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Abstract— Linear Dynamical Systems (LDSs) have been ex-
tensively used for modeling and recognition of dynamic visual
phenomena such as human activities, dynamic textures, facial
deformations and lip articulations. In these applications, a
huge number of LDSs identified from high-dimensional time-
series need to be compared. Over the past decade, three
computationally efficient distances have emerged: the Martin
distance [1], distances obtained from the subspace angles be-
tween observability subspaces [2], and distances obtained from
the family of Binet-Cauchy kernels [3]. The main contribution
of this work is to show that the first two distances are particular
cases of the latter family obtained by making the Binet-Cauchy
kernels invariant to the initial states of the LDSs. We also
extend Binet-Cauchy kernels to take into account the mean
of the dynamical process. We evaluate the performance of our
metrics on several human activity recognition datasets and show
similar or better results.

I. INTRODUCTION

Linear Dynamical Systems (LDSs) have been extensively
used for modeling and recognition of dynamic visual phe-
nomena. For instance, [4] uses LDSs to model surgical
gestures in video data from the DaVinci robot; [5], [6] use
LDSs to model the appearance of a deforming heart in a
magnetic resonance image sequence; [7], [8], [9], [10], [11],
[12], [13] use LDSs to model the appearance of dynamic
textures, such as water or fire, in a video sequence; [14],
[15], [16], [17], [18], [19] use LDSs to model human gaits,
such as walking or running, in motion capture and video data;
[20] uses LDSs to model the appearance of moving faces;
and [21] uses LDSs to model audio-visual lip articulations.

In these applications, the recognition pipeline consists of
the following steps: 1) extract a time-series of appropriate
features, 2) model the time-series using LDSs, 3) compute
a metric between dynamical systems and 4) use algorithms
such as Nearest-Neighbors or SVMs for classification. Ar-
guably, the most important step is 3), which requires com-
putationally efficient distances for comparing a huge number
of LDSs identified from high-dimensional time-series data.

Related work. Existing methods for comparing LDSs can
be broadly divided into three (sometimes overlapping) main
categories: (1) Riemannian distances on spaces of LDSs, (2)
metrics on their power spectra, and (3) metrics induced from
a metric in a suitable ambient space.
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Methods in the first category were studied in the 70’s
and 80’s for applications in system identification. [22], [23],
[24], [25] deal explicitly with defining distances and study
the geometrization of the smooth manifold of LDSs of
fixed McMillan degree and size. Interestingly, for most other
spaces of LDSs (e.g., LDSs of fixed size and McMillan
degree not larger than a fixed number or arbitrary McMillan
degree), a smooth finite dimensional Riemannian structure
does not exist. However, this quotient geometry approach is
limited to deterministic systems and the huge cost needed to
actually compute a distance is not addressed [22], [23].

Methods in the second category compare two LDSs with
output dimension p by comparing the power spectra. For
example, one can use a matrix-norm-based distance on
the infinite dimensional space of p × p spectral density
matrices, Pp. This distance can also be derived from the so-
called Wasserstein distance between processes [26]. Other
approaches consider a smaller subspace P+

p of full-rank
p × p spectral density matrices. Due to the strict positive-
definiteness of spectral density matrices, P+

p naturally has
the structure of an infinite dimensional open cone. Amari
in [27], [28] gives an infinite dimensional Riemannian and
a more general information geometry based framework to
geometrize P+

p mainly for the case of p = 1 (see also
[29]). Amari’s framework can be extended to p > 1 and
in that direction recently an infinite-dimensional Rieman-
nian framework [30] has been suggested. However, key
disadvantages of these methods for large p are that they
are computationally expensive and the assumption of full-
rankness is too restrictive and not realistic.

Methods in the third category include metrics based on
subspace angles [2] such as the Martin distance [1], algebraic
metrics such as the Binet-Cauchy kernels [3], the alignment
distance [31], and probabilistic metrics such as the KL-
divergence [32]. Of these, the Martin distance has been the
most extensively used as it is invariant to the noise statistics
as well as initial state of the dynamical system. For human
activity recognition, the initial state is usually not relevant.
For example, we do not want to discriminate between a
walking action which is observed starting mid-cycle with
both feet crossing each other and a walking action where
the two feet are at opposite ends. The original Binet-Cauchy
kernel in [3], however, is not invariant to the initial state of
the dynamical system and therefore does not perform very
well in these tasks. While it is possible to make the Binet-
Cauchy kernel initial-state invariant by taking the expectation
over the initial states, as proposed in [3], this approach
has not been explored due to the difficulty in defining an



appropriate distribution for the initial states.

Paper contributions. We propose two approaches to mak-
ing the Binet-Cauchy kernels initial-state invariant. The first
approach is based on computing the determinant of a matrix
relating the two dynamical models. We prove that this kernel
is invariant to transformations of the dynamical models. We
also show that the Martin kernel is a particular case of the
proposed determinant kernel. The second approach is based
on maximizing the Binet-Cauchy kernel with respect to the
initial states. We show that all metrics based on subspace
angles are a particular case of this approach. We also extend
Binet-Cauchy kernels to take into account the mean of the
dynamical process. We extensively test our proposed metrics
against the Martin distance and the original Binet-Cauchy
kernel for the task of human activity recognition and show
that we get superior recognition performance.

Paper outline. The rest of the paper is organized as follows.
§II gives the relevant technical background for dynamical
systems-based modeling as well as briefly summarizes the
original Binet-Cauchy kernel. In §III, we propose two initial-
state invariant Binet-Cauchy kernels and provide theoretical
results relating them with existing metrics for dynamical
systems. In §IV, we extend our kernels to take into account
the mean of the dynamical process. In §V, we provide the
results of several human activity recognition experiments to
display the efficacy of our proposed metric. Finally, in §VI,
we provide conclusions and directions for future research.

II. BACKGROUND

This section provides a brief overview of dynamical
systems and metrics on the space of dynamical systems.
We limit our review to distances that are computationally
efficient for high-dimensional systems.

A. Dynamical systems

Given a time-series, {yt ∈ Rp}Tt=1 = [y1, . . . ,yT ],
a Linear Dynamical System (LDS) models its temporal
evolution using the following Gauss-Markov process:

xt+1 = Axt +Bvt+1

yt = µ+ Cxt + wt.
(1)

Here xt ∈ Rn represents the internal (hidden) state of the
LDS at each time instant t, n represents the order of the
LDS, A ∈ Rn×n represents the dynamics matrix that linearly
relates the states at time instants t and t + 1, C ∈ Rp×n
represents the observation matrix that linearly transforms the
internal state to the output yt, µ ∈ Rp represents the mean
of the output time-series. vt ∈ Rn and wt ∈ Rp correspond
to the input and output noise processes usually assumed to
be Gaussian with zero-mean. Specifically, Bvt ∼ N (0, Q),
where Q = BB>, and wt ∼ N (0, R), where R = σ2I .
Given the time-series {yt}Tt=1, the task of computing the
system parameters, (x0, µ,A,C,B,R), is referred to as
system identification and several optimal [33], [34] and sub-
optimal but very efficient [7] methods have been proposed in
literature. Chan et al. [35] proposed an extension of LDS to

kernel Non-Linear Dynamical Systems (NLDS) by implicitly
embedding a non-Euclidean time-series into a reproducing
kernel Hilbert space (RKHS) using an appropriate kernel on
the original non-Euclidean space.

B. Metrics for dynamical systems

Given a pair of LDS, Mi = (x0;i, µi, Ai, Ci, Bi, Ri) for
i = 1, 2, existing recognition algorithms define a metric
between them, d(M1,M2), for the purpose of comparison.
As we have mentioned in the introduction, several metrics
have been proposed in literature.
Martin distance [1], [2]. The Martin distance compares
only the parameters A and C of the dynamical models. Let
Mi = (Ai, Ci) for i = 1, 2. Assuming that the systems are
stable, i.e., ‖Ai‖2 < 1, the Martin distance is defined as,

dM (M1,M2)2 = −ln
n∏
i=1

cos2 θi. (2)

Here, θi is the i-th subspace angle between the range spaces
of the infinite observability matrices O1 and O2 defined as

Oi = [C>i , (CiAi)
>, (CiA

2
i )
>, . . .] for i = 1, 2. (3)

To compute the subspace angles we first solve the Sylvester
equations Pij = A>i PijAj + C>i Cj for i, j = 1, 2. We then

compute the eigenvalues, {λi}2ni=1 of
[

0 P−111 P12

P−122 P21 0

]
.

The subspace angles, {θi}ni=1 can then be computed as θi =
cos−1(λi).
Binet-Cauchy kernels. Vishwanathan et al. [3] introduced
an algebraic approach to comparing two LDS, leading to a
complete family of kernels called the Binet Cauchy kernels.
One of the proposed kernels, the Binet-Cauchy trace kernel
between two LDS with uncorrelated noise processes, depends
only on the parameters (A,C) of the LDS and the initial
condition x0. Let Mi = (x0;i, Ai, Ci) for i = 1, 2. The
trace kernel is defined as,

ktr(M1,M2) = x>0;1P12x0;2, (4)

where P12 is the solution to the Sylvester equation,

P12 = λA>1 P12A2 + C>1 C2, (5)

which is given by

P12 =

∞∑
t=0

λt(At1)>C>1 C2A
t
2. (6)

This matrix exists and is unique if λ‖A1‖2‖A2‖2 < 1.
An important property of the trace kernel is that it can

be used to compare unstable systems (i.e., ‖Ai‖2 > 1)
by choosing λ small enough. Moreover, the trace kernel is
invariant with respect to a change of basis of the state space
x′t;i = Tixt;i. That is, x′>t;iP

′
ijx
′
t;j = xt;iPijxt;j , where

(x′0;i, A
′
i, C
′
i) = (Tix

′
0;i, TiAiT

−1
i , CiT

−1
i ). (7)

The invariance property follows because

P ′ij = λ(TiAiT
−1
i )>P ′ij(TjAjT

−1
j ) + (CiT

−1
i )>(CjT

−1
j ),



and so P ′ij = T−>i PijT
−1
j .

Extensions to NLDS. For the case of comparing non-
Euclidean time-series, Chan et al. [35] and Chaudhry et
al. [18] proposed the Martin distance and the Binet-Cauchy
kernels for kernel NLDS respectively.
Invariance properties. As we can see, the Martin distance
is invariant to the initial states of the dynamical system as
well as the noise statistics. On the other hand, the Binet-
Cauchy kernel is not invariant to these. Even in the case of
uncorrelated noise as in Equation (4), the computation of
the Binet-Cauchy kernel involves the initial states of the two
LDS.

One way of making the Binet-Cauchy kernels invariant
to initial conditions is to use take the expectation of the
kernel with respect to the initial conditions of both systems,
as proposed in [3]. More specifically, if Σx0 = E(x0;1x

>
0;2)

and Mi = (Ai, Ci) for i = 1, 2, the initial-state invariant
Binet-Cauchy trace kernel with uncorrelated noise processes
is defined as,

ktr(M1,M2) = trace(Σx0
P12). (8)

However, Σx0
is not always available or deducible from the

data. Hence there is a need to develop methods that do not
require any statistics of the initial conditions.

III. INITIAL-STATE INVARIANT BINET-CAUCHY KERNELS

In this section, we propose two approaches to making
the Binet-Cauchy kernel invariant with respect to the initial
conditions. The first approach (described in §III-A) is based
on computing a scalar function of P12. In particular, we
show that the determinant kernel, det(P12), is a positive-
semidefinite kernel. We also show that a normalized version
of it is invariant with respect to a change of basis. In addition,
we show that the Martin kernel [1] is a particular case of the
normalized determinant kernel. The second approach (de-
scribed in §III-B) is based on maximizing the Binet-Cauchy
kernel with respect to the initial conditions. We show that
different maximizations lead to the different subspace angles
[2] between LDSs. Hence, any metric based on subspace
angles can be derived from the Binet-Cauchy kernel.

A. The determinant kernel
A simple approach to making the Binet-Cauchy kernel

independent of the initial states is to consider any scalar
function of P12. For instance, we can consider the maximum
singular value kmax(M1,M2) = σ1(P12) or the trace
kt(M1,M2) = trace(P12). However, it is not clear if these
choices lead to a positive-definite kernel. Moreover, it is easy
to see that such extensions are not invariant with respect to
a change of basis.

In this section, we propose the following initial-state
invariant extension of the Binet-Cauchy kernel:

kd(M1,M2) = det(P12)2, (9)

which we call the Binet-Cauchy determinant kernel1. The
1Here-forth whenever we mention the determinant kernel, we refer to this

initial-state-independent definition. The original Binet-Cauchy determinant
kernel in [3] is computationally unwieldy and is not used in this paper.

following theorem shows that this kernel is positive definite.
Theorem 1: kd is a positive-definite kernel.

Proof: To show that kd is a positive-definite kernel,
we need to show that it can be written as kd(M1,M2) =
φ(M1)>φ(M2) for some embedding φ. We construct such
an embedding by making use of the Binet-Cauchy theo-
rem for operators [3]. Specifically, [3] shows that for any
operators F1 and F2 of compatible dimensions such that
F>1 F2 is well defined there exists an embedding ψ such
that det(F>1 F2) = ψ(F1)>ψ(F2). We will now show that
the theorem follows by applying this result to Fi = Λ1/2Oi,
i = 1, 2, where

Λ =


1

λ
λ2

. . .

 Oi =


Ci
CiAi
CiA

2
i

...

 i = 1, 2. (10)

Notice first that F>1 F2 = O>1 ΛO2 is well defined because

Q12 = O>1 ΛO2 =

∞∑
i=0

λi(A>1 )iC>1 C2A
i
2 (11)

converges when λ‖A1‖2‖A2‖2 < 1. Notice also that

Q12 = C>1 C2 + λA>1

( ∞∑
i=0

λi(A>1 )iC>1 C2A
i
2

)
A2

= C>1 C2 + λA>1 Q12A2.

(12)

Since the solution to the Sylvester equation is unique, we
have Q12 = P12. Therefore, letting φ(Mi) = ψ(Λ1/2Oi),
we obtain

φ>(M1)φ(M2) = ψ(Λ1/2O1)>ψ(Λ1/2O2) (13)

= det(O>1 ΛO2) = det(P12). (14)

Thus, det(P12) is a kernel, hence so is det(P12)2.
Since kd is a kernel, so is its normalized version

k′d(M1,M2) =
kd(M1,M2)√

kd(M1,M1)
√
kd(M2,M2)

. (15)

The following theorem shows that this kernel is invariant
with respect to a change of basis.

Theorem 2: The normalized Binet-Cauchy determinant
kernel is invariant with respect to a change of basis.
The theorem follows by direct calculation:

k′d(M′1,M′2) =
det(P ′12)2√

det(P ′11)2
√

det(P ′22)2
(16)

=
det(T−>1 P12T

−1
2 )2√

det(T−>1 P11T
−1
1 )2

√
det(T−>2 P22T

−1
2 )2

=
det(P12)2√

det(P11)2
√

det(P22)2
= k′d(M1,M2).

The next theorem shows that the Martin kernel [1] is a
particular case of the normalized Binet-Cauchy determinant
kernel.

Theorem 3: When λ = 1, the normalized Binet-Cauchy
determinant kernel, k′d, coincides with the Martin kernel, kM .



Proof: By definition, the determinant kernel for λ = 1
is given by kd(M1,M2) = det(P12)2, where P12 is the
solution of the Sylvester equation, P12 = A>1 P12A2+C>1 C2.
Now, following [2], the Martin kernel is the square of the
product of the cosine of the subspace angles between the two
LDSs, which can be computed as

cos2 θi = i-th eigenvalue(P−111 P12P
−1
22 P21), (17)

where Pij is the solution of Pij = A>i PijAj + C>i Cj . We
thus have

kM (M1,M2) =

n∏
i=1

cos2 θi = det(P−111 P12P
−1
22 P21)

=
det(P12)2

|det(P11)||det(P22)|
(18)

=
kd(M1,M2)√

kd(M1,M1)
√
kd(M2,M2)

= k′d(M1,M2).

B. From Binet-Cauchy kernels to subspace angles
In this section, we present an alternative approach to

making the Binet-Cauchy kernel invariant with respect to the
initial conditions. The key idea behind this new approach is
to maximize the Binet-Cauchy kernel x>1 P12x2 with respect
to x1 and x2. Interestingly, we show that different choices for
the maximization lead to the cosines of the different subspace
angles between LDSs.

We begin by defining the following kernel

k′tr(M1,M2) = max
x1,x2

(
x>1 P12x2

)
(19)

subject to x>1 P11x1 = 1 and x>2 P22x2 = 1,

where, as before, Pij is the solution to the Sylvester equation,
Pij = λA>i PijAj+C>i Cj . When λ = 1, this kernel is equal
to the cosine of the smallest subspace angle between two
LDSs, as shown by the following result.

Theorem 4: When λ = 1, k′tr coincides with the cosine
of the smallest subspace angle.

Proof: The Lagrangian of the optimization problem in
Equation (19) is given by:

x>1 P12x2 +
1

2
µ1(1− x>1 P11x1) +

1

2
µ2(1− x>2 P22x2).

Differentiating and equating to zero gives,

P12x2 = µ1P11x1, (20)

P>12x1 = µ2P22x2. (21)

Multiplying Equation (20) by x>1 and Equation (21) by x>2
on the right and equating them gives

µ1x
>
1 P11x1 = x>1 P12x2 = µ2x

>
2 P22x2. (22)

Using the constraints in Equation (19), we get µ1 = µ2 = µ
and thus x = [x>1 ,x

>
2 ]> is the solution to the generalized

eigenvalue problem:[
0 P12

P21 0

] [
x1

x2

]
= µ

[
P11 0
0 P22

] [
x1

x2

]
. (23)

Following the construction in [2], µ2 is the eigenvalue of
the matrix P−111 P12P

−1
22 P21 and x = [x>1 ,x

>
2 ]> is the

generalized eigenvector corresponding to the generalized
eigenvalue, µ, in Equation (23). Multiplying by x> on both
sides of Equation (23), we obtain x>1 P12x2 = µ and thus
the solution to the optimization problem becomes

k′tr(M1,M2) = µmax = cos θmin, (24)

which coincides with the cosine of the smallest subspace
angle between systems M1 and M2.

More generally, the remaining subspace angles can be
computed from the Binet-Cauchy trace kernels by succes-
sively solving a series of constrained optimization problems.
In particular, one can show in an analogous fashion that for
the k-th smallest subspace angle we have

cos θk = max
x1,x2

(
x>1 P12x2

)
, for k = 2, . . . , n (25)

subject to x>1 P11x1 = 1,x>2 P22x2 = 1,

x>1;iP11x1 = 0,x>2;iP22x2 = 0, for i = 1, 2, . . . , k − 1.

where x1;i and x2;i are the corresponding maximizers for
cos θi, i = 1, 2, . . . , k − 1. Hence, the subspace angles can
be directly derived from the Binet Cauchy kernels with λ = 1
and therefore, the subspace-angle based distances are special
cases of the Binet Cauchy kernels.

IV. HYBRID METRICS ON THE OUTPUT MEANS AND
SYSTEM DYNAMICS

An important consideration that is often overlooked when
developing metrics is how to incorporate the effect of the
temporal means when computing the distances. It is clear
that the temporal means of two sequences provide good
discriminative power for recognition purposes. Using the
temporal means alone as weak classifiers with Boosting has
been shown to perform well in [36].

We can define a simple metric that uses only the temporal
means of the output sequences:

dp(µ1, µ2) = ‖µ1 − µ2‖p, (26)

where p ≥ 1 is a free parameter, usually equal to 1.
The distances based on subspace angles, Binet-Cauchy

kernels and in general any dynamical system metric can be
combined with this metric on the temporal means to construct
a new class of hybrid metrics that also give a certain weight
to the temporal means when performing recognition. This
class of hybrid distances can in general be represented by:

dh(M1,M2) = (1− β)dc(M1,M2) + βdp(M1,M2),
(27)

where dc is any metric between the LDSs and dp is the
distance between the temporal means. Note that dc and dp
are normalized and scaled such that the maximum distance
between any two models in the training set is one. The
parameter β is the relative weight between dc and dp and
can be tuned using cross-validation. Also, notice that for all
the metrics in §II, the distances can easily be converted into
Radial Basis Function (RBF) kernels with a parameter γ as



k(M1,M2) = e−γd(M1,M2)
2

. This conversion allows γ to
be tuned to the specific application using cross-validation
during the training phase.

V. EXPERIMENTS

In this section, we will provide experimental results for
human activity recognition and compare the performance
of using our proposed initial-state invariant Binet-Cauchy
kernel against the original Binet-Cauchy kernel as well as
the more commonly used Martin distance. In the following,
we will first briefly describe the feature extraction procedure
and various parameter choices, and then provide results on
several human activity databases.

A. Feature extraction

We use the Histograms of Oriented Optical Flow (HOOF)
features proposed by Chaudhry et al. [18] since they do
not require any pre-processing of the video such as human
tracking, background subtraction, or silhouette extraction as
long as there is only one person in the scene and the camera
is stationary. HOOF features are extracted from each frame
by first computing the optical flow of each frame, quantizing
the flow directions in a number of laterally invariant bins2

and adding the magnitude of the flow vector at each pixel to
the corresponding bin before normalizing the histogram. This
results in a feature that is invariant to the lateral direction
of motion (a person moving left to right vs right to left will
generate the same signature), and invariant to scale (a person
further away in the scene will generate similar optical flow
signatures as a person who is near the camera).

Parameter choices. There are several parameter choices
when using HOOF features and kernel NLDS for represent-
ing human actions, including the number of histogram bins,
B, and the choice of the histogram kernel, e.g., Geodesic,
χ2, Minimum Distance Pairwise Assignment (MDPA) or
Histogram Intersection (HIST). The order of the dynamical
system, n, is another parameter, as is the choice of using
dynamics-only metrics or hybrid metrics, as discussed in §IV.
From a preliminary set of experiments on the Weizmann
human action dataset [37], we found that in general, any
bin size, B > 20 is discriminative across all metrics and
histogram kernels. Furthermore, we found that overall, lower
system orders, n ≈ 5, the geodesic kernel for histograms and
the histogram intersection kernel performed better.

B. Experiments on the Weizmann database [37]

The Weizmann human action dataset consists of a total of
93 videos with 9 actors and 10 action categories including
both in-place actions such as waving, bending, etc. , and
moving actions such as walking, running, etc. . The com-
monly used testing scheme is a leave-one-sequence out cross-
validation approach and Nearest-Neighbor classification.

We will first provide several statistics of how the recogni-
tion performance varies across different dynamical systems-
based metrics and histogram kernels chosen for HOOF. We

2An optical flow vector, (x, y) contributes to the same bin as (−x, y).
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will use boxplots to show these statistics for each choice of
metric and histogram kernel for a range of bin sizes (20-100)
and system orders (1-20). Figure 1 shows a generic box-plot.

Figure 2 shows the statistics of recognition performance
against several histogram metrics used for system identi-
fication and dynamical systems metrics. We can see that
in general, the Geodesic metric (or Bhattacharrya kernel)
and the Histogram Intersection kernel (HIST) between two
histograms give the best results. Furthermore, the best recog-
nition results are achieved when using the Martin distance
followed by the Binet-Cauchy initial state independent de-
terminant kernel. The median performance of the Binet-
Cauchy determinant kernel is better than the Binet-Cauchy
maximum singular value kernel and significantly better than



TABLE I
COMPARISON OF DIFFERENT APPROACHES FOR ACTION RECOGNITION

ON THE WEIZMANN DATABASE AGAINST OUR PROPOSED METHODS.

Method Recognition (%)
Xie et al. [38] 95.60
Thurau et al. [39] 94.40
Ikizler et al. [40] 100.00
Gorelick et al. [37] 99.60
Niebles et al. [41] 90.00
Ali et al. [42] 95.75
HOOF - Martin distance 94.62
HOOF - Binet-Cauchy kernel 84.95
HOOF - Binet-Cauchy determinant kernel 92.47

the original Binet-Cauchy kernel. This shows the importance
of having an initial-state invariant metrics as the best results
are achieved using the Martin distance and the Binet-Cauchy
determinant kernel which are both invariant w.r.t. initial states
of the dynamical systems.

Table I compares the performance of state-of-the-art meth-
ods on the Weizmann dataset and dynamical-systems based
approaches using the Martin distance, the original Binet-
Cauchy kernel and our proposed initial-state invariant Binet-
Cauchy determinant kernel. As we can see, using the Binet-
Cauchy determinant kernel gives comparable results with
several other methods and performs much better than the
original Binet-Cauchy kernel.

C. More datasets

Given the above insights, we will now test the perfor-
mance of our proposed metric on some other human activity
datasets.
Multi-view human action dataset. We collected a high-
resolution multiple view dataset of 12 subjects performing
11 actions including jumping, sitting, throwing, etc. , with 5
repetitions of each action. Table II provides activity recog-
nition results independently for each of the four different
view points. The results shown are the best across orders
1-20 when using hybrid metrics with a bin size of 64 and
the Geodesic kernel. Overall the best results are achieved
when using SVM coupled with either the Martin distance
or the Binet-Cauchy determinant kernel. Table III shows
the best results achieved using the common bag-of-words
approach with HOG-HOF features as in [43] along-with the
χ2 kernel for bag-of-words histograms. Note that our results
when using HOOF are competitive with these results and as
noted before, the Binet-Cauchy determinant kernel performs
much better than the original Binet-Cauchy kernel.
KTH dataset [44]. We also provide classification results
using HOOF on the KTH database. This is a very challenging
dataset for global features such as HOOF since there is a lot
of camera jitter and camera artifacts such as automatic white
balance and exposure adjustment, etc. These artifacts cause
errors in optical flow computation which affect the accuracy
of HOOF computation. Furthermore, there are several frames
at the beginning and end of a video that do not contain a
person. Therefore we only provide results for scenario 1 of

TABLE II
ACTION CLASSIFICATION RESULTS ON THE COLLECTED MULTI-VIEW

ACTION DATASET USING HOOF FROM DIFFERENT CAMERA VIEWS (V-1
THROUGH V-4).

Metric V-1 V-2 V-3 V-4

1-NN

Martin 80.00 80.36 88.69 76.28
BC 64.36 70.18 77.01 71.53
BC-Det 81.82 83.64 89.78 79.20
BC-Max SV 75.27 83.64 85.04 74.82
Means 65.09 72.00 75.91 64.60

SVM

Martin 87.27 89.09 93.07 86.86
BC 70.18 75.64 87.23 79.20
BC-Det 85.82 84.72 94.89 84.31
BC-Max SV 80.73 82.18 89.05 82.12
Means 61.45 57.09 85.04 74.45

TABLE III
ACTION CLASSIFICATION RESULTS ON THE COLLECTED MULTI-VIEW

ACTION DATASET USING HOG-HOF FROM DIFFERENT CAMERA VIEWS

(V-1 THROUGH V-4).

V-1 V-2 V-3 V-4
1-NN 91.61 91.97 93.43 84.67
SVM 91.97 87.96 96.35 87.23

the KTH database. Table IV provides activity recognition
results for several dynamical-systems based metrics when
using the Geodesic kernel for 64-bin HOOF time-series with
a system order of 5. The best recognition rate achieved was
72.56% with the Martin kernel using SVM followed closely
by the Binet-Cauchy determinant kernel, which again per-
formed much better than the original Binet-Cauchy kernel.

We would like to note that even though the KTH dataset
is one of the most commonly evaluated upon dataset in com-
puter vision, almost all state-of-the-art approaches are based
on local features and hence are not directly comparable to our
approach. To the best of our knowledge the best performing
global feature-based method for KTH was outlined in [45]
as a comparison method against their proposed local feature-
based methods. The average recognition rate achieved by
this method was 72%. Another recent global optical-flow
feature based approach was proposed by Mota et al. [46]
that gave recognition rates in the range of 70% to 86%
on the KTH dataset. Unfortunately, all global-feature based
representations do not fare well against the best reported
local-feature based result on the entire (all four scenarios)
KTH database, e.g., 98.1% in [47].

UCF50 dataset [48]. Finally, we will also report activity
recognition results for the large 50-class UCF50 dataset.
Table V shows the recognition rates for several metrics
when using 64-bin HOOF time-series modeled using the
Geodesic kernel dynamical systems. We report the average of
5-fold group-wise classification results as in [49], [47]. The
results in Table V follow the trends that we have observed
for other datasets: in general hybrid metrics perform better
than dynamics-only metrics, and Martin and Binet-Cauchy
determinant kernel perform the best. The best performing
result of 53.14% is achieved by using the Binet-Cauchy



TABLE IV
ACTIVITY RECOGNITION RESULTS ON THE KTH DATABASE. HOOF

RESULTS ONLY CORRESPOND TO SCENARIO 1 USING THE COMMON 16/9
SUBJECT TRAIN/TEST SPLIT. WE USED THE GEODESIC KERNEL, 64 BINS

AND SYSTEM ORDER 5 FOR MODELING HOOF TIME-SERIES. THE

RESULTS FOR STATE-OF-THE-ART GLOBAL AND LOCAL METHODS ARE

MARKED WITH AN ASTERISK AS THE RESULTS ARE NOT DIRECTLY

COMPARABLE DUE TO DIFFERENT TRAINING/TESTING SETS OR

DIFFERENT NUMBER OF SCENARIOS.

Method/Distance Dynamics-only Hybrid
HOOF 1-NN SVM 1-NN SVM
Martin 66.51 72.56 67.44 67.91
BC 49.30 46.51 59.07 62.79
BC-Det 66.98 61.40 60.93 60.47
BC-Max SV 27.91 29.77 48.84 41.86
Means 56.74 61.86
Laptev et al. [45] 72∗

Mota et al. [46] 70-86∗

Sadanand et al. [47] 98.1∗

TABLE V
ACTIVITY RECOGNITION RESULTS FOR THE UCF50 DATABASE USING

5-FOLD GROUP-WISE CROSS-VALIDATION. FOR OUR METHOD, WE USED

64 BINS, THE GEODESIC KERNEL AND SYSTEM ORDER 5 FOR MODELING

HOOF TIME-SERIES. THE STATE-OF-THE-ART RESULTS USING THE

METHOD IN [50] AND [43] APPEARED IN [47].

Method/Distance Dynamics-only Hybrid
HOOF 1-NN SVM 1-NN SVM
Martin 41.62 26.19 46.33 34.43
BC 25.43 31.77 32.08 42.14
BC-Det 42.00 48.51 45.71 53.14
BC-Max SV 17.19 18.62 24.30 31.94
Means 31.67 33.15
Oliva et al. [50] 38.8
Laptev et al. [43] 47.9
Sadanand et al. [47] 57.9

determinant kernel. The UCF dataset is relatively new and
has only recently started to gain the attention of researchers.
The best reported results using simple global appearance-
based features such as Gist [50] is 38.8%, using local spatio-
temporal HOG-HOF feature-based bag-of-words approach
[43] is 47.9%, and using the approach in [47] is 57.9%. Our
result of 53.14% is better than two of these approaches and
is competitive with the state-of-the-art.

VI. CONCLUSIONS

In this paper, we have proposed initial-state invariant
versions of the Binet-Cauchy kernel. We have shown that
our proposed kernels are theoretically sound and that they
allow us to develop interesting connections between the
Binet-Cauchy kernels and the more commonly used Martin
and subspace angle-based distances for dynamical systems.
Through our experiments, we have shown that the initial-
state invariant kernels perform much better than the original
Binet-Cauchy kernels for the task of activity recognition.
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