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Abstract. We present an algorithm for grouping families of probability density
functions (pdfs). We exploit the fact that under the square-root re-parametrization,
the space of pdfs forms a Riemannian manifold, namely the unit Hilbert sphere.
An immediate consequence of this re-parametrization is that different families
of pdfs form different submanifolds of the unit Hilbert sphere. Therefore, the
problem of clustering pdfs reduces to the problem of clustering multiple sub-
manifolds on the unit Hilbert sphere. We solve this problem by first learning a
low-dimensional representation of the pdfs using generalizations of local nonlin-
ear dimensionality reduction algorithms from Euclidean to Riemannian spaces.
Then, by assuming that the pdfs from different groups are separated, we show
that the null space of a matrix built from the local representation gives the seg-
mentation of the pdfs. We also apply of our approach to the texture segmentation
problem in computer vision.
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1 Introduction

Over the past few decades, there has been a huge explosion in the amount of readily
available information. In order to be able to efficiently process this abundance of data,
probability density functions (pdf) are often employed to model complex datasets. This
has led to the development of various metrics to measure the similarities between differ-
ent pdfs. Information geometry refers to the study of the intrinsic geometric structures in
the manifold of pdfs. The Riemannian structure of the space of pdfs was first introduced
in [1]. Since then, there have been major breakthroughs in the theory of information ge-
ometry [2], and also in the development of computational tools for clustering that utilize
the geometric structure of the Riemannian manifold [3,4,5].

An area in which probability density functions are commonly used in computer
vision is texture analysis. Segmentation of different textures remains important for
present-day applications and is the focus of considerable effort in the field. For ex-
ample, it is vital to be able to perform automatic segmentation of different land cover
from remotely sensed images in environmental management, as it is tedious for photo-
interpreters to classify landscape manually. It is well-known that by convolving the
image with a set of filters, it is possible to obtain a spectral pdf of the image which indi-
cates the texture characteristics. Therefore, given a set of images with different textures,
it is often desirable to be able to automatically segment the textures into similar classes

W. Daelemans et al. (Eds.): ECML PKDD 2008, Part I, LNAI 5211, pp. 377–392, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



378 A. Goh and R. Vidal

by clustering the pdfs into different families. For arbitrary textures, we do not neces-
sarily know the description of the pdfs, though it is reasonable to assume that similar
textures will have similar pdfs.

The question we address in this paper is the following. Given a set of pdfs, how do
we develop a computationally simple framework that allows us to group the pdfs into
similar families? Since these pdfs are determined from data, they are non-parametric in
nature. Therefore, in order to compute distances between two arbitrary pdfs, we impose
a Riemannian structure on the manifold of pdfs. Unlike traditional clustering methods,
we will not assume that the pdfs within each group are centered around a collection of
cluster centers in the manifold. Instead, we will assume that the different groups of pdfs
form different submanifolds in the Riemannian space. Therefore, we aim to develop a
framework that exploits the Riemannian structure of the space of pdfs to cluster a given
set of arbitrary pdfs into similar groups.

Our clustering framework makes use of nonlinear dimensionality reduction tech-
niques. Nonlinear dimensionality reduction (NLDR) refers to the problem of finding a
low-dimensional representation for a set of points lying in a nonlinear manifold embed-
ded in a high-dimensional space. Existing NLDR techniques can be categorized into
two main groups: global and local techniques. Global techniques attempt to preserve
global properties of the data lying in a submanifold, similar to what Principal Compo-
nent Analysis (PCA) [6] attempts to preserve for data lying in a linear subspace. Two of
the best-known examples of this family of algorithms are ISOMAP [7] and Kernel PCA
(KPCA) [8]. Local techniques are however based on the preservation of local properties
which are obtained from the small neighborhoods around the datapoints. The key idea
of such techniques is that by preserving the local properties of the data, one can also
retain the global properties of the data. Locally linear embedding (LLE) [9], Laplacian
eigenmaps (LE) [10] and Hessian LLE [11] fall under this category of algorithms. In
this paper, we chose to use local NLDR techniques such as LLE, LE and HLLE. We
will show that the segmentation of the data can be obtained from the null space of a
matrix built from the local representation. This is a property that local NLDR methods
offer but global NLDR methods such as ISOMAP do not.

Paper contributions The main contribution of this paper is the development of a
framework for clustering different families of pdfs. By choosing the square-root rep-
resentation, we reduce the problem to one of clustering data lying in different submani-
folds of a unit sphere. As in our previous work [12], we learn a local representation of the
data using generalization of the three NLDR techniques, namely Laplacian Eigenmaps
(LE) [10], Locally Linear Embedding (LLE) [9], and Hessian LLE (HLLE) [11], from
Euclidean to Riemannian spaces. We show that the null space of a matrix built from the
local representation gives the segmentation of the pdfs. Our method is computationally
simple and performs automatic segmentation without requiring user interaction.

2 Review of Local Nonlinear Dimensionality Reduction Methods
in Euclidean Spaces

In this section, we review three local NLDR algorithms. Let X = {xi ∈ M}n
i=1 be a set

of n data points sampled from a d-dimensional manifold M embedded in R
D, d � D.
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We assume that the n points are k-connected, i.e., for any two points xi, xj ∈ X there
is an ordered sequence of points in X having xi and xj as endpoints, such that any two
consecutive points in the sequence have at least one k-nearest neighbor in common.
The goal of dimensionality reduction is to find a set of vectors {yi ∈ R

d}n
i=1, such that

nearby points remain close and distant points remain far.
Locally Linear Embedding (LLE) [9] assumes that the local neighborhood of a

point in the manifold can be well approximated by the affine subspace spanned by the
k-nearest neighbors of the point, and finds a low-dimensional embedding of the data
based on these affine approximations. Laplacian Eigenmaps (LE) [10] are based on
computing the low dimensional representation that best preserves locality instead of
local linearity in LLE. Hessian LLE (HLLE) [11] bears substantial resemblance to
LLE and LE, with the main difference being that the local neighborhood is represented
by the tangent space at each point and the Laplacian matrix is replaced by the Hessian
matrix. The main steps of these local NLDR algorithms are as follows:

1. Nearest neighbor search: For each data point xi ∈ X , find its k nearest neighbors
(kNN) {xij }k

j=1 according to the Euclidean distance.
2. Construction of similarity matrix: Construct a weighted graph whose elements en-

code the local geometry of the data. Define a similarity matrix M based on these
weights. M is symmetric and positive semidefinite.

3. Sparse eigenvalue problem: Obtain the embedding coordinates, i.e., the columns of
Y = [y1, . . . ,yn]� ∈ R

n×d, from the d (generalized) eigenvectors of the matrix
M associated with its second to (d + 1)-th smallest (generalized) eigenvalues. The
vector of all ones, 1 ∈ R

n, is a eigenvector of M associated with eigenvalue 0.

We will now describe the construction of M for each NLDR algorithm in more detail.

Calculation of M in LLE

1. Weight matrix: Find a matrix of weights W ∈ R
n×n whose entries Wij minimize

the reconstruction error

ε(W ) =
n∑

i=1

‖
n∑

j=1

Wijxj − xi‖2 =
n∑

i=1

dist2(x̂i, xi) (1)

subject to the constraints (i) Wij = 0 if xj is not a k-nearest neighbor of xi and (ii)∑n
j=1 Wij = 1. In (1), x̂i = xi +

∑n
j=1 Wij

−−→xixj is the linear interpolation of xi

and its kNN. The solution to this problem can be computed as

[
Wi i1 Wi i2 · · · Wi ik

]
=

1�C−1
i

1�C−1
i 1

∈ R
1×k, (2)

where 1 ∈ R
n is the vector of all ones, and Ci ∈ R

k×k is the local Gram matrix at
xi, i.e., Ci(j, l) = (xj − xi) · (xl − xi).

2. Objective function: Find vectors {yi ∈ R
d}n

i=1 that minimize the error

φ(Y ) =
n∑

i=1

‖yi −
n∑

j=1

Wijyj‖2 = trace(Y �MY ), (3)
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subject to the constraints (i)
∑n

i=1 yi = 0 and (ii) 1
n

∑n
i=1 yiy�

i = I . The solution
to this optimization problem is given by the d eigenvectors of M = (I − W )�(I −
W ) associated with its second to (d + 1)-th smallest eigenvalues.

Calculation of M in LE

1. Weight matrix: Construct a matrix of weights W ∈ R
n×n

Wij = exp(−‖xi − xj‖2/σ2) (4)

subject to the constraint Wij = 0 if xj is not a k-nearest neighbor of xi. The entries
of W , Wij , measure the proximity between two points xi and xj .

2. Objective function: Find vectors {yi ∈ R
d}n

i=1 that minimize the error

φ(Y ) =
∑

i,j

‖yi − yj‖2Wij = trace(Y �MY ) (5)

subject to the constraints (i) Y �D1 =
∑n

i=1 Diiyi = 0 (weighted low-dimensional
coordinates centered at the origin) and (ii) Y �DY = I (weighted low-dimensional
coordinates having unit covariance). In Eq. (5), M = D −W is the graph Laplacian
matrix and D is a diagonal matrix whose entries are given by Dii =

∑
j Wij . The

solution to this optimization problem is given by the d generalized eigenvectors of
(M, D) associated with its second to (d + 1)-th smallest generalized eigenvalues.

Calculation of M in HLLE

1. Tangent coordinates: For each data point xi, let {xij }k
j=1 be its kNN. Form the D

by D covariance matrix cov(xi) = 1
k

∑k
j=1(xij − x̄i)(xij − x̄i)�, where x̄i is the

mean of the kNN. Perform an eigenanalysis of the matrix cov(xi) to obtain the d
eigenvectors {uq ∈ R

D}d
q=1. The tangent coordinates of the kNN are given by the

d columns of the k × d matrix V given below, where p = 1, . . . , k and q = 1, . . . , d

Vpq = (xip − x̄i)�uq = 〈xip − x̄i,uq〉. (6)

2. Objective function: The embedding vectors are obtained based on the null vectors
of a matrix M that indicates the Hessian quadratic cost. While we refer the reader
to [11] for details on the estimation of M , the basic principle is as follows. We first
locally estimate a Hessian operator hi at each point xi in the manifold in a least
squares sense. In particular, consider a smooth function f : M → R. We evaluate
the function at all kNN of a point xi in the manifold and stack these entries into a
vector fi. It can be shown that hifi approximates the entries of the Hessian, whose
(p, q)-th entry is given by ∂2f

∂VpδVq
. These local estimates are then used to obtain an

empirical estimate of the (i, j)-th entry of M as

Mi,j =
∑

l

∑

r

((hl)r,i(hl)r,j). (7)

The embedding coordinates are then found by selecting a basis for the space spanned
by d eigenvectors of M associated with its second to (d+1)-th smallest eigenvalues
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with the restriction that it provides an orthonormal basis to a specific fixed neigh-
borhood N . Let U denote the n × d matrix associated with the second to (d + 1)-th
smallest eigenvectors where Ul,r is the l-th entry in the r-th eigenvector of M . The
embedding coordinates is obtained as UR− 1

2 , where Rr,s =
∑

j∈N Uj,rUj,s.

3 Clustering Submanifolds of a Riemannian Space

In this section, we present an algorithm for clustering and dimensionality reduction on
Riemannian manifolds. We first present a brief summary of the theory of Riemannian
manifolds in §3.1. For a more complete description, we refer the reader to [13]. We then
illustrate how to extend existing NLDR algorithms to Riemannian manifolds in §3.2 by
adopting the framework in [12]. Finally, in §3.3, we show that by making use of the
mappings generated by NLDR, the problem of manifold clustering reduces to a central
clustering problem, as proved in [12].

3.1 Review of Riemannian Manifolds

The NLDR techniques presented in §2 are applicable only in the presence of one man-
ifold with unknown structure. Every operation is approximated by the corresponding
Euclidean operation as the metric is unknown. However, for Riemannian manifolds
with well-studied geometries, closed-form formulae for Riemannian operations are of-
ten available. The question now is to extend NLDR techniques for Riemannian mani-
folds in a way that takes into consideration the appropriate Riemannian structure. For
this purpose, we adopt the framework developed in our previous work [12]. In this sec-
tion, we will give an overview of Riemannian theory and show how the various opera-
tions such as interpolation on the manifold and computation of the mean and principal
components are carried out.

A differentiable manifold M of dimension d is a topological space that is home-
omorphic to the Euclidean space R

d. Fig. 1 shows an example of a two-dimensional
manifold, a smooth surface living in R

3. The tangent space TxM at x is the vector
space that contains the tangent vectors to all 1-D curves on M passing through x. A
Riemannian metric on a manifold M is a bilinear form which associates to each point
x ∈ M, a differentiable varying inner product 〈·, ·〉x on the tangent space TxM at
x. The norm of a vector v ∈ TxM is denoted by ‖v‖2

x = 〈v, v〉x. The Riemannian
distance dist(xi, xj) between two points xi and xj lying in the manifold is defined as
the minimum length over all possible smooth curves on the manifold between xi and
xj . The geodesic curve from xi to xj , γ, is the smooth curve with minimum length.

Given a tangent vector v ∈ TxM, locally there exists a unique geodesic γv(t)
starting at x with initial velocity v, and this geodesic has constant speed equal to
‖v‖x. The exponential map, expx : TxM → M maps a tangent vector v to the
point in the manifold that is reached at time 1 by the geodesic γv(t). The inverse of
expx is the logarithm map and denoted by logx : M → TxM. For two points xi

and xj in the manifold M, the tangent vector to the geodesic curve from xi to xj

is defined as v = −−→xixj = logxi
(xj), and the exponential map takes v to the point

xj = expxi
(logxi

(xj)). In addition, γv(0) = xi and γv(1) = xj . The Rieman-
nian distance between xi and xj is defined as dist(xi, xj) = ‖ logxi

(xj)‖xi . Linear
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Fig. 1. An example of a two-dimensional manifold. The tangent plane at xi, together with the
exponential and logarithm maps relating xi and xj , are also shown.

geodesic interpolation makes use of the exponential and logarithm maps and is given by
x̂ = expxi

(w−−→xixj), w ∈ [0, 1]. Finally, the Riemannian metric, exponential and loga-
rithm maps depend on the point x under consideration, hence the subscripts reflecting
this dependency.

We will now briefly summarize how to calculate the mean and principal components
of data points lying in a manifold. As defined by Fréchet in [14] and used in several
recent works [15,16], the intrinsic mean x is defined as the solution to the following
minimization problem

x = argmin
x∈M

n∑

i=1

dist(x, xi)2 = argmin
x∈M

n∑

i=1

‖ logx(xi)‖2
x. (8)

Note that, unlike in the Euclidean case, in general there is no closed form for x. More-
over, there is no guarantee that x exists or is unique. However, one can show the exis-
tence and uniqueness of x [17] by assuming that the data lie in a small enough neighbor-
hood, i.e., the maximum distance between any xi and xj is small enough. Furthermore,
x can be computed as shown in Algorithm 1.

Algorithm 1. (Intrinsic Mean)
Given data points x1, . . . , xn ∈ M, a predefined threshold ε, maximum number of iterations T ,

1. Initialize t = 1, x1 = xi for a random i, v �= 0 ∈ Tx1M.
2. While t ≤ T or ‖v‖x ≥ ε,

(a) Compute tangent vector v = 1
n

∑n
i=1 logxt

(xi).
(b) Set xt+1 = expxt

(v)

Given x, the calculation of principal components on a Riemannian manifold is not as
straightforward as in the Euclidean case. It involves projecting a point onto a geodesic
curve, which is also defined as a minimization problem for which existence and unique-
ness are not ensured [15]. Again, by making the assumptions that the data lie in a small
neighborhood, the projection can be shown to be unique. In [15], it is shown that finding
principal components boils down to doing PCA in the tangent vectors logx(xi) ∈ TxM
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Table 1. Comparison of Euclidean and Riemannian operations, where {xi}n
i=1, are data points

Operation Euclidean Riemannian
Subtraction −−→xixj xj − xi logxi

(xj)
Addition xj xi + −−→xixj expxi

(−−→xixj)

Distance dist(xi, xj) ‖−−→xixj‖ = ‖xj − xi‖ ‖ logxi
(xj)‖xi =

√
〈logxi

(xj), logxi
(xj)〉xi

Mean x
∑n

i=1
−−→
xxi = 0

∑n
i=1 logx(xi) = 0

Covariance cov(x) 1
n

∑n
i=1(

−−→
xxi)(

−−→
xxi)� 1

n

∑n
i=1(logx(xi))(logx(xi))�

Linear interpolation x̂ xi + w−−→xixj expxi
(w−−→xixj)

Algorithm 2. (Principal Geodesic Analysis)
Given data points x1, . . . , xn ∈ M,

1. Compute intrinsic mean x as in Algorithm 1.
2. Calculate the tangent vectors vi = logx(xi)about x.
3. Construct the sample covariance matrix cov(x) = 1

n

∑n
i=1 viv

�
i .

4. Perform eigenanalysis of the matrix cov(x), with the eigenvectors {ui}d
i=1 giving the princi-

pal directions. {ui}d
i=1 forms an orthonormal basis for TxM.

about the mean x. This algorithm, known as Principal Geodesic Analysis (PGA), is
summarized in Algorithm 2. Table 1 compares the standard operations in Euclidean
and Riemannian spaces.

3.2 Extending NLDR to Riemannian Manifolds

Notice that the information about the local geometry of the manifold is essential only in
the first two steps of each algorithm and therefore, modifications are made only to these
two stages. The key issues are how to select the kNN and how to compute the matrix M
representing the local geometry. As shown in [12], the former is straightforward, while
the latter requires some thought. Given M , calculating the low-dimensional representa-
tion remains the same as in the Euclidean case. We let X = {xi ∈ R

D}n
i=1 be a set of

n data points sampled from a known Riemannian manifold.

Selection of the Riemannian kNN The first step of any NLDR algorithm is the com-
putation of the kNN associated with each data point. We define the kNN of xi by
incorporating the Riemannian distance, i.e., the kNN of xi are the k data points xj that
minimize ‖ logxi

(xj)‖xi .

Riemannian Calculation of M for LLE The second step of LLE is to compute the
matrix of weights W ∈ R

n×n. In order to do so, we will answer two main questions:
1) how does one express a point as a linear combination of its neighbors? and 2) what
is the reconstruction cost? First of all, we know that from §3.1 that
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x̂Riem,i = expxi
(

n∑

j=1

Wij logxi
(xj)). (9)

is the geodesic linear interpolation of xi by {xj}n
j=1. Now, instead of minimizing the

Euclidean error, we rewrite (1) to minimize the Riemannian reconstruction error and
make use of the fact that exp and log are inverse mappings. Therefore, we have

εRiem(W ) =
n∑

i=1

∥∥ logxi
(x̂Riem,i)

∥∥2
xi

=
n∑

i=1

∥∥
n∑

j=1

Wij logxi
(xj)

∥∥2
xi

(10)

subject to Wij = 0 if xj is not a kNN of xi and
∑

j Wij = 1. Using similar manipula-
tions as in the Euclidean case, the optimal weights are obtained as in (2), with the local
Gram matrix Ci ∈ R

k×k defined as

Ci(j, l) = 〈logxi
(xj), logxi

(xl)〉xi . (11)

M is then (I − W )�(I − W ).

Riemannian Calculation of M for LE Here, instead of attempting to write each data
point as a linear combination of its kNN, we find a matrix of weights W ∈ R

n×n

whose entries Wij measure the proximity between two points xi and xj as in (4).
Therefore, modifying LE for Riemannian manifolds is less involved than in the case of
LLE. Instead of using exp(−‖xi − xj‖2/σ2) as in (4), we construct the weight matrix
W using the Riemannian distance as

Wij = exp
(

− distRiem(xi, xj)2

σ2

)
= exp

(
−

‖ logxi
(xj)‖2

xi

σ2

)
(12)

subject to the constraint Wij = 0 if xj is not a k-nearest neighbor of xi. As before,
M = D − W and D is a diagonal matrix, where Dii =

∑
j Wij .

Riemannian Calculation of M for HLLE The second step of HLLE involves com-
puting the tangent coordinates for each xi by applying Euclidean PCA to its neighbors.
This implicitly assumes that these local points lie in a subspace. This assumption is no
longer valid if xi and its kNN lie in a Riemannian manifold. From §3.1, we know that in
this case, calculating the principal geodesic components and the projection coordinates
is not as simple as doing Euclidean PCA. There is a need to incorporate the correct
Riemannian metric, mean and covariance matrix.

Again, let {xi,j}k
j=1 denote the set of k-nearest neighbors of xi. First we calculate

the intrinsic mean x̄i of the kNN (Algorithm 1). Next, we find the tangent vectors
vj = logx̄i

(xi,j) about x̄i and the geodesic principal directions {uq}d
q=1 using PGA

(Algorithm 2). Since {uq ∈ R
D}d

q=1 is an orthonormal basis for Tx̄i
M, we will rewrite

the projection operator in (6) using the Riemannian metric. Thus the tangent coordinates
of the kNN are given by the k × d matrix V , where

Vpq = 〈logx̄i
(xi,p),uq〉x̄i

, p = 1, .., k, q = 1, .., d. (13)

Once the tangent coordinates are found, the estimation of the Hessian matrix M is the
same as in the Euclidean case (7).
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Calculation of the Embedding Coordinates The last step of NLDR is to find a Eu-
clidean low-dimensional representation of the data points. As this step is independent
of the Riemannian structure, one can find the embedding coordinates as described in
§2. That is, the embedding coordinates are obtained based on the d (generalized) eigen-
vectors of the matrix M associated with its second to (d + 1)-th smallest (generalized)
eigenvalues. Finally, notice that if the Riemannian operations are available in closed-
form, then extending NLDR to Riemannian manifolds do not require significant addi-
tional computational complexity.

3.3 Local Riemannian Manifold Clustering

In this section, we review the extension of NLDR algorithms for the purpose of clus-
tering data lying in m submanifolds of a Riemannian space proposed [12]. We assume
that the data is distributed in a k-disconnected union of m k-connected submanifolds of
M. Under this assumption, [12] shows that each of the m submanifolds will be mapped
to a different point in R

m. Proposition 1 states the main result of [12]. This proposition
shows that in the case of a disconnected union of m k-connected submanifolds, the
matrix M has at least m zero eigenvalues, whose eigenvectors give the clustering of
the data. This is a generalized result that is applicable to Riemannian LLE, Riemannian
LE and Riemannian HLLE. The interested reader is referred to [12] for the proof of
Proposition 1.

Proposition 1 Let {xi}n
i=1 be a set of points drawn from a disconnected union of m

k-connected d-dimensional submanifolds of a Riemannian manifold. Then, there exist
m eigenvectors {uj}m

j=1 in the null space of M such that uj corresponds to the j-th
group of points, i.e., uij = 1 if the i-th data point is in the j-th group, and uij = 0
otherwise.

With real data, the assumption that the submanifolds are separated will obviously be vi-
olated. Therefore, the matrix M will be a perturbed version of the ideal case. However,
it is well-known from perturbation theory [18] that if the perturbation is small or the
eigengap is big, the eigenvectors vj might not coincide completely with the indicator
vectors (0, .,1, .,0)� of the clusters, but do so up to a small error term. Hence, it is rea-
sonable to expect that instead of mapping data points on m submanifolds to m points,
the mapping will generate a collection of n points distributed around m cluster centers.

We see that there exists a mapping g : M → R
m that gives the membership of

each point to the m submanifolds. This mapping is given by the rows of any basis for
ker(M). However, notice that we do not necessarily obtain the set of membership vec-
tors {uj} when computing a basis for ker(M), but rather linear combinations of them,
including the vector 1. In general, linear combinations of segmentation eigenvectors
still contain the segmentation of the data. Hence, we can cluster the data into m groups
by applying k-means to the columns of a matrix whose rows are the m eigenvectors in
the null space of M . Algorithm 3 summarizes our dimensionality reduction and clus-
tering algorithm for m submanifolds of a Riemannian space.
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Algorithm 3. (Unsupervised Clustering and Dimensionality Reduction on Rieman-
nian Manifolds)
Given data points x1, . . . , xn ∈ M,

1. Nearest neighbors: Find the kNN of each data point xi according to the Riemannian distance.
2. Construction of M : For each NLDR algorithm, construct the appropriate M described in §3.2.
3. Clustering: Compute the m eigenvectors {uj}m

j=1 of M associated with its m smallest eigen-
values and apply k-means to the rows of [u1, · · · ,um] to cluster the data into m different
groups.

4. Low-dimensional embedding: Apply NLDR to each group to obtain a low-dimensional em-
bedding for each submanifold.

4 Riemannian Analysis of Probability Density Functions

In this section, we will show how to impose a Riemannian structure on the space of pdfs.
We will adopt the work of [5], which proposes a “spherical” version of the Fisher-Rao
metric that allows for closed-form expressions for the various Riemannian operations.

The class of constrained non-negative continuous functions under study here is the
set of pdfs defined below. Without loss of generality, we can assume that these functions
are defined on the interval [0, T ]. Therefore, the set P of pdfs is given by

P = {p : [0, T ] → R|∀s, p(s) ≥ 0,

∫ T

0
p(s)ds = 1}. (14)

The question of how to regard the space of pdfs as a differential manifold endowed
with a Riemannian metric and a family of affine connections has a long history be-
hind it. Nevertheless, it remains an active and important research area. Treating sta-
tistical structures as geometric structures has the advantage that geometric structures
remain invariant under coordinate transforms. [1] first introduces the Riemannian struc-
ture formed by the statistical manifold where each point in the manifold denotes a pdf.
In addition, [1] also shows that the Fisher-Rao metric determines a Riemannian metric.
The Fisher-Rao metric is later shown to be the unique intrinsic metric on the statistical
manifold in [19]. This study of probability and information via differential geometry is
known as information geometry. The reader is referred to the seminal work of [2] for a
complete description.

We will consider the manifold P of pdfs on the interval [0, T ]. For any point pi ∈ P ,
the Fisher-Rao metric is defined as

〈qj , qk〉pi =
∫ T

0
qj(s)qk(s)

1
pi(s)

ds, (15)

where qj , qk ∈ Tpi(P) are tangent vectors and Tpi(P) is the set containing the func-
tions tangent to P at the point pi. This representation turns out to be extremely difficult
to work with as ensuring the geodesic between two elements lies on P is not easy [5].

Even though the space P turns out to be difficult to work with, we know that it
is not the only possible representation for pdfs and in addition, we also know that
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the Fisher-Rao metric is the only metric that is invariant to re-parameterizations (es-
sentially coordinate transforms) of the functions [19]. There are many different re-
parameterizations of pdfs that are equivalent representations. These include cumulative
distribution functions

∫ s

0 p(t)dt, log density functions log p(s) and square-root den-

sity functions
√

p(s). Each of these parameterizations will lead to a different resulting
manifold. Depending on the representation, the resulting Riemannian structure can have
varying degrees of complexity and numerical techniques may be required to compute
geodesics on the manifold. For example, [3] chooses the log density representation and
uses a shooting technique to find geodesics on this space. However, this space has a
complicated Riemannian structure and the numerical method used in [3] sometimes
leads to large errors. Therefore, the natural question to ask now is, is it possible to use a
re-parameterization such that the resulting manifold is simple and the Riemannian op-
erations are easy, preferably closed-form, to compute? Once an efficient representation
is found, the corresponding Fisher-Rao metric, which depends on the tangent vector,
will then be used as the Riemannian metric.

In a recent work [5], it is proved that by using the square-root representation, the re-
sulting manifold is a unit sphere in a Hilbert space with the Fisher-Rao metric being the
usual L

2 metric. Therefore, the various Riemannian operations such as geodesics, ex-
ponential maps, logarithmic maps are available in closed form. This is the most efficient
representation found to date. The square-root density function is defined as ψ =

√
p,

where ψ is assumed to be non-negative to ensure uniqueness. The space of such func-
tions is defined as:

Ψ = {ψ : [0, T ] → R|∀s, ψ(s) ≥ 0,

∫ T

0
ψ2(s)ds = 1}. (16)

From (16), it is easy to see that the functions ψ lie on a unit sphere. In addition, Ψ forms
a convex subset of the unit sphere. The advantage of choosing the square-root density
becomes immediately obvious, as many of the Riemannian expressions for the unit
sphere are well-known and closed-form. By making use of the representation in (16),
we can rewrite (15) and obtain the Fisher-Rao metric as

〈vj , vk〉ψi =
∫ T

0
vj(s)vk(s)ds, (17)

where vj , vk ∈ TψiΨ are tangent vectors. Now, for any two functions ψi, ψj ∈ Ψ , the
geodesic distance between these two points on a unit sphere is simply the angle between
them, i.e.,

dist(ψi, ψj) = cos−1〈ψi, ψj〉 = cos−1 ( ∫ T

0
ψi(s)ψj(s)ds

)
, (18)

where 〈·, ·〉 is the normal dot product between points in the sphere under the L
2 metric.

From the differential geometry of the sphere, the exponential map is defined as

expψi
(v) = cos(‖v‖ψi)ψi + sin(‖v‖ψi)

v

‖v‖ψi

, (19)
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Fig. 2. Illustration of how probability density functions are clustered using our algorithm. Each
point in the manifold denotes a pdf and different groups are mapped into different clusters.

where v∈Tψi(Ψ )is a tangent vector at ψi and ‖v‖ψi =
√

〈v, v〉ψi =(
∫ T

0 v(s)v(s)ds)
1
2 .

In order to ensure that the exponential map is a bijective function, we restrict ‖v‖ψi ∈
[0, π]. The logarithm map from ψi to ψj is then given by

−−−→
ψiψj = logψi

(ψj) =
u

(
∫ T

0 u(s)u(s)ds)
1
2

cos−1〈ψi, ψj〉, (20)

with u = ψj − 〈ψi, ψj〉ψi.
By substituting the closed-form formulae in this section into the respective operations

in Algorithm 3, it is immediately clear that we are able to perform unsupervised cluster-
ing of probability density functions. Fig. 2 illustrates the overall idea of our approach.

5 Experiments

In this section, we evaluate the performance of the proposed algorithm on both synthetic
and real data. Experiments on synthetic data are performed on mixtures of uniform pdfs,
while experiments on real data involve the segmentation of images based on texture.

5.1 Synthetic Examples

We will first evaluate the performance of Algorithm 3 for clustering two groups of
uniform pdfs with 50 pdfs in each group. Fig. 3(a) shows these two groups of pdfs,
with the first group f1 in blue and the second group f2 in green, defined on the interval
[0, 1000]. Each different shade of blue or green denotes a different element of its group.
Both groups are generated by shifting the intervals in which the probability is not zero
and increasing the bandwidths. Let U [α, β] be the uniform distribution on the interval
[α, β]. The pdfs in f1 are f1,i = U [ai, bi], i = 1, . . . , 50, where ai = 4(i − 1) + λ1,
bi = 195 + 5i + λ2. The pdfs in f2 are f2,j = U [cj , dj ], j = 1, . . . , 50, where cj =
805 − 5j − λ3, dj = 1004 − 4j − λ4. {λk}4

k=1 are drawn from U [0, 4]. Figs. 3(b)-
3(c) show that when we apply Riemannian LLE, the two smallest eigenvectors indicate
the membership of each group whereas the next two eigenvectors are the embedding
vectors.

Next, we validate the performance of our algorithm on two groups of pdfs, one with
uniform distributions and the other one with mixtures of uniform distributions. The
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Fig. 3. Applying Riemannian LLE to clustering two groups of uniform pdfs shown in (a). Both
pdfs are uniform distributions with shifting centers and varying bandwidths.
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Fig. 4. Clustering two groups of pdfs g1 = f1 and g2 = λf1 + (1 − λ)f2. Figs. 4(a)-4(b) show
g2 when λ = 0.3, 0.7. Fig. 4(c) shows the misclustering rates of LLE and LE when λ varies.

Fig. 5. Schmid filter bank that we use to generate the textons and in turn the histograms

groups have 50 pdfs each and are constructed as follows. Let f1 be the first set of pdfs
in blue shown in Fig. 3(a) and f2 be the second set in green. We set the first group to
g1 = f1 and the second group to g2 = λf1 + (1 − λ)f2, where λ ∈ [0, 1]. Figs. 4(a)-
4(b) show g2 when λ is equal to 0.3 and 0.7. Since noise is introduced in the generation
of f1 and f2, we repeat this experiment over 500 trials. It is easy to see that when λ
approaches 1, the group g2 merges into g1. From Fig. 4(c), we see that when λ is small,
the misclustering rate is 0%. However, as λ approaches 1, the distance between g1 and
g2 decreases and the misclustering approaches 50%.
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Table 2. Misclustering rates in % for two-class segmentation

Algorithm Set 1 Set 2 Set 3 Set 4
Riemannian LLE 0 0 1.63 0
Riemannian LE 0 0 19.68 22.9

Set 1 Set 2
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Fig. 6. Textures and corresponding histograms used in the two-class clustering experiments

We test our algorithm on 4 sets of data containing 2 different textures each. There are
92 images in each texture class. In these experiments, the number of nearest neighbors is
set to 10. Fig. 6 shows these 4 sets with a typical example of the 2 different textures and
the corresponding histograms in each set. Table 2 shows the misclustering percentage
of LLE and LE for each set.
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5.2 Texture Clustering

We also test our proposed algorithm in the segmentation of different textures. From
the Columbia-Utrecht Reflectance and Texture Database (CUReT) found at http://
www1.cs.columbia.edu/CAVE//software/curet/ , we obtain samples of
different textures and each grayscale image contains only one texture. In order to con-
struct a histogram that reflects the texture statistics in an image, we will calculate what
is commonly known as textons [20]. This is done by first applying a filter bank to all
images in the training set. We use the Schmid [21] filter banks shown in Fig. 5. This will
provide us with a feature vector f(x, y) of dimension 13 at each pixel. Next, we apply
k-means to all the vectors in the entire dataset to get 30 cluster centers, also known as
the textons. For each image in the dataset, we then compute a histogram that contains
the number of pixels corresponding to each one of these 30 bins. This is done by as-
signing a pixel (x, y) to bin i if the feature vector f(x, y) is closest to cluster center
i = 1, . . . , 30, according to the Euclidean distance in R

13.
Finally, we test our algorithm on a set of data containing 3 different textures. Fig. 7

shows a typical example of the different textures and the corresponding histograms in
each set. The error produced by LLE in clustering is 5.43% whereas LE is significantly
higher at 30.07%.
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Fig. 7. Textures and corresponding histograms used in the three-class clustering experiment

6 Conclusion

We presented an algorithm to perform clustering of probability density functions. Our
method takes into consideration the Riemannian structure of the square-root represen-
tation. Results on synthetic and real data are encouraging.

http://www1.cs.columbia.edu/CAVE//software/curet/
http://www1.cs.columbia.edu/CAVE//software/curet/
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