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Abstract. High angular resolution diffusion imaging (HARDI) has become an
important magnetic resonance technique for in vivo imaging. Current techniques
for estimating the diffusion orientation distribution function (ODF), i.e., the prob-
ability density function of water diffusion along any direction, do not enforce the
estimated ODF to be nonnegative or to sum up to one. Very often this leads to
an estimated ODF which is not a proper probability density function. In addition,
current methods do not enforce any spatial regularity of the data. In this paper, we
propose an estimation method that naturally constrains the estimated ODF to be
a proper probability density function and regularizes this estimate using spatial
information. By making use of the spherical harmonic representation, we pose
the ODF estimation problem as a convex optimization problem and propose a
coordinate descent method that converges to the minimizer of the proposed cost
function. We illustrate our approach with experiments on synthetic and real data.

1 Introduction

Diffusion magnetic resonance imaging (MRI) is a technique that produces in vivo images
of biological tissues by exploiting the constrained diffusion properties of water molecules.
An important area of research in diffusion MRI is the development of methods for re-
constructing the orientation distribution function (ODF) – a probability density function
(pdf) that characterizes the distribution of water diffusion along different directions on the
sphere. A very successful reconstruction technique is high angular resolution diffusion
imaging (HARDI) [1], which measures water diffusion along N uniformly distributed
directions on the sphere. Given these signals, several reconstruction techniques can be
used to characterize diffusion. Higher-order tensors leverage the work done in diffusion
tensor imaging (DTI) [2] by using higher-order polynomials to model diffusivity [3,4].
[5] fits the HARDI signals with a mixture of tensors model whose weights are speci-
fied by a probability function defined on the space of symmetric positive definite ma-
trices. Another approach is to construct the ODF directly from HARDI signals. One of
the earliest methods, known as Q-ball imaging (QBI), uses the Funk-Radon transform
to estimate ODFs [6]. ODFs have also been approximated with different basis functions
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such as spherical harmonics [7,8,9,10,11] and the Poussin kernel [12]. Such methods are
typically very fast because the ODF can still be computed analytically.

A first important limitation of existing QBI methods is that they can give large dif-
fusion estimates outside the major fiber directions. [8] addresses this by assuming that
there is a distribution of fiber orientations in each voxel and using a sharpening spherical
deconvolution method to transform the diffusion ODF into a sharp fiber ODF (fODF). A
second limitation of existing QBI methods is that they do not enforce the estimated ODF
to be nonnegative. When the diffusion MR signal is corrupted by noise, this can cause
the estimated ODF to have negative values, a situation that does not obey the underly-
ing principle of diffusion. [13] attempts to alleviate this problem by using a constrained
spherical deconvolution (CSD) method to estimate the fODF. Even though CSD reduces
the occurrence of negative values, it does not completely eliminate them. A more recent
method [14] eliminates the negative values by minimizing a nonnegative least-squares
cost function. A third limitation of existing QBI methods is that the ODF at each voxel is
estimated independently of the information provided in the spatial neighborhood. This
results in noisy estimates of the ODF field. While regularization methods have been de-
veloped [15,16], we are not aware of any work addressing all three issues for HARDI.

We present an estimation method that gives sharp diffusion ODFs, constrains the
estimated ODF to be a proper pdf, and incorporates spatial regularization. Our algorithm
is based on the ODF reconstruction scheme in [11], which derives the ODF taking into
account the solid angle consideration and is able to give naturally sharp ODFs. This is
different from existing works [8,10], where the computed ODF is the linear projection
of the actual diffusion probability and gives an artificial weight to points according to
their distances from the origin. Our method represents the ODF as a linear combination
of spherical harmonic (SH) functions, whose coefficients are found by minimizing an
energy that incorporates a regularization term and nonnegativity constraints. This results
in a convex optimization problem whose global minimizer can be found using coordinate
descent. We illustrate our method with experiments on synthetic and real data.

2 Analytical Computation of ODFs with Spherical Harmonics

We first review the ODF reconstruction scheme in [11]. Let S0 be the baseline signal
and S(θ, φ) be the HARDI signal acquired at the gradient direction (θ, φ). The ODF
is p(θ, φ) = 1

4π + 1
16π2 FRT {∇2

b ln(− ln(S(θ,φ)
S0

))}, where FRT is the Funk-Radon
transform and∇2

b is the Laplace-Beltrami operator independent of the radial component.
Notice that the first term integrates to 1 over the sphere, and the second term integrates
to 0 [11]. The (modified) SH basis [8] of order l contains R = (l+1)(l+2)

2 terms defined

for j(k, m) = k2+k+2
2 + m, k = 0, 2, 4, . . . , l and m = −k, . . . , 0, . . . , k, as

Yj =
√

2 Re(Y |m|
k ) if − k ≤ m < 0; Y 0

k if m = 0;
√

2 Im(Y m
k ) if 0 < m ≤ k;

where Y m
l (θ, φ) =

√
2l+1
4π

(l−m)!
(l+m)!P

m
l (cos θ)eimφ, θ ∈ [0, π], φ ∈ [0, 2π], Pm

l is a
Legendre polynomial, and Re(·) and Im(·) are the real and imaginary parts, respectively.
Notice that Y1(θ, φ) = 1

2
√

π
is a constant function on the sphere that integrates to a

constant, whereas the integral of Yj(θ, φ), j > 1 over the sphere is always 0.
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In order to estimate the ODF, let S(θi, φi) be the HARDI signal acquired at each of the
N gradient directions, (θi, φi)N

i=1, and define the N × 1 vector s=
[
ln(− ln(S(θ1,φ1)

S0
))

. . . ln(− ln(S(θN ,φN )
S0

))
]�

. The signal s is first approximated as s ≈ Bc, where B is the

N×R SH basis matrix whose i-th row of B is given as Bi =
[
Y1(θi, φi) . . . YR(θi, φi)

]
,

and c is the R × 1 vector of SH coefficients that parametrize the signal s. Given s and
B, the unknown vector c is found by solving the least-squares problem

min
c∈RR

f(c) =
1
2
‖Bc− s‖2. (1)

Assume now that the ODF is reconstructed using a tessellation scheme with M gradient
directions, (θr

i , φr
i )

M
i=1. It is common for N , the number of gradient directions with

which the HARDI signal is acquired, to be less than M . The reconstructed ODF is

p = Cd, (2)

where C is an M×RSH basis matrix whose i-th row is Ci=
[
Y1(θr

i , φ
r
i ) . . . YR(θr

i , φ
r
i )

]
,

and d is the vector of SH coefficients of the ODF, which is given by [11]

d =
[

1
2
√

π
01×(R−1)

]�
+

1
16π2

LPc. (3)

L is the R×R diagonal Laplace-Beltrami eigenvalues matrix with Ljj = −lj(lj + 1),
where lj is the order of the j-th term, and P is the R×R diagonal Funk-Radon transform
matrix, where Pjj =2πPlj (0) and Plj (0) is the Legendre polynomial of degree lj at 0.

3 Nonnegative and Spatially Regularized ODF Estimation

Notice that while the least-squares estimation method in §2 enforces the sum of p to
be one, it does not restrict p to be nonnegative. In addition, the ODF reconstruction
at a voxel is done independently of the information contained in the spatial neighbor-
hood of that voxel. In this section, we present our estimation method that constrains
the estimated ODF to be a proper probability density function and incorporates spatial
regularity.

Let V denote the HARDI volume and |V | the number of voxels in V . At each voxel
xi = (xi, yi, zi), we have the base-line signal S0,i and the N×1 HARDI signal Si. Thus,

we can define the signal vector si =
[
ln(− ln(Si(θ1,φ1)

S0,i
)) . . . ln(− ln(Si(θN ,φN )

S0,i
))

]�
and its corresponding vector of SH coefficients ci. In order to enforce that the ODF pi at
xi is nonnegative, we need to enforce the additional constraint pi = Cdi ≥ 0. Making
use of Eqns. (2) and (3), we rewrite the constraint as −CLPci ≤ 4π1.

To solve the ODF estimation problem in a way that accounts for the nonnegativity of
p and incorporates spatial regularization, we define the following optimization problem

min
c1,...,c|V |

g(c1, . . . , c|V |) =
1
2

V∑
i=1

‖Bci − si‖2 + λ
∑

‖xi−xj‖<r

wij‖ci − cj‖2,

subject to − CLPci ≤ 4π1, i = 1, . . . , |V |, (4)

The first term corresponds to the data term and the second term corresponds to the regu-
larization term. The following parameters need to be set: 1) λ is the nonnegative regular-
ization factor and marks the tradeoff between the data term and the regularization term.
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When λ → 0, spatial regularity is ignored whereas if λ → ∞, the data term is disre-
garded. 2) r is the spatial radius defining the neighborhood of each voxel. Examples of
defining the voxel connectivity in the 3D volume include choosing the 6 nearest voxels
or those that lie within a certain distance. 3) wij are nonnegative weights that measure
the similarity of the data at xi and xj within the local neighborhood. A common way of

defining these weights is to use the Gaussian kernel and define wij = exp(− ‖si−sj‖2

σ2 ).
It is possible to restate the optimization problem in Eqn. (4) as a large quadratic

optimization problem and one could theoretically attempt to solve for [c1, . . . c|V |] si-
multaneously. However, adopting such a strategy will require a tremendous amount
of memory and intensive computational power as a typical HARDI volume contains
|V | ≈ 106 voxels, the signal at each voxel is acquired at N ≈ 100 gradient directions,
and the ODF reconstruction is done with a few hundred tessellation directions. Instead,
we adopt an iterative algorithm, specifically the coordinate descent method, and we
show that coordinate descent will converge to the minimizer of Eqn. (4).

Theorem 1. [17] Consider minimizing functions of the form

φ(β1, . . . , βp) = κ(β1, . . . , βp) +
p∑

k=1

χk(βk), (5)

where βk is a vector, κ(·) is a differentiable and convex function, and χk(·) are con-
vex functions. When the different vectors βk’s do not have overlapping entries and∑p

k=1 χk(βk) is separable, coordinate descent converges to the minimizer of φ(·). The
coordinate descent method is formally described as
1. Initialization: Set t = 0 and choose any β0 = (β0

1 , . . . , β0
p) ∈ domain(φ).

2. At each iteration t + 1, t ≥ 1: Given βt = (βt
1, . . . , β

t
p) ∈ domain(φ), choose an

index s ∈ {1, . . . , p} and compute a new estimate βt+1 = (βt+1
1 , . . . , βt+1

p ) ∈
domain(φ) such that

βt+1
s = argmin

βs

φ(βt
1, . . . , β

t
s−1, βs, β

t
s+1, . . . , β

t
p), and βt+1

k = βt
k, ∀k �= s.

Now, the optimization problem in Eqn. (4) is equivalent to minimizing the Lagrangian

min
c1,...,c|V |

φ(c1, . . . , c|V |) = g(c1, . . . , c|V |) −
|V |∑
i=1

γ�
i (CLPci − 4π1), (6)

where γi ≥ 0. Since g(c1, . . . c|V |) is the sum of two quadratic functions, it is dif-
ferentiable and convex. In addition, since any affine function is convex (and concave),
γ�

i (CLPci − 4π1) is convex. Finally, the different ci’s, belonging to different vox-
els, do not overlap with each other and

∑|V |
i=1 γ�

i (CLPci − 4π1) is separable. From
Theorem 1, it is immediate to see that coordinate descent will converge to the mini-
mizer for Eqn. (6) or equivalently, the minimizer for Eqn. (4). In addition, at each itera-
tion, ct+1

i = arg minci
φ(ct

1, . . . , ci, . . . , ct
|V |) = arg minci

g(ct
1, . . . , ci, . . . , ct

|V |) −
γ�

i (CLPci − 4π1). Therefore, we can solve for ct+1
i from the quadratic program-

ming problem, ct+1
i = argminci

g(ct
1, . . . , ci, . . . , ct

|V |) = arg minci

1
2‖Bci − si‖2 +

λ
∑

‖xi−xj‖<r wij‖ci − ct
j‖2 subject to −CLPci ≤ 4π1. Algorithm 1 gives our ODF

estimation method in detail. Even though Algorithm 1 estimates one ci in each iteration,
it is possible to partition the problem to estimate a subset of ci’s simultaneously.
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Algorithm 1. Nonnegative ODF Estimation with Spatial Regularization

Given the HARDI volume si = [ln(− ln(Si(θ1,φ1)
S0,i

)), . . . , ln(− ln(Si(θN ,φN )
S0,i

))]�, i = 1...|V |,
and predefined parameters: spatial radius r defining the voxel connectivity, threshold ε and maxi-
mum number of iterations P .

1. Calculate the nonnegative weights wij .
2. First pass p = 0 through the entire volume:

At each voxel xi, calculate using a quadratic programming solver,

c0
i = arg min

c

1

2
‖Bc− si‖2, subject to −CLPc ≤ 4π1.

3. Subsequent passes p ≥ 1 through the entire volume:

a. Initialize t = 1. While t ≤ |V |,
i. Set i = t and compute using a quadratic programming solver a new estimate for voxel xi,

c
(p−1)|V |+t
i = arg min

c

1

2
‖Bc− si‖2 + λ

∑
‖xi−xj‖<r

wij‖c− c
(p−1)|V |+(t−1)
j ‖2,

subject to −CLPc ≤ 4π1.

ii. For the remaining voxels, set c(p−1)|V |+t
j = c

(p−1)|V |+(t−1)
j for ∀j �= i.

iii. Set t← t + 1.

b. Set p← p + 1. The stop criterion used is when p = P or the decrease in cost function g(·)
between the pth and (p− 1)th iterations is less then ε.

4 Experiments

We present experiments on synthetic and real datasets using the proposed estimation
method. We examine the quality of the estimated ODF given by: 1) the commonly used
least-square (LS) estimate obtained by solving Eqn. (1), 2) the estimate obtained with
nonnegativity constraint solely (QP) by solving Eqn. (4) with λ = 0, and 3) the estimate
obtained with nonnegativity constraint and spatial regularization (QP-S) by solving Eqn.
(4) with non-zero λ. ODFs are computed using a l = 6th order SH expansion in all our
experiments. Note that if the least-square solution results in an ODF that have negative
values, the common treatment is to set such values to a small positive number.

We first evaluate the performance on synthetic data generated using the multi-tensor
method in [8]. The first synthetic experiment studies the improvement of the QP esti-
mate over the LS estimate when the signal is corrupted by noise at a single voxel, in 100
trials. We first construct the true ODFs of 1, 2, and 3 fibers, as shown in Fig. 1(a), and
the corresponding HARDI signals {S(θi, φi)}N

i=1 at N = 100 gradient directions with
S0 = 1. Noisy versions of {S(θi, φi)}N

i=1 are generated by adding complex Gaussian
noise with zero mean and standard deviation σ = S0

ζ , where ζ is the signal-to-noise
ratio (SNR). We use the Riemannian distance distRie(·, ·) between probability density
functions [18] to compare different ODFs. Fig. 1(b) shows the error distRie(φt, φe)
between the true ODF φt and estimated ODF φe using LS and QP when the voxel
contains 1, 2 or 3 fibers for varying levels of SNR. Notice that QP always gives a lower
error than LS and does not give any negative values of p whereas LS results in 6%
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Fig. 1. Synthetic experiments. The first experiment (Figs. 1(a)-1(b)) studies the improvement of
the QP estimate over the LS estimate when the signal is corrupted by noise. The second experi-
ment (Figs. 1(c)-1(g)) studies the effect of having spatial regularization under varying values of
regularization parameter λ for the ODF field shown in Fig. 1(d).

of the values being less than zero. In addition, the error increases when the number of
fibers increases. This is expected as more acquisition directions are required to estimate
an ODF with 3 fiber crossings compared to an ODF with a single fiber.

The second synthetic experiment shows the improvement of QP-S over QP in a ODF
field over 100 trials. We construct an ODF field φt as shown in Fig. 1(d). The voxels in
the 1st and 3rd quadrants contain 1 fiber, the 2nt quadrant 2 fibers and the 4th quadrant
3 fibers (with 1 fiber pointing out of the plane). We study the effects of varying the
regularization parameter λ from 0.01λ0 to 10λ0, where λ0 = 1. Fig. 1(c) shows the
% decrease in error when estimation is done with QP-S compared to only doing QP,
for varying SNR and λ. The error is measured as

∑
x distRie(φt(x), φe(x)) where φe

is the estimated ODF field. At low SNR, QP-S gives an estimated ODF field that is
significantly closer to the true ODF field. When λ is too small or too large, the resulting
φe is about the same quality of the LS estimate. Figs. 1(e)-1(g) show the estimated ODF
fields for LS, QP, and QP-S with p = 5 passes of one trial at SNR= 10.

Finally, we apply our estimation method to a HARDI human brain dataset. Diffu-
sion weighted MR images were obtained using the following imaging parameters: 55
axial slices (2mm thick), TR/TE=8250/92.3ms, with a 128 × 128 acquisition matrix
(1.8mm in-plane resolution). 105 images were acquired, 11 with no diffusion
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(a) LS estimate (b) QP estimate

(c) QP-S with p = 1 pass estimate (d) QP-S with p = 2 passes estimate

(e) Zoomed-out LS esti-
mated ODF field

(f) Zoomed-out QP-S
with p = 2 estimated
ODF field

Fig. 2. Estimation results for real
brain data. Fig. 2(a) is the LS es-
timate, Fig. 2(a) the QP estimate,
Figs. 2(b) and 2(c) are the QP-S
estimates with p = 1 and p =
2 passes through the volume, re-
spectively. Figs. 2(e)-2(f) show the
zoomed-out LS ODF field and QP-
S with p = 2 estimated ODF
field with the results of the red box
shown in Figs. 2(a)-2(d). The ODFs
are superimposed on top of the gen-
eralized fractional anisotropy maps.
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sensitization and N = 94 diffusion weighted images at b = 1159 s/mm2. A portion of
the results are shown in Fig. 2, where the ODFs are superimposed on top of the gen-
eralized fractional anisotropy maps. Figs. 2(a), 2(b), 2(c), and 2(d) show the estimates
given by LS, QP, QP-S with p = 1 pass, and QP-S with p = 2 passes, respectively.
Figs. 2(e) and 2(f) show the LS and QP-S with p = 2 estimated ODF fields of one slice
where the zoomed-in results of the red box are shown in Figs. 2(a)-2(d). Notice that the
ODF field estimated by LS is the noisiest, whereas QP-S with p = 2 gives a smoother
ODF field and still preserves the discontinuities between different regions. In addition,
the generalized fractional anisotropy map of QP-S shown in Fig. 2(f) is significantly
cleaner than that of LS in Fig. 2(e) and the different regions of the brain can be seen
more clearly.

5 Conclusion

We have presented an ODF estimation method that gives sharp diffusion ODFs, con-
strains the estimated ODF to be a proper pdf, and incorporates spatial regularization.
Results on synthetic and real data demonstrate the advantage of working with our
proposed algorithm. Future work will extend to multiple q-shell reconstruction
method in [19].
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