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Abstract

We propose a novel algorithm for segmenting multiple
motions of different types from point correspondences in
multiple affine or perspective views. Since point trajecto-
ries associated with different motions live in different man-
ifolds, traditional approaches deal with only one manifold
type: linear subspaces for affine views, and homographic,
bilinear and trilinear varieties for two and three perspec-
tive views. As real motion sequences contain motions of dif-
ferent types, we cast motion segmentation as a problem of
clustering manifolds of different types. Rather than explic-
itly modeling each manifold as a linear, bilinear or mul-
tilinear variety, we use nonlinear dimensionality reduction
to learn a low-dimensional representation of the union of
all manifolds. We show that for a union of separated man-
ifolds, the LLE algorithm computes a matrix whose null
space contains vectors giving the segmentation of the data.
An analysis of the variance of these vectors allows us to
distinguish them from other vectors in the null space. This
leads to a new algorithm for clustering both linear and non-
linear manifolds. Although this algorithm is theoretically
designed for separated manifolds, our experiments demon-
strate its performance on real data where this assumption
does not hold. We test our algorithm on the Hopkins 155
motion segmentation database and achieve an average clas-
sification error of 4.8%, which compares favorably against
state-of-the art multiframe motion segmentation methods.

1. Introduction
Recent years have witnessed an increasing interest on the

understanding of dynamic scenes in which both the camera
and multiple objects move. This is a non-trivial problem
as it requires the simultaneous estimation of an unknown
number of motion models, without the knowledge of which
measurements correspond to which model.

In the case of affine cameras, the trajectories associated
with each rigidly moving object live in a linear subspace of
dimension four or less [1, 15]. Thus, motion segmentation
is equivalent to clustering linear subspaces. Earlier work
[1, 2] was based on thresholding the leading singular vec-

tor of the matrix of point trajectories or the entries of the
so-called shape interaction matrix. However, this thresh-
olding process is very sensitive to noise [3, 6]. Another dis-
advantage of these methods is that they require the motion
subspaces to be linearly independent [6], thus they are not
provably correct for most practical motion sequences which
usually exhibit partially dependent motions. This has led
to the development of several algorithms for dealing with
partially dependent motions, including statistical methods
[12], spectral methods [23] and algebraic methods [17]. In
the case of perspective cameras, the situation is more com-
plicated as the trajectories associated with different moving
objects live in different multilinear varieties. Prior work has
been limited to algebraic methods for two [20, 21] and three
[4] views and statistical methods for multiple views [10].

In this paper, we seek an alternative approach that deals
automatically with motions of different types. Rather than
explicitly modeling each manifold as a linear, bilinear or
multilinear variety, we use nonlinear dimensionality reduc-
tion (NLDR) to learn a low-dimensional representation of
the union of all manifolds. NLDR refers to the problem of
finding a low-dimensional representation for a set of points
lying in a nonlinear manifold embedded in a high dimen-
sional space. A huge family of algorithms computes a low-
dimensional representation from the top or bottom eigen-
vectors of a matrix M constructed from the local geometry
of the manifold. Algorithms in this family include ISOMAP
[13] and locally linear embedding (LLE) [9].

Although the goals of dimensionality reduction, classifi-
cation and segmentation have always been intertwined with
each other, considerably less work has been done on extend-
ing NLDR techniques for the purpose of clustering data liv-
ing on different manifolds. In the case of linear manifolds,
there are many existing subspace clustering methods in-
cluding K-subspaces [5], Generalized Principal Component
Analysis (GPCA) [19], and Mixtures of Probabilistic PCA
(MPPCA) [14]. However, all subspace clustering methods
are formulated only for mixtures of linear manifolds and do
not work in the presence of nonlinear manifolds. Existing
NLDR techniques for manifold clustering include [11] and
[8]. [11] is an EM-like extension of ISOMAP for clustering
multiple nonlinear manifolds. This method is very sensi-



tive to good initialization and uses heuristics in the E-step
to assign points to manifolds. The work of [8] applies LLE
to a manifold with m connected components. It shows that
m eigenvalues of the matrix M are zero and that the clus-
tering of the data can be obtained from the corresponding
eigenvectors. However, this LLE clustering algorithm suf-
fers from degeneracies in the presence of subspaces, as we
will see in §3.3.
Paper contributions. In this paper, we study the prob-
lem of segmenting multiple motions of different types. We
cast this problem as one of simultaneous nonlinear dimen-
sionality reduction and clustering of both linear and non-
linear manifolds. In particular, we study the mathemati-
cal properties of the LLE algorithm for manifold clustering
and demonstrate that it becomes degenerate when the data
points are drawn from a union of linear manifolds, i.e. sub-
spaces. In spite of these degeneracies, we show that one
can still obtain the membership of the data as well as a low-
dimensional representation for each one of the manifolds.

2. Multiframe Motion Segmentation Problem
2.1. Segmentation from Multiple Affine Views

Let {x f p∈R
2} f=1,...,F

p=1,...,n be the projections of n 3-D points
{Xp ∈ P

3}n
p=1 lying on a rigidly moving object onto F

frames of a rigidly moving camera. Under the affine pro-
jection model, the images satisfy the equation

x f p = A f Xp, (1)

where A f ∈ R
2×4 is the affine camera matrix at frame f .

Let W1 ∈R
2F×n be the matrix whose n columns are the

image point trajectories {x f p}n
p=1. It follows from (1) that

W1 can be decomposed into a motion matrix M1 ∈ R
2F×4

and a structure matrix S1 ∈ R
n×4 as

W1 = M1S�1⎡
⎢⎣

x11 · · ·x1n
...

...
xF1 · · ·xFn

⎤
⎥⎦

2F×n

=

⎡
⎢⎣

A1
...

AF

⎤
⎥⎦

2F×4

[
X1 · · ·XP

]
4×n ,

(2)

hence rank(W1) ≤ 4. Since the affine camera matrix A f
is full rank, we also have that rank(W1) ≥ rank(A f ) = 2.
Therefore, under the affine projection model, the 2-D tra-
jectories of a set of 3-D points seen by a rigidly moving
camera (the columns of W1) live in a subspace of R

2F of
dimension d1 = rank(W1) = 2, 3 or 4 [15].

Assume now that the n trajectories {x f p}n
p=1 correspond

to m objects undergoing m rigid-body motions relative to
a moving camera. The 3-D motion segmentation problem
is the task of clustering these n trajectories according to
the m moving objects and is equivalent to clustering a set
of points into m subspaces of R

2F of unknown dimensions
d j ∈ {2,3,4} for j = 1, . . . ,m.

2.2. Segmentation from Multiple Perspective Views

Under the perspective projection model, point trajecto-
ries associated with m moving bodies live in m bilinear va-
rieties for two views and trilinear varieties for three views
[7]. Thus, 3-D motion segmentation is equivalent to clus-
tering data lying in m bilinear or trilinear varieties. In the
general case of F views, the relationships among point cor-
respondences are multilinear on the point correspondences.
However, these multilinear constraints are algebraically de-
pendent on those among two and three views [7]. Further-
more, it is well known that, except for degenerate cases, the
multilinear constraints are algebraically dependent on the
bilinear constraints. It is shown in [18] that among all bi-
linear constraints between all pairs of views, only 2F − 3
are algebraically independent. Therefore, the point corre-
spondences [x1p,x2p, . . . ,xF p]� ∈ R

2F live in a manifold of
dimension 2F − (2F −3) = 3. 3-D motion segmentation is
then equivalent to clustering these m manifolds.

2.3. Segmentation of Motions of Different Types

In general, scenes will have multiple moving objects oc-
cupying a small area of the image and thus their motion can
be well approximated by the affine model. The background
points, on the other hand, describe the motion of the cam-
era, which usually has significant perspective effects due to
depth variations, forward motions, etc., thereby requiring
the perspective model. Therefore, real motion sequences
contain motions of different types, and there is a need for
developing methods that deal automatically with subspaces
of dimension 2,3, or 4 or multilinear manifolds of dimen-
sion 3. We develop such a method in the next section.

3. Locally Linear Manifold Clustering: LLMC
This section presents our algorithm for simultaneous

nonlinear dimensionality reduction and manifold clustering.

3.1. Locally Linear Embedding

Let X = {xi ∈ R
D}n

i=1 be a set of n points sampled from
a low-dimensional submanifold of R

D. We assume that the
n points are k-connected, i.e. for any two points z1,z2 ∈ X
there is an ordered sequence of points in X having z1 and
z2 as endpoints, such that any two consecutive points in the
sequence have at least one k nearest neighbor in common.

Given a k-connected set of points, the goal of dimen-
sionality reduction is to find a set of n vectors {yi ∈ R

d}n
i=1,

where d � D, such that nearby points remain close and dis-
tant points remain far. Locally Linear Embedding (LLE) [9]
is a simple and elegant algorithm for nonlinear dimensional-
ity reduction. LLE exploits the fact that the local neighbor-
hood of a point on the manifold can be well approximated
by the affine subspace spanned by its k nearest neighbors.
The LLE algorithm can be summarized as follows:



1. Nearest neighbors search: For each data point xi ∈R
D,

find its k nearest neighbors (kNN) {x j}.
2. Least squares fit: Find a matrix of weights W ∈ R

n×n

whose entries Wi j minimize the reconstruction error

ε(W ) =
n

∑
i=1

‖xi−
n

∑
j=1

Wi jx j‖2 (3)

subject to the constraints (i) Wi j = 0 if x j is not a k-
nearest neighbor of xi and (ii) ∑n

j=1 Wi j = 1.
3. Sparse eigenvalue problem: Find a matrix Y ∈R

n×d

whose rows yi ∈ R
d minimize the error

φ(Y ) =
n

∑
i=1

‖yi−
n

∑
j=1

Wi jy j‖2 (4)

subject to the constraints (i) ∑n
i=1 yi = 0 (centered at the

origin) and (ii) 1
n ∑n

i=1 yiy�i = I (unit covariance). The
solution to this problem is given by the matrix Y whose
columns are the d eigenvectors of the symmetric semi-
positive definite matrix M = (I −W )�(I −W ) associ-
ated with its second to (d +1)-th smallest eigenvalues.
The first eigenvector of M is discarded, because it is
the vector of all ones, 1 ∈ R

n, with 0 as its eigenvalue.
This is because ∑n

j=1 Wi j = 1, hence W1 = 1.

3.2. LLMC for a disconnected union of k-connected
nonlinear manifolds

In this subsection, we propose an extension of the LLE
algorithm for clustering a union of m k-connected mani-
folds under the assumption that no kNN of a data point
in one manifold lies in a different manifold. In principle,
this could be considered as a strong assumption, because it
would allow one to cluster the different groups by simply
searching for the connected components of the graph [9].
However, we will show in §4 that with real data, where the
assumption of separated manifolds is violated, clustering
the data points by simply looking at the connected compo-
nents of the graph does not yield comparable performance
with respect to our proposed method. In addition, when
searching for the connected components, it is not clear how
to determine whether an edge should be considered as weak
or strong without imposing different heuristics for each dif-
ferent dataset, hence requiring supervision of the algorithm.

The following proposition shows how to apply LLE for
clustering a union of m k-connected nonlinear manifolds.
Contrary to intuition, the case of nonlinear manifolds is sim-
pler than the case of linear subspaces, as we will see in §3.3.

Proposition 1 [8] Let {xi}n
i=1 be a set of points drawn from

a disconnected union of m k-connected nonlinear manifolds
of dimension d < k−1. Then, there exist m vectors {v j}m

j=1
in the null space of M such that v j corresponds to the jth
group of points, i.e. vi j = 1 if the ith data point is in the jth
group, and vi j = 0 otherwise.

Proof. If the data can be partitioned into m k-connected
groups, then the matrix W is block-diagonal with m blocks.
This is because if points xi and x j belong to different
groups, then they cannot be kNN of each other, hence
Wi j = 0. We can write W = diag(Wj), where Wj ∈ R

n j×n j

is the matrix for the j-th group, which contains n j points.
Since the matrix M is given by M = (I −W )�(I −W ), it is
clear that the matrix M is also block diagonal, and we can
write it as M = diag(Mj), where Mj ∈ R

n j×n j is the matrix
for the j-th group. From the properties of the LLE algo-
rithm, we know that each one of the m blocks of M, has the
vector 1 ∈ R

n j in its null space. Therefore, there are m vec-
tors {v j} in ker(M), with each v j taking the values 1 and 0,
indicating the group membership, as claimed.

Notice that when computing a basis B ∈ R
n×m for

ker(M), we do not necessarily obtain the set of membership
vectors, but rather linear combinations of them, including
the vector 1. Nevertheless, these linear combinations still
contain the segmentation of the data, so we can cluster the
data into m groups by applying K-means to the rows of B.

3.3. LLMC for a disconnected union of k-connected
linear manifolds

LLE for a single subspace. For the sake of simplicity,
let us first consider the application of LLE to a single k-
connected linear manifold. Intuitively we would expect that
if LLE is applied to a dataset that is already a subspace of di-
mension d, the output representation should again be a sub-
space of the same dimension. Proposition 2 below shows
that when d is known, the low-dimensional representation
is indeed a subspace of dimension d, which is contained in
the null space of the matrix M representing the local geom-
etry of the manifold. As the vector of all ones 1 is also in
ker(M), this could cause some degeneracies when applying
LLE to linear subspaces. An extension of this result to a
locally flat manifold can be found in [8].

Proposition 2 Assume that the data points xi ∈ R
D lie in a

subspace of R
D of dimension d < k−1. Then the dimension

of the null space of M is at least d + 1.

Proof. Since the data lie in a subspace of R
D of dimension

d < k− 1, each point {xi} can be reconstructed with zero
error in (3), i.e. for all i = 1, . . . ,n, we have xi = ∑n

j=1Wi jx j.
If we let X ∈ R

n×D be the matrix whose rows are the data
points, then we have that W X = X , hence MX = 0. In
other words, the vector of each one of the coordinates of
the given data set is in the null space of M. As rank(X) = d,
the null space of M is at least d-dimensional. On the other
hand, since the data points live in a subspace of dimension
d, there exist a matrix B ∈ R

D×d and vectors {yi} such that
xi = Byi +m, so that ∑n

i=1 yi = 0, where m = 1
n ∑n

i=1 xi ∈R
D

is the mean of the data. This implies that yi = ∑n
j=1 Wi jy j;

hence MY = 0, where Y ∈ R
n×d is a matrix whose rows are



the {yi} vectors. Now, by construction, the vector of all
ones 1 is also in ker(M), because ∑n

j=1 Wi j = 1. Since in ad-
dition ∑n

i=1 yi = 0, we have that 1�Y = 0�, hence the vector
1 is linearly independent from the columns of Y . Therefore,
the null space of M is at least (d + 1)-dimensional.

From Proposition 2, we see that if we apply LLE to data
lying in a subspace of dimension d and choose the second
to (d + 1)-th smallest eigenvectors of M for dimensionality
reduction, we might not get the correct subspace reconstruc-
tion. This is because the the embedding eigenvectors may
be mixed with the vector 1, which is also a null vector of M.
LLMC for multiple subspaces. Consider now the problem
of clustering data points {xi}n

i=1 drawn from a union of m k-
connected subspaces of R

D with dimensions {d j}m
j=1. From

Propositions 1 and 2, we know that there are two types of
vectors in the null space of M: the embedding vectors com-
ing from the matrix of coordinates and the membership vec-
tors coming from each one of the m connected components.
However, it is unclear if these vectors are linearly indepen-
dent, and if one can recover the segmentation of the data
and a nonlinear embedding for each group from ker(M).

The following propositions address these issues in de-
tail. Proposition 3 derives the dimension and a basis for
the null space of M. Proposition 4 shows that the member-
ship eigenvectors have smaller variance than the embedding
eigenvectors. Proposition 5 shows that one can obtain the
membership eigenvectors by solving a generalized eigen-
value problem.

Proposition 3 Let {xi}n
i=1 be a set of points drawn from m

k-connected subspaces of dimension d j < k− 1. The null
space of M is of dimension at least m + ∑m

j=1 d j and con-
tains orthonormal zero-padded vectors formed from the in-
dividual embedding and membership vectors.
Proof. From the proof of Proposition 1, we know that M
is block diagonal and can be written as M = diag(Mj),
where Mj ∈ R

n j×n j is the matrix for the j-th group, and
n j is the number of points in the j-th group. From the
proof of Proposition 2 we also know that the matrix Mj has
d j + 1 vectors in the null space: the vector of all ones and
the d j linearly independent columns of the matrix of co-
ordinates Yj ∈ R

n j×d j . That is Mj [Yj 1] = 0. Therefore,
the matrix Y = diag ([Yj(n j×d j) 1(n j×1)]) ∈ R

n×(∑m
j=1 d j+m) is

such that MY = 0. Furthermore, as Y is block diagonal and
rank ([Yj 1]) = d j +1, we have that Y is of rank ∑m

j=1 d j +m,
and so the dimension of ker(M) is at least ∑m

j=1 d j + m.
Also, the embedding vector of the j-th group e j is orthog-
onal to its membership vector v j, and because e j and v j
are zero-padded, they are always orthogonal to ei and vi for
i �= j. In addition, one can choose the embedding vectors
e j to be orthogonal to each other, because the matrix M is
symmetric. Therefore, from now on we will assume that the
vectors {v1,e1, . . . ,vm,em} are orthonormal.

From the proof of Proposition 3, we know that ker(M)
contains the embedding vectors e j =[0,Y�

j(d j×n j)
,0]�∈R

n×d j

and the membership vectors v j = [0,1(1×n j),0]� ∈ R
n×1.

Therefore, we cannot directly obtain the segmentation of the
data or an embedding for each one of the subspaces from
ker(M), because an arbitrary vector in ker(M) is a linear
combination of both membership and embedding vectors.

In order to distinguish between membership and embed-
ding vectors, we look at the variance of the eigenvectors of
M and show that the segmentation eigenvectors are those
with smaller variance. To this end, recall that for any n×1
vector u, the mean of all its entries is ū = 1

n 11×nu and the
variance of all its entries is

var(u) =
1
n

n

∑
k=1

(uk − ū)2 =
1
n

u�(I− J)u, (5)

where J = 1
n 1n×11�1×n. We then have the following result.

Proposition 4 Let {v j} and {e j} be the (unit) membership
and embedding vectors in the null space of M respectively.

1. For all i and j we have var(vi) < var(e j).
2. For all αi and β j such that ‖∑i αivi‖= ‖∑ j β je j‖= 1,

we have var(∑i αivi) < var(∑ j β je j).
3. If ‖∑i αivi +∑ j β je j‖= 1, then var(∑i αivi +∑ j β je j)

is minimized when β j = 0, ∀ j.
Proof.

1. By definition of an embedding vector, we have ē j = 0.
Also, since the eigenvectors of M are assumed to be
of unit norm, i.e. ‖e j‖ = ‖v j‖ = 1, then each nonzero
entry of v j must be equal to 1√n j

, so that v̄ j =
√n j

n .

Therefore, ∀i, j var(vi) = 1
n − ni

n2 < 1
n = var(e j).

2. Since {v j} and {e j} are orthonormal vectors, then
‖∑αivi‖ = ‖∑βiei‖ = 1 implies ∑i α2

i = ∑ j β2
j = 1.

Thus, var(∑i αivi) = ∑i α2
i var(vi)= 1

n −∑i
α2

i ni
n2 < 1

n =
∑ j β2

jvar(e j) = var(∑ j β je j).
3. ‖∑i αivi + ∑ j β je j‖ = 1 implies ∑i α2

i + ∑ j β2
j = 1.

Thus var(∑i αivi + ∑ j β je j) = 1
n − ∑i

α2
i ni
n2 . One can

show that this quantity achieves its minimum value
when ∑i α2

i = 1, so ∑ j β2
j = 0 and β j = 0, ∀ j.

If we had the ability of computing each one of the vec-
tors ei and vi from ker(M), then we could find the member-
ship eigenvectors as those with smaller variance. However,
as we alluded to earlier, we cannot directly compute such
membership and embedding eigenvectors, but only a basis
B ∈ R

n×(m+∑di) for ker(M). Given such a basis, both seg-
mentation and embedding eigenvectors can be expressed as
Bα, where ‖Bα‖ = 1 for α ∈ R

m+∑di . Since the variance
of Bα is α�B�(I − J)Bα/n, we can search for the mem-
bership eigenvectors by choosing a vector α that minimizes
this variance. Therefore, we have the following result.



Proposition 5 The membership eigenvectors {vi}m
i=1 can

be computed as vi = BQ− 1
2 βi, where βi are the eigenvec-

tors of Q− 1
2 B�(I − J)BQ− 1

2 associated with its smallest m
eigenvalues and Q = B�B.
Proof. Let λmin be the solution to

min
‖Bα‖=1

α�B�(I− J)Bα = min
α�=0

α�B�(I − J)Bα
α�B�Bα

.

This is a generalized eigenvalue problem of the form

B�(I − J)Bα = λminB�Bα = λminQα,

with B�B = Q being symmetric positive definite. Thus,
Q− 1

2 B�(I− J)BQ− 1
2 β = λminβ and β = Q

1
2 α.

Thanks to Proposition 5, we can cluster the data by ap-
plying K-means to the rows of [v1, . . . ,vm] ∈ R

n×m.

3.4. LLMC for a union of k-connected linear and
nonlinear manifolds

Let {xi}n
i=1 be a set of points drawn from m k-connected

manifolds, of which m1 are subspaces of dimensions d j,
j = 1, · · · ,m1. The dimension of the null space of M is
at least m + ∑m1

j=1 d j, with m1 < m. To cluster both linear
and nonlinear manifolds, we proceed as discussed in Propo-
sition 5. This gives the following algorithm for manifold
clustering.

Locally Linear Manifold Clustering Algorithm
Let X = {xi ∈ R

D}n
i=1 be a set of n data points

sampled from m k-connected manifolds of R
D.

Apply the LLE algorithm to the entire dataset to1.
obtain the matrix M.
Compute a basis B for the null space of M.2.
Compute the matrix Q = B�B and the m eigenvectors3.

of Q− 1
2 B�(I− J)BQ− 1

2 , {βi}m
i=1, whose corresponding

eigenvalues are less than 1
n .

Apply K-means to the rows of the matrix of4.

membership vectors S = [BQ− 1
2 β1, · · · ,BQ− 1

2 βm] to
cluster the original data points into m different groups.
Apply LLE to each group to obtain a low-dimensional5.
embedding for each manifold.

4. Experiments
In this section, we test our 3-D motion segmentation al-

gorithm on the Hopkins 155 motion segmentation database
[16] which is available at http://www.vision.jhu.edu.
The database consists of 155 sequences of both indoor
and outdoor scenes containing two or three motions. The
database is divided into three main groups, checkerboard,
traffic and articulated sequences. We compare the results
of LLMC with those of the following clustering algorithms.

1. Multi-Stage Learning (MSL) [12]: this statistical ap-
proach solves a series of optimization problems itera-
tively using the Expectation Maximization algorithm.

2. GPCA [17]: this algebraic approach is based on fitting
a union of m subspaces with a polynomial of degree m.
The gradient of this polynomial at a point gives a vec-
tor normal to the subspace containing that point. The
data are segmented by applying spectral clustering to a
similarity built from the angles between these normals.

3. Local Subspace Affinity (LSA) [22]: this method
projects the data onto a low-dimensional subspace and
then fits a subspace to each projected point and its k
nearest neighbors. The data are segmented by applying
spectral clustering to a similarity built from the princi-
pal angles between these locally computed subspaces.

4. Connected Components Search (CCS) [9]: this
method searches for the connected components of the
graph using Tarjan’s algorithm on the neighborhood
graph obtained in the first step of LLE.

Before applying LLMC or LSA, we project the trajecto-
ries onto a subspace of dimension 5 or 4m, where m is the
number of motions, as suggested in [16]. We refer to these
variants as LLMC5, LLMC4m, LSA5 and LSA4m.

Table 1 contains the average and median classification
errors given by each algorithm on the 155 sequences, and
Figure 1 shows histograms of these errors. Notice that MSL
gives nearly perfect segmentation for the majority of the se-
quences, but it occasionally gives large errors when it con-
verges to a local minimum. LLMC, on the other hand, gives
a small error for the majority of the sequences, but also
gives large errors for a few sequences. For three motions,
GPCA, LSA5 and CCS do not perform as well as LLMC,
LSA4m and MSL, as shown in Figure 1. LLMC yields ex-
ceptional results on the traffic sequences, and performs rea-
sonably well on the checkerboard sequences. Finally, even
though LLMC assumes that the manifolds are separated, it
substantially outperforms CCS. This suggests that LLMC
is much more effective and sophisticated than CCS for real
data with noise. On average, our algorithm gives a classifi-
cation error of 4.8% for LLMC5 and 5.93% for LLMC4m
for all sequences, while MSL gives 5.06%, GPCA 9.18%,
LSA5 11.82%, LSA4m 4.87%, and CCS 15.37%.

5. Conclusions
We have presented a novel algorithm for segmenting mo-

tions of different types. Unlike existing approaches which
assume in-depth knowledge about the type of motions in the
scene, LLMC is an unsupervised method based on simulta-
neous dimensionality reduction and clustering for data lying
in m separated k-connected manifolds. Experiments on 155
motion sequences showed that LLMC matches the perfor-
mance of state-of-the-art motion segmentation algorithms.



Table 1. Misclassification rates (%) for motion database
Entire dataset with 2 and 3 motions

LLMC LLMC MSL GPCA LSA LSA CCS
5 4m 5 4m

Mean 4.80 5.93 5.06 10.02 11.82 4.87 15.37
Median 0.00 0.63 0.00 2.39 4.00 0.90 4.47

Number of motions=2
Checkerboard

Mean 4.37 4.65 4.46 6.09 8.84 2.57 16.37
Median 0.00 0.11 0.00 1.03 3.43 0.27 10.62

Traffic
Mean 0.84 3.65 2.23 1.41 2.15 5.43 5.27
Median 0.00 0.33 0.00 0.00 1.00 1.48 0.00

Articulated
Mean 6.16 5.23 7.23 2.88 4.66 4.10 17.58
Median 1.37 1.30 0.00 0.00 1.28 1.22 7.07

All
Mean 3.62 4.44 4.14 4.59 6.73 3.45 12.16
Median 0.00 0.24 0.00 0.38 1.99 0.59 0.00

Number of motions=3
Checkerboard

Mean 10.70 12.01 10.38 31.95 30.37 5.80 28.63
Median 9.21 9.22 4.61 32.93 31.98 1.77 33.21

Traffic
Mean 2.91 7.79 1.80 19.83 27.02 25.07 3.02
Median 0.00 5.47 0.00 19.55 34.01 23.79 0.18

Articulated
Mean 5.60 9.38 2.71 16.85 23.11 7.25 44.89
Median 5.60 9.38 2.71 16.85 23.11 7.25 44.89

All
Mean 8.85 11.02 8.23 28.66 29.28 9.73 26.18
Median 3.19 6.81 1.76 28.26 31.63 2.33 31.74
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Figure 1. Misclassification rates of two and three motions
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