(M1,M2) = min

Q∈O(n)
d2OLm,n,p

(Q·R1, R2). (10)

Here, the role of P1, P2 in (9) has been lumped into one
matrix Q (due to unitary invariance of ‖ · ‖F). It is easy to
verify that dOMm,n,p(·, ·) is a distance in OMm,n,p.

Alternatively, we could define a Riemannian metric on
OLm,n,p and based on that define a Riemannian metric on
OMm,n,p, compute Riemannian distance and geodesic be-
tween two elements in OLm,n,p, and finally define a Rie-
mannian mean or average.
Pseudo distance dOMn,p

. If we set λB = 0, dOMm,n,p

is only a pseudo distance in OMm,n,p, which we denote
by dOMn,p . Despite this drawback dOMn,p enables us to
compare the dynamics-observation part of two systems in
OMm,n,p with more freedom which seems especially use-
ful for our applications in which stochastic equivalence is
important (see §2.1).

3.1.2 Computing align distances by gradient descent

Let us define f(Q) = d2OLm,n,p
(Q · R1, R2). To find the

distance between two systems M1,M2 ∈ OMm,n,p with

Algorithm 1 (LDS Align)
1. Input: {Ri = (Ai, Bi, Ci)}2i=1 ⊂ OMm,n,p.
2. Set γ > 0 and choose Q0

+,∈ SO(n) and Q0
− ∈ O−(n).

3. repeat until convergence:

• Ql+1
+ = Ql

+ exp(−γ(Ql
+)>∇f(Ql

+))

• Ql+1
− = Ql

− exp(−γ(Ql
−)>∇f(Ql

−))

4. if f(Ql+1
+) < f(Ql+1

−) then Q = Ql+1
+ else Q = Ql+1

−
5. Output: Q and f(Q) = d2OLm,n,p

(Q ·R1, R2).

representationsR1 andR2, we need to minimize f inO(n).
We call this process aligning R1 w.r.t. R2. Notice that if Q
aligns R1 w.r.t. R2, then Q> aligns R2 w.r.t. R1. There are
several possible approaches to solve this problem. Here we
choose the simplest one: Riemannian gradient descent [1].
We equip O(n) with the standard left invariant Riemannian
metric

〈η1, η2〉Q = tr
(
(Q>η1)>Q>η2

)
= tr(∆>1 ∆2), (11)

where ηi = Q∆i (i = 1, 2) and ∆i is an n × n skew-
symmetric matrix which represents a tangent vector toO(n)
at Q. Here tr(·) is the matrix trace function. Next, based on
the definition of gradient with respect to this Riemannian
metric and some simple algebraic manipulations, one can
see that∇f , the gradient of f , is given by

∇f(Q)=−Q
(
(Q>C>1 C2−C>2 C1Q)−λA([Q>A1Q,A

>
2]

− [Q>A1Q,A
>
2]>)−λB(Q>B1B

>
2 −B2B

>
1 Q)

)
, (12)

where [X,Y] = XY − Y X is the matrix Lie bracket.
Knowing ∇f enables us to run a gradient descent al-

gorithm for alignment and finding the distance. However,
recall that O(n) has two disjoint connected components
O+(n) (also denoted as SO(n)) and O−(n), which com-
prise of the elements of O(n) with determinant +1 and
−1, respectively. Therefore, we run two parallel gradient
descent algorithms with initial conditions in SO(n) and
O−(n) and choose the one which gives smaller f as the
solution to (10). Algorithm 1 gives a summary of a sim-
ple constant step-size gradient descent algorithm for min-
imizing f on O(n). Here exp(·) is the matrix exponen-
tial. In this algorithm once we compute C>1 C2 all computa-
tions can be done by matrices of size n×n (independent of
p). The algorithm can be implemented with transformations
that are cheaper to compute than exp(·) [1]. In practice one
might need to use more sophisticated step-size rules (such
as Armijo’s rule) and stopping criteria.

3.2. A Procrustean mean for LDSs (Align + average)

Consider N LDS {Mi}Ni=1 ⊂ OMm,n,p with represen-
tations {Ri = (Ai, Bi, Ci)}Ni=1. We want to define an aver-

age LDS M̄ with representation R̄ = (Ā, B̄, C̄) as

M̄ = argmin
M∈OMm,n,p

1

N

N∑
i=1

d2OMm,n,p
(Mi,M). (13)

In the pre-LDS space OLm,n,p this translates into

R̄ = arg min
R∈OLm,n,p

1

N

N∑
i=1

min
Qi∈O(n)

d2OLm,n,p
(Qi ·Ri, R). (14)

This results in a simple align-and-average algorithm, which
is in fact a coordinate descent algorithm in OLm,n,p ×
O(n)N , and consists of alignment steps followed by an av-
eraging step. We start with an initial representation of the
average system R̄0 = (Ā0, B̄0, C̄0). In each iteration of the
algorithm, we align each Ri to R̄l by Algorithm 1, which
gives the aligning Ql

i. We then average the aligned repre-
sentations {Ql

i · Ri} ⊂ OLm,n,p. This averaging is w.r.t.
the distance dOLm,n,p

(·, ·) and has a simple form. In fact,
once the alignment is performed, the averaging problem de-
couples to three separate averaging sub-problems. For Āl+1

and B̄l+1 the solution is the simple Euclidean average:

Āl+1 =
1

N

N∑
i=1

(Ql
i)
>AiQ

l
i, B̄

l+1 =
1

N

N∑
i=1

(Ql
i)
>Bi. (15)

Notice that if ‖Ai‖2 < 1 (1 ≤ i ≤ N), then ‖Āl+1‖2 < 1;
therefore, the average system, in fact, is also asymptotically
stable. To find C̄l+1, since we are using the standard em-
bedding of ST(n, p) in Rp×n, we notice that C̄l+1 solves

C̄l+1 = arg min
C∈ST(n,p)

1

N

N∑
i=1

‖C − CiQ
l
i‖2F . (16)

This means that C̄l+1 is the so-called extrinsic mean of
{CiQ

l
i} ⊂ ST(p, n). It is easy to see that the extrinsic mean

equals the projection of the Euclidean mean to ST(n, p),

C̄l+1 = ProjST(n,p)

(1

N

N∑
i=1

CiQ
l
i

)
, (17)

where ProjST(n,p) : Rp×n → ST(n, p) is the standard pro-
jection of X ∈ Rp×n to ST(n, p) (see [2] for a proof in
the general case). The projection can be found, e.g., via
the economy SVD factorization X = UΣV >, where we
have ProjST(n,p)(X) = UV >. The extrinsic mean C̄l+1

is unique as long as the Euclidean mean 1
N

∑N
i=1 CiQ

l
i is

full-rank (which happens almost surely, see [2] for details
and more general results). Therefore, the computed average
system almost surely belongs to OMm,n,p, which is desir-
able. Compared with the Grassmann embedding approach,
the above computation of C̄l+1 can be performed very fast
especially since we do not deal with matrices of size kp×n.

Algorithm 2 (LDS Align + average)
1. Input: {Ri = (Ai, Bi, Ci)}Ni=1 ⊂ OLm,n,p.
2. Choose R̄0 = (Ā0, B̄0, C̄0) ∈ OLm,n,p.
3. repeat until convergence:

• for i = 1 to N , align Ri to R̄l = (Āl, B̄l, C̄l) using
Algorithm 1 and call the aligning Q, Ql

i.
• find R̄l+1 = (Āl+1, B̄l+1, C̄l+1) from (15) and (17).
• find d̄2l+1 = 1

N

∑N
i=1 d

2
OLm,n,p

(Ql
i ·Ri, R̄

l+1)

4. Output: R̄ = R̄l+1 and d̄2l+1.

The align and average algorithm is briefly described in Al-
gorithm 2. As usual one could have several choices for the
stopping criteria. Notice that in addition to the average sys-
tem representation R̄, the algorithm outputs the final value
of the cost function d̄2l+1, which is a useful quantity in many
applications.

3.3. Clustering LDSs

Given a distance in the space of LDSs and a method for
averaging LDSs, we can immediately use them for cluster-
ing a collection of LDSs {Mi}Ni=1 using a generalized k-
means algorithm. Given a current estimate of K cluster
centers {M̄k}Kk=1, we can use the distance to assign each
LDS to the closest cluster center. Given the clustering of
the LDSs, we can compute a new cluster center by com-
puting the average, and then iterate the two steps. This
approach was used in [17] with the approximate distance
described in §2.4, which effectively reduces the problem to
standard k-means in the Euclidean embedding of the LDSs.
The k-means algorithm was also used in [21, 7] with the
Grassmann embedding approach described in §2.4. In this
paper, we use the proposed Align distance Eq. (10), and
the Align + average algorithm (Algorithm 2) as part of a
generalized k-means algorithm. Because we use an exact
averaging technique in the space of LDSs, rather than in
an ambient space, we obtain better clustering results, as the
experiments will show.

4. Experimental Results

We will first evaluate our approach on synthetic exam-
ples where we compute the mean dynamical system of an
increasingly large set of samples with various levels of
noise. We will also test the accuracy of our approach against
some state-of-the-art approaches for computing means of
LDSs. We will then provide results on some computer vi-
sion applications. For reasons explained earlier, we limit
our experiments to partial LDS in OMm,n,p and only con-
sider the parameters (A,C). We will use the name Align
for our proposed distance, dOMn,p

and interchangeably for
the procedure for computing the mean of LDS by minimiz-
ing this distance. We use an Armijo step-size version of

Algorithm 1 in our experiments. When comparing against
state-of-the-art approaches, we use Grass mean to denote
the un-projected Grassmann mean method proposed by [21]
as described in §2.4 and its corresponding projections using
embeddings in k′-dimensions as Grass k = k′. We denote
the method in [17] and described in §2.4 as MDS Average
and simply averaging the (A,C) pairs as Naive.

4.1. Experiments on synthetic data

Data generation. We randomly generate a matrix Z ∈
Rp×n (n = 5, p = 20), compute the singular value decom-
position (SVD), Z = UΣV >, and assign C̄ = U . This
gives the C matrix for a mean LDS. Similarly, we gener-
ate another random matrix L ∈ Rn×n and divide by the
norm of the matrix times a random value, 0 < c < 1,
to get Ā = c

‖L‖L. This ensures that the system is stable
and provides a ground-truth mean LDS against which we
can compare several algorithms. To generate sample LDS
data around this mean, we compute Ci = C̄ + σEi, where
Ei ∈ Rp×n is a randomly generated matrix with unit Gaus-
sian elements and σ is a measure of noise, e.g., σ = 0.1.
Since C>i Ci 6= In×n, we compute the SVD, Ci = UΣV >

and assign Ci = UV >. Similarly, we use Ai = Ā + σLi,
where Li ∈ Rn×n. To add the effects of an orthogonal
basis transformation, we generate a random orthogonal ma-
trix, Qi ∈ O(n). We then compute the sample LDS point
(Ai, Ci) around the mean (Ā, C̄) as Ai = Q>i AiQi and
Ci = CiQi. We generate N = 10, 000 samples with noise
levels in σ ∈ [0, 0.2].

Comparison with state-of-the-art methods. To com-
pare the performance of our method against state-of-the-art
methods, we need to compare the distance between the true
mean and the sample mean found using these methods us-
ing the same distance. We choose to use the distance in
the Grassmann manifold for this purpose, as it will allow us
to compare the mean found in the Grassmann manifold as
well as its projections with other algorithms. We compare
the performance of several algorithms against increasing 1)
number of samples and 2) noise levels. As we can see in
Fig. 1 and Fig. 2, Naive, as expected, performs the worst.
MDS Average only provides one point from the samples
and uses that as the mean and therefore stays away from the
true mean. Grass mean, Grass (k = 2, . . . , 5), and Align
seem to become closer to the true mean as the number of
samples increases. However in the zoomed in portions, we
can see that not doing the projection (Grass mean) leads
to larger errors. Moreover, our algorithm, Align, gives a
smaller error than the projected points. Similarly, as the
noise level increases, Grass mean gives larger errors.

Computational complexity. For a comparison of the
run-time of our algorithm, Align, against Grass (k = 5)
we generate systems for output dimensions of size p =

100 101 102 103 104
0

0.5

1

1.5

2

2.5

Number of samples

G
eo

de
si

c
di

st
an

ce
 o

n
G

ra
ss

m
an

n

Geodesic distance on Grassmann (k = 5) to true mean, p = 20, n = 5

Align
Grass, k = 2
Grass, k = 3
Grass, k = 4
Grass, k = 5
Grass mean
Naive
MDS Average

104
0.015
0.02

0.025
0.03

0.035

101

0.365
0.37

0.375

102

0.11

0.115

Figure 1. Grass (k = 5) distance between true
and sample means with increasing number of
samples.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.5

1

1.5

2

2.5

Noise standard deviation

G
eo

de
si

c
di

st
an

ce
 o

n
G

ra
ss

m
an

n

Geodesic distance on Grassmann (k = 5) to true mean of 1000 samples, p = 20, n = 5

Align
Grass, k = 2
Grass, k = 3
Grass, k = 4
Grass, k = 5
Grass mean
Naive
MDS Average

0.18 0.2

0.08

0.1

0.12

0.14

Figure 2. Grass (k=5) distance between true
mean and sample means with increasing noise
level.

−4 −3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

4

Pose axis − L−>R (left) and R−>L (right)

Ac
tio

n
ax

is
 −

 W
al

ki
ng

 (b
ot

to
m

) a
nd

 R
un

ni
ng

 (t
op

)

Automatic clustering of human action and pose

Figure 3. Clustering human actions.
Color/shape represent cluster association,
triangles are cluster centers.

{1000, 104}. We note that Align is somewhat expensive for
p = 1000 (Align: 37 sec vs Grass (k = 5): 20.8 sec) but is
much faster for p = 104 (Align: 440 sec vs Grass (k = 5):
2475 sec). One reason for this is that as p increases, the
observability matrix grows k-fold. A large amount of mem-
ory is required and the computational overhead with dealing
with very large matrices slows the approach. Moreover, in-
stead of computing an SVD of p×nmatrices, Grass k = k′

requires computation of k′p× n matrices leading to a com-
putational complexity ofO(k′pn2) as opposed toO(n2) for
our method. However, since our method uses an iterative
optimization technique for which our current MATLAB im-
plementation is not the most efficient possible, these gains
are not apparent unless p is large which is generally the case
in computer vision applications.

4.2. Experiments on real datasets

Human activity datasets. We collect a set of 55 sequences
of 2 human actions - walking and running. From each video,
we extract a bounding box around the moving person by
using background subtraction and scale them to a size of
111 × 67. We then model the optical flow in the bound-
ing box at each time instant as the output of a LDS with
p = 111 × 67 × 2 = 13, 542. For each video, we compute
the LDS parameters for order n = m = 5 as described in
§2. We then cluster all the systems into four clusters us-
ing the proposed LDS averaging method in a k-means clus-
tering scheme. Once we have computed the clusters, we
compute the all-pair distance, dOMn,p

and perform Multi-
Dimensional Scaling (MDS) to get a low-dimensional em-
bedding of the points and the cluster centers. Fig. 3 shows
the 2-D embedding obtained by MDS. As we can see, the
actions are automatically divided into four clusters. Upon
examination, we find that all the points are correctly clus-
tered according to the pose of the action (moving left to
right (L→R) or right to left (R→L)), as well as the action
(walking or running). Moreover, not surprisingly, it appears
that the space of activity LDS is composed of two principal
directions: pose and action. Note that these are unsuper-

vised clustering results and we still get perfect action/pose
classification.

We also apply our framework to the Weizmann human
action database [13] (10 actions performed by 9 actors). We
extract scaled optical-flow bounding box time-series from
each video of size p = 63 × 29 × 2 = 3654 and learn
an order n = 5 LDS. Table 1 shows the results when we
use a simple 1-NN classification approach based on several
distances. As we can see, using our proposed distance we
get 100% recognition rate, which is the state-of-the-art re-
sult and better than the commonly used Martin distance and
Grass (k = 5). The superior performance of our approach
supports the fact that our approach has a more natural defi-
nition for a distance between LDS. Performing 1-NN classi-
fication in general is a computationally expensive approach.
As discussed in the introduction, one method for reducing
this computational complexity is to use a class representa-
tive e.g. the mean, and use the nearest class mean for clas-
sification. We compute the means of each of the 10 classes
by leaving one test sequence out and then classifying it by
assigning it the label of the nearest class mean. Table 2
shows the classification results and the average class mean
computation time. As we can see, our algorithm provides
better classification results and requires much smaller com-
putation time. As the size of the dataset is small, computing
the approximate mean based on the Martin distance requires
much less time, however the corresponding results are very
poor.

Dynamic texture datasets. In [17], the authors pro-
posed a Bag-of-Systems (BoS) approach to dynamic tex-
ture recognition, which generalizes the Bag-of-Features ap-
proach from Euclidean to LDS features. One step of the
BoS algorithm is to cluster a collection of LDSs to obtain a
dictionary of codewords, which is computed using the ap-
proximate averaging algorithm described in §2.4. Here, we
use our LDS averaging framework to construct the code-
words and compare with the original BoS approach. We
use the UCLA8 dynamic texture database from [17] which

1-NN classification Rec (%)
Martin 96.77
Grass (k = 5) 95.70
Align 100

Table 1. Action classification results using
1-nearest neighbor on Weizmann database.

Method Rec (%) Time (s)
Martin 44.09 0.04
Grass (k = 5) 92.47 267
Align 93.55 16

Table 2. Action classification results using
nearest class mean on Weizmann database.

Method Recognition (%)
MDS average [17] 68.18 72.73
Align + average 75.00 79.55
Patch size (σ) 20 30

Table 3. Dynamic texture classification results
using the BoS method on UCLA8 database.

is a view-invariant subset of the database in [11]. We use
the Term-Frequency (TF) approach to compute training and
testing histograms and the χ2-distance between histograms
to perform 1-NN classification. Table 3 shows the classi-
fication result when using 56 clusters for computing code-
words on LDS (n = 5) obtained by densely sampling the
original videos in σ × σ × 25 patches for σ = {20, 30}.
Here p = 20× 20 = 400, and 30× 30 = 900 respectively.
As we can see, our method provides better classification re-
sults than the original approximate average approach. This
can be attributed to the use of the exact mean of the clusters.
Moreover, since our algorithm does not require computation
of an all-pair distance matrix for computing the code-words,
it is also much more efficient. We could not perform clus-
tering using Grass due to large number of systems (≈7000)
of very high dimension (900x5,5).

5. Conclusion
We have presented a novel distance for comparing LDSs,

which can be used for several applications in computer vi-
sion. The proposed distance is defined directly on the space
of LDSs, rather than on an embedding. As a consequence,
one can compute averages directly on the space of LDSs,
rather than approximately or via a projection. Our experi-
ments show how the exact and rigorous computation of dis-
tances and averages improves classification and clustering
results in computer vision applications.

6. Acknowledgements
This work has been supported in part by the grants

ONR N00014-09-10084, NSF CAREER 0447739, NSF
0941362, NSF 0941463 and NSF 0931805.

References
[1] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Al-

gorithms on Matrix Manifolds. Princeton University Press,
Princeton, NJ, 2008.

[2] R. Bhattacharya and V. Patrangenaru. Large sample theory
of intrinsic and extrinsic sample means on manifolds. I. Ann.
Statist., 2003.

[3] A. Bissacco, A. Chiuso, Y. Ma, and S. Soatto. Recognition
of human gaits. In CVPR, 2001.

[4] A. Chan and N. Vasconcelos. Probabilistic kernels for the
classification of auto-regressive visual processes. In CVPR,
2005.

[5] A. Chan and N. Vasconcelos. Classifying video with kernel
dynamic textures. In CVPR, 2007.

[6] A. Chan and N. Vasconcelos. Layered dynamic textures.
TPAMI, 2009.

[7] R. Chaudhry and Y. Ivanov. Fast approximate nearest neigh-
bor methods for non-euclidean manifolds with applications
to human activity analysis in videos. In ECCV, 2010.

[8] R. Chaudhry, A. Ravichandran, G. Hager, and R. Vidal. His-
tograms of oriented optical flow and Binet-Cauchy kernels
on nonlinear dynamical systems for the recognition of hu-
man actions. In CVPR, 2009.

[9] R. Chaudhry and R. Vidal. Recognition of visual dynamical
processes: Theory, kernels and experimental evaluation. TR
09-01, Dept. CS, JHU, 2009.

[10] K. D. Cock and B. D. Moor. Subspace angles and distances
between ARMA models. System and Control Letters, 2002.

[11] G. Doretto, A. Chiuso, Y. Wu, and S. Soatto. Dynamic tex-
tures. IJCV, 2003.

[12] A. Edelman, T. Arias, and S. T. Smith. The geometry of
algorithms with orthogonality constraints. SIAM J Mat. Anal.
App., 1998.

[13] L. Gorelick, M. Blank, E. Shechtman, M. Irani, and R. Basri.
Actions as space-time shapes. TPAMI, 2007.

[14] B. Hanzon. Identifiability, Recursive Identification and
Spaces of Linear Dynamical Systems, volume CWI Tracts
63 and 64. Centrum voor Wiskunde en Informatica (CWI),
Amsterdam, 1989.

[15] J. M. Lee. Introduction to Smooth Manifolds. Graduate Texts
in Mathematics. Springer, 2002.

[16] A. Martin. A metric for ARMA processes. TSP, 2000.
[17] A. Ravichandran, R. Chaudhry, and R. Vidal. View-invariant

dynamic texture recognition using a bag of dynamical sys-
tems. In CVPR, 2009.

[18] A. Ravichandran, P. Favaro, and R. Vidal. A unified ap-
proach to segmentation and categorization of dynamic tex-
tures. In ACCV, 2010.

[19] A. Ravichandran and R. Vidal. Video registration using dy-
namic textures. In ECCV, 2008.

[20] P. Saisan, A. Bissacco, A. Chiuso, and S. Soatto. Modeling
and synthesis of facial motion driven by speech. In ECCV,
2004.

[21] P. Turaga, A. Veeraraghavan, and R. Chellappa. Statistical
analysis on Stiefel and Grassmann manifolds with applica-
tions in computer vision. In CVPR, 2008.

[22] S. Vishwanathan, A. Smola, and R. Vidal. Binet-Cauchy ker-
nels on dynamical systems and its application to the analysis
of dynamic scenes. IJCV, 2007.

[23] L. Younes. Shapes and Diffeomorphisms, vol. 171 App.
Mathematical Sciences. Springer, 2010.

