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Abstract

In this paper, we study general questions about the solvability of the Kruppa equations and
show that, in several special cases, the Kruppa equations can be renormalized and become lin-
ear. In particular, for cases when the camera motion is such that its rotation axis is parallel or
perpendicular to translation, we can obtain linear algorithms for self-calibration. A further study
of these cases not only reveals generic difliculties with degeneracy in conventional self-calibration
methods based on the nonlinear Kruppa equations, but also clarifies some incomplete discussion
in the literature about the solutions of the Kruppa equations. We demonstrate that Kruppa
equations do not provide sufficient constraints on camera calibration and give a complete account
of exactly what is missing in Kruppa equations. In particular, a clear relationship between the
Kruppa equations and chirality is revealed. The results then resolve the discrepancy between the
Kruppa equations and the necessary and sufficient condition for a unique calibration. Simula-
tion results are presented for evaluation of the sensitivity and robustness of the proposed linear
algorithms.
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1 Introduction

The problem of camera self-calibration refers to the problem of obtaining intrinsic parameters of a
camera using only information from image measurements, without any a priori knowledge about the
motion between frames and the structure of the observed scene. The original question of determining
whether the image measurements only are sufficient for obtaining intrinsic parameters of a camera was
initially answered in [11]. The proposed approach and solution utilize invariant properties of the image
of the so called absolute conic. Since the absolute conic is invariant under Euclidean transformations
(i.e., its representation is independent of the position of the camera) and depends only on the camera
intrinsic parameters, the recovery of the image of the absolute conic is then equivalent to the recovery
of the camera intrinsic parameter matrix. The constraints on the absolute conic are captured by the
so called Kruppa equations initially discovered by Kruppa in 1913. In Section 3, we will provide a
much more concise derivation of the Kruppa equations.



Certain algebraic and numerical approaches for solving the Kruppa equations were first discussed
n [11]. Some alternative and additional schemes have been explored in [7, 17]. Nevertheless, it has
been well-known that, in the presence of noise, these Kruppa equation based approaches are not
guaranteed to provide a good estimate of the camera calibration and many erroneous solutions will
occur [1]. Because of this, we decide to revisit the Kruppa equation based approach in this paper.
More specifically, we address the following two questions:

1. Under what conditions do the Kruppa equations become degenerate or ill-conditioned?

2. When conditions for degeneracy are satisfied, how do the self-calibration algorithms need to be

modified?

In this paper, we show that the answer to the former question is rather unfortunate: for camera motions
such that the rotation axis is parallel or perpendicular to the translation, the Kruppa equations become
degenerate. This explains why conventional approaches to self-calibration based on the (nonlinear)
Kruppa equations often fail. Most practical images are, in fact, taken through motions close to these
two types. The parallel case shows up very frequently in motion of aerial mobile robots such as
an helicopter. The perpendicular case is interesting in robot navigation, where the main rotation
of the on-board camera is yaw and pitch, whose axes are perpendicular to the direction of robot
heading. Nevertheless, in this paper, we take one step further to show that when such motions occur,
the corresponding Kruppa equations can be renormalized and become [linear! This fact allows us to
correct (or salvage) classical Kruppa equation based self-calibration algorithms so as to obtain much
more stable linear self-calibration algorithms, other than the pure rotation case known to Hartley [4].
Our study also clarifies and completes previous analysis and results in the literature regarding the
solutions of the Kruppa equations [17]. This is discussed in Section 3.2.

Relations to Previous Works: Besides the Kruppa equation based self-calibration approach, al-
ternative methods have also been studied extensively. For example some of them use the so called
absolute quadric constraints [16], modulus constraints [13] and chirality constraints [5]. Some
others restrict to special cases such as stationary camera [4] or to time-varying focal-length [6, 14]. We
hope that, by a more detailed study of the Kruppa equations, we may gain a better understanding of
the relationships among the various self-calibration methods. This is discussed in Section 3.3.

2 Epipolar Geometry Basics

To introduce the notation, we first review in this section the well-known epipolar geometry and some
properties of fundamental matrix to aid the derivation and study of Kruppa equations.

The camera motion is represented by (R, p) where R is a rotation matrix as an element in the
special orthogonal group SO(3) and p € R? is a three dimensional vector representing the translation
of the camera. That is, (R, p) represents a rigid body motion as an element in the special Euclidean
group SFE(3). The three dimensional coordinates (with respect to the camera frame) of a generic point
¢ in the world are related by the following Fuclidean transformation:

g(ts) = R(ts,t1)q(t) + p(ta,tr), Vit € R. (1)

We use the matrix A € R3*? to represent the intrinsic parameters of the camera, which we also refer
to as the calibration matrix of the camera. In this paper, without loss of generality, we will assume
det(A) =1, i.e., Ais an element in the special linear group SL(3). SL(3) is the group consisting of



3 x 3 real matrices with determinant equal to 1. This choice of A is slightly different from (and more
general than) the traditional choice in the literature, but, mathematically, it is more natural to deal
with. Then the (uncalibrated) image x (on the image plane in R?) of the point ¢ at time ¢ is given
through the following equation:

Mt)x(t) = Ag(t), VteR. (2)

where A(t) € R is a scalar encoding the depth of the point ¢. Note that this model does not
differentiate the spherical or perspective projection.

Since we primarily consider the two-view case in this paper, to simplify the notation, we will drop
the time dependency from the motion (R(t2,t1), p(t2,11)) and simply denote it as (R, p), and also use
X1, Xz as shorthand for x(¢;),x(;) respectively. Also, for a three dimensional vector p € R?, we can
always associate to it a skew symmetric matrix p € R**3 such that p x ¢ = pg for all ¢ € R3.1

Then it is well known that the two image points x; and x, must satisfy the so called epipolar
constraint:

xT AT RTpA %, = 0. (3)

The matrix F' = A-TRTpA~" € R**? is the so called fundamental matrix in Computer Vision
literature. When A = [, the fundamental matrix simply becomes RTp which is called essential
matrix and plays a very important role in motion recovery [10]. The following simple but extremely
useful lemma will allow us to write the fundamental matrix in a more convenient form:

Lemma 1 (The Hat Operator) Ifp € R and A € SL(3), then ATpA = A/—l\p

—— e —

Proof: Since both AT(-)A and A~!(-) are linear maps from R? to R**3, using the fact that det(A )
one may directly verify that these two linear maps are equal on the bases: (1,0,0)7,(0,1,0)" or (0,0,1)7. m

This simple lemma will be frequently used throughout the paper. By this lemma, we have:
F=ATRTpA = ATTRTATATpA = ATRT ATy (4)

where p’ = Ap € R? is the so called epipole. This equation in fact has a more fundamental inter-
pretation: an uncalibrated camera in a calibrated world is mathematically equivalent to a calibrated
camera in an uncalibrated world (for more details see [9]). As we will soon see, the last form of the
fundamental matrix in the above equation is the most useful one for deriving and solving the Kruppa
equations.

3 The Kruppa Equations

Without loss of generality, we may assume that both the rotation R and translation p are non-trivial,
i.e., R # I and p # 0 hence the epipolar constraint (3) is not degenerate and the fundamental matrix
can be estimated. The camera self-calibration problem is then reduced to recovering the symmetric
matrix w = A7TA™ or w™' = AAT from fundamental matrices. It can be shown, even if we have

Tn the computer vision literature, such a skew symmetric matrix is also often denoted as px. But we here use the
notation consistent to robotics and matrix Lie group theory, where p is used to denote to elements in the Lie algebra

so(3) of SO(3).



chosen A to be an arbitrary element in SL(3), A can only be recovered up to a rotation, i.e., as an
element in the quotient space SL(3)/SO(3), for more details see [9]. Note that SL(3)/50(3) is only
a H-dimensional space. From the fundamental matrix, the epipole vector p’ can be directly computed
(up to an arbitrary scale) as the null space of F. Given a fundamental matrix F = A_TRTAT};\’,
its scale, usually denoted as A, is defined as the norm of p’. If A = |[p/|| = 1, such a F' is called a
normalized fundamental matrix.? For now, we assume that the fundamental matrix /' happens
to be normalized.

Suppose the standard basis of R? is ¢; = (1,0,0)7,e; = (0,1,0)T,e3 = (0,0,1)T € R% Now pick

any rotation matrix Ry € SO(3) such that Rop’ = e3. Using Lemma 1, we have p/ = RIéRy. Define
matrix D € R3*® to be:

D =FRY = ATTRTATRI & = ATTRTATR] (€5, —€1,0). (5)

Then D has the form D = (&,&,0) with £;,& € R? being the first and second column vectors of
D. Hence we have & = ATTRTATRL e, & = A_TRTAT(—ROTel). Define vectors n;,1m, € R? as
m = —ROTel, Ne = ROTeg, then it is direct to check that w™! satisfies:

ol =y, Gl =nwn, el =nlwn. (6)
We thus obtain three homogeneous constraints on the matrix w™!, the inverse (dual) of the matrix
(conic) w. These constraints can be used to compute w™" hence w.

The above derivation is based on the assumption that the fundamental matrix £ is normalized,
i.e., ||p'|| = 1. However, since the epipolar constraint is homogeneous in the fundamental matrix F,
it can only be determined up to an arbitrary scale. Suppose X is the length of the vector p’ € R? in
F= A_TRTAT}/;’. Consequently, the vectors & and & are also scaled by the same A. Then the ratio
between the left and right hand side quantities in each equation of (6) is equal to A*. This gives two
equations on w™!, the so called Kruppa equations (after its initial discovery by Kruppa in 1913):

A2 — fuw'é _ §wé . (lwté

Confwttny pfety T pfwting

(7)

Alternative means of obtaining the Kruppa equations are by utilizing algebraic relationships between
projective geometric quantities [11] or via SVD characterization of F' [3]. Here we obtain the same
equations from a quite different approach. Equation (7) further reveals the geometric meaning of the
Kruppa ratio A%: it is the square of the length of the vector p’ in the fundamental matrix F'. This
discovery turns out to be quite useful when we later discuss the renormalization of Kruppa equations.
In general, each fundamental matrix provides at most two algebraic constraints on w™!, if the two
equations in (7) happen to be independent. Since the symmetric matrix w has five degrees of freedom,
in general at least three fundamental matrices are needed to uniquely determine w. Nevertheless, as
we will soon see, this is not the case for many special camera motions.

Comments 1 One must be aware that solving Kruppa equations for camera calibration is not equivalent to
the camera self-calibration problem in the sense that there may exist solutions of Kruppa equations which are
not solutions of a “valid” self-calibration. Given a non-critical set of camera motions, the associated Kruppa
equations do not necessarily give enough constraints to solve for the calibration matriz A. See Section 3.3 for
a complete account.

2Here || - || represents the standard 2-norm.



The above derivation of Kruppa equations is straightforward, but the expression (7) depends on a
particular rotation matrix Ry that one chooses — note that the choice of Ry is not unique. However,
there is an even simpler way to get an equivalent expression for the Kruppa equations in a matrix
form. Given a normalized fundamental matrix F' = A_TRTAT}/;’, it is then straightforward to check
that w™!' = AAT must satisfy the following equation:

~T ~
FIu™'F =p w iy, (8)
We call this equation the normalized matrix Kruppa equation. It is readily seen that this equation

is equivalent to (6). If F' is not normalized and is scaled by A € R, i.e., F' = )\A_TRTAT}/;’,S we then
have the matrix Kruppa equation:

FLolF = N w1y, (9)

This equation is equivalent to the scalar version given by (7) and is independent of the choice of the
rotation matrix Ry. In fact, the matrix form reveals that the nature of Kruppa equations is nothing
but inner product invariants of the group ASO(3)A~! (for more details see [9]).

3.1 Solving Kruppa Equations

Algebraic properties of Kruppa equations have been extensively studied (see e.g. [11, 17]). However,
conditions on dependency among Kruppa equations obtained from the fundamental matrix have not
been fully discovered. Therefore it is hard to tell in practice whether a given set of Kruppa equations
suffice to guarantee a unique solution for calibration. As we will soon see in this section, for very
rich classes of camera motions which commonly occur in many practical applications, the Kruppa
equations will become degenerate. Moreover, since the Kruppa equations (7) or (9) are highly nonlinear
in w™!, most self-calibration algorithms based on directly solving these equations suffer from being
computationally expensive or having multiple local minima [1, 7]. These reasons have motivated us
to study the geometric nature of Kruppa equations in order to gain a better understanding of the
difficulties commonly encountered in camera self-calibration. Our attempt to resolve these difficulties
will lead to simplified algorithms for self-calibration. These algorithms are linear and better conditioned
for these special classes of camera motions.

Given a fundamental matrix F' = A_TRTAT}/;’ with p’ of unit length, the normalized matrix Kruppa
equation (8) can be rewritten in the following way:

P = ARATWT AT RT AT = 0. (10)
According to this form, if we define C' = A=TRT AT a linear (Lyapunov) map o : R®? — R3*3 as

T~
o:X =X —-CTXC, and a linear map 7 : R**® - R**® as 7: Y s p/ Yp/, then the solution w™! of
equation (10) is exactly the (symmetric real) kernel of the composition map:

rog: R¥ T R T, RIC (11)

This interpretation of Kruppa equations clearly decomposes effects of the rotational and translational
parts of the motion: if there is no translation ¢.e., p = 0, then there is no map 7; if the translation
is non-zero, the kernel is enlarged due to the composition with map 7. In general, the symmetric real
kernel of the composition map 7 o ¢ is 3 dimensional — while the kernel of ¢ is only 2 dimensional
(see [9]). The solutions for the unnormalized Kruppa are much more complicated due to the unknown
scale A. However, we have the following lemma to simplify things a little bit.

3Without loss of generality, from now on, we always assume [|p/[| = 1.



Lemma 2 Given a fundamental matric F = A_TRTAT}/;’ with p' = Ap, a real symmetric matriz
X € R®%3 is a solution of FTXF = AQ}?TX}/;’ if and only if Y = AT'XA™T is a solution of ETY E =
NpTYp with E = RTp.

Using Lemma 1, the proof of this lemma is simply algebraic. This simple lemma, however, states a
very important fact: given a set of fundamental matrices I; = AT RT ATp! with pl = Ap;,1 =1,... ,n,
there is a one-to-one correspondence between the set of solutions of the equations:

AT o~
FYXF, = Xpl Xpl, i=1,...,n. (12)

and the set of solutions of the equations:
EIYE, =)p!Yp:, i=1,...,n (13)

where E; = RI'p; are essential matrices associated to the given fundamental matrices. Note that these
essential matrices are determined only by the camera motion. Therefore, the conditions of uniqueness
of the solution of Kruppa equations only depend on the camera motion. Our next task is then to study
how the solutions of Kruppa equations depend on the camera motion.

3.2 Renormalization and Degeneracy of Kruppa Equations

From the derivation of the Kruppa equations (7) or (9), we observe that the reason why they are
nonlinear is that we do not usually know the scale A. It is then helpful to know under what conditions
the matrix Kruppa equation will have the same solutions as the normalized one, i.e., with A set to 1.
Here we will study two special cases for which we are able to know directly what the missing A is. The
fundamental matrix can then be renormalized and we can therefore solve the camera calibration from
the normalized matrix Kruppa equations, which are linear! These two cases are when the rotation axis
is parallel or perpendicular to the translation. That is, if the motion is represented by (R, p) € SE(3)
and the unit vector u € R?is the axis of R,* then the two cases are when u is parallel or perpendicular
to p. As we will soon see, these two cases are of great theoretical importance: Not only does the
calibration algorithm become linear, but it also reveals certain subtleties of the Kruppa equations and
explains when the nonlinear Kruppa equations are most likely to become ill-conditioned.

Lemma 3 Consider a camera motion (R,p) € SE(3) where R = €%, 0 € (0,7) and the azvis u € R?
is parallel or perpendicular to p. If v € R and positive definite matriz Y are a solution to the matriz
Kruppa equation: p* RY RTp = v*pTY'p associated to the essential matriz RTp, then we must have
~? = 1. Consequently, Y is a solution of the normalized matriz Kruppa equation: p* RY RTp = plYp.

Proof:  Without loss of generality we assume ||p|| = 1. For the parallel case, let € R? be a vector of unit
length in the plane spanned by the column vectors of p. All such z lie on a unit circle. There exists zg € R
on the circle such that xOTYxO is maximum. We then have xOTRYRTxO = 'yzonon, hence 4% < 1. Similarly,
if we pick xg such that xOTYxO is minimum, we have 42 > 1. Therefore, v? = 1. For the perpendicular case,
since the columns of p span the subspace which is perpendicular to the vector p, the eigenvector u of R is
in this subspace. Thus we have: u’ RYRTu = v?u"Yu = uw"Yu = y*u"Yu. Hence 4% = 1 if Y is positive
definite. =

Combining Lemma 3 and Lemma 2, we immediately have:

4R can always be written of the form R = ¢% for some 0 € [0, 7] and u € S2.



Theorem 1 (Renormalization of Kruppa Equations) Consider an unnormalized fundamental ma-
trix ' = A_TRTAT}/;’ where R = €%, 0 € (0,7) and the axvis u € R® is parallel or perpendicular to
p=AY. Let e = p'/||P||. Then if X € R and a positive definite matriz w are a solution to the
matriz Kruppa equation: FTwo™'F = X2eTw™1e, we must have \? = ||p/||*.

This theorem claims that, for the two types of special motions considered here, there is no solution
for A in the Kruppa equation (9) besides the true scale of the fundamental matrix. Hence we can
decompose the problem into finding A first and then solving for w or w™!. The following theorem
allows to directly compute the scale A for a given fundamental matrix:

Theorem 2 (Renormalization of Fundamental Matrix) Given an unnormalized fundamental ma-
triz ' = NATTRTATY with ||p'|| = 1, if p = A7’ is parallel to the axis of R, then \? is |Fp'FT||,

and if p is perpendicular to the axis of R, then A is one of the two non-zero eigenvalues of F}/;’

Proof: Note that smce pp is a projection matrix to the plane spanned by the column vectors of ]7’,
we have the identity pp p = p First we prove the parallel case. It is straightforward to check that, in

general, Fp’FT = A2ARTp. Since the axis of R is parallel to p, we have RTp = p so that F]?’FT = /\2]7’
For the perpendicular case, let u € R® be the axis of R. By assumption p = A~'p’ is perpendicular to u.

~ ce e ~ . ~T
Then there exists v € R? such that u = pA~'v. Then it is direct to check that p'v is the eigenvector of Fp/
corresponding to the eigenvalue A. =

Then for these two types of special motions, the associated fundamental matrix can be immediately
normalized by being divided by the scale A\. Once the fundamental matrices are normalized, the
problem of finding the calibration matrix w™! from normalized matrix Kruppa equations (8) becomes a
simple linear one! A normalized matrix Kruppa equation in general imposes three linearly independent
constraints on the unknown calibration matrix given by (6). However, this is no longer the case for
the special motions that we are considering here.

Theorem 3 (Degeneracy of Kruppa Equations) Consider a camera motion (R, p) € SFE(3) where
R = e has the angle § € (0,7). If the axis u € R® is parallel or perpendicular to p, then the normal-
ized matriz Kruppa equation: p' RY RTp = pT Y p imposes only two linearly independent constraints on
the symmetric matriz Y .

Proof: For the parallel case, by restricting ¥ to the plane spanned by the column vectors of p, it is a
symmetric matrix ¥ in R?*2. The rotation matrix R € SO(3) restricted to this plane is a rotation R € SO(2).
The normalized matrix Kruppa equation is then equivalent to ¥ — RY RT = 0. Since 0 < 8 < 7, this equation
imposes exactly two constraints on the three dimensional space of 2 X 2 real symmetric matrices. The identity
15«9 is the only solution. Hence the normalized Kruppa equation imposes exactly two linearly independent
constraints on Y.

For the perpendicular case, since u is in the plane spanned by the column vectors of p, there exist v € R3
such that (u,v) form an orthonormal basis of the plane. Then the normalized matrix Kruppa equation is
equivalent to:

PPRYR'p=p"YDp o (u,0)TRYRT (u,v) = (u,v)TY (u,v). (14)

Since RTu = u, the above matrix equation is equivalent to two equations v? RY u = vTYu,vT RY RTv = vTY v,
These are the only two constraints given by the normalized Kruppa equation. m

According to this theorem, although we can renormalize the fundamental matrix when rotation
axis and translation are parallel or perpendicular, we only get two independent constraints from the



resulting (normalized) Kruppa equation corresponding to a single fundamental matrix. Hence for these
motions, in general, we still need three such fundamental matrices to uniquely determine the unknown
calibration. On the other hand, if we do not renormalize the fundamental matrix in these cases
and directly use the unnormalized Kruppa equations (7) to solve for calibration, the two nonlinear
equations in (7) are in fact algebraically dependent! Therefore, one can only get one constraint, as
opposed to the expected two, on the unknown calibration w™!. This is summarized in Table 1.

Table 1: Dependency of Kruppa equation on angle ¢ € [0, 7) between the rotation and translation.

‘ Cases ‘ Type of Constraints | # of Constraints on w™! |
xy | Unnormalized Kruppa Equation 2
(¢#0) and (¢ # 3) Normalized Kruppa Equation 3
_ _ =y | Unnormalized Kruppa Equation 1
(¢=0) or (¢=73) Normalized Kruppa Equation 2

Although, mathematically, motion involving translation either parallel or perpendicular to the
rotation is only a zero-measure subset of SF(3), they are very commonly encountered in applica-
tions: Many images sequences are usually taken by moving the camera around an object in trajectory
composed of orbital motions, in which case the rotation axis and translation direction are likely per-
pendicular to each other. Another example is a so called screw motion, whose rotation axis and
translation are parallel. Such a motion shows up frequently in aerial mobile motion. Our analysis
shows that, for these types of motions, even if the sufficient conditions for a unique calibration are
satisfied, a self-calibration algorithm based on directly solving the Kruppa equations (7) is likely to
be ill-conditioned [1]. To intuitively demonstrate the practical significance of our results, we give an
example in Figure 1. Our analysis reveals that in these cases, it is crucial to renormalize the Kruppa
equation using Theorem 3: once the fundamental matrix or Kruppa equations are renormalized, not
only is one more constraint recovered, but we also obtain linear (normalized Kruppa) equations.

Figure 1: Two consecutive orbital motions with independent rotations: even if pairwise fundamental
matrices among the three views are considered, one only gets at most 1+ 142 = 4 effective constraints
on the camera intrinsic matrix if the three matrix Kruppa equations are not renormalized. After
renormalization, however, we may get back to 2 + 2 4+ 2 > 5 constraints.



Comments 2 (Special Motion Sequences) Interestingly, the case that the yaw and pitch whose azes
are perpendicular to the direction of heading can often be found in vision-guided navigation systems, on-board
planar mobile robots. The screw motion, on the other hand, shows up very frequently in motion of aerial
mobile robots such as an autonomous helicopter. The orbital motion shown in Figure 1 most likely shows up
in photographs taken by hand held camera. All these motions fall in the two special categories which cause
degeneracy in Kruppa equations.

Comments 3 (Solutions of the Normalized Kruppa Equations) Claims of Theorem 3 run con-
trary to the claims of Propositions B.5 hence B.9 in [17]: In Proposition B.5 of [17], it is claimed that the
solution space of the normalized Kruppa equations when the translation is parallel or perpendicular to the
rotation axis is two or three dimensional. In Theorem 3, we claim that the solution space is always four
dimensional. Theorem 3 does not cover the case when the rotation angle 0 is . However, if one allows the
rotation to be 7, the solutions of normalized Kruppa equations are even more complicated. For example, we
know €*"p = —p if u is of unit length and parallel to p (see [8]). Therefore, if R = €7, the corresponding
normalized Kruppa equation is completely degenerate and imposes no constraints at all on the calibration
matrix.

Comments 4 (Number of Solutions) Although Theorem 2 claims that for the perpendicular case X is

one of the two non-zero eigenvalues of F]?’T, unfortunately, there is no way to tell which one is the right one
— stmulations show that it could be either the larger or smaller one. Therefore, in a numerical algorithm, for
given n > 3 fundamental matrices, one needs to consider all possible 2™ combinations. According to Theorem
1, in the noise-free case, only one of the solutions can be positive definite, which corresponds to the the true
calibration.

3.3 Kruppa Equations and Chirality

It can be shown that if the scene is rich enough (with to come), then the necessary and sufficient
condition for a unique camera calibration (see [9]) says that two general motions with rotation around
different axes already determine a unique Euclidean solution for camera motion, calibration and scene
structure. However, the two Kruppa equations obtained from these two motions will only give us at
most four constraints on w, which is not enough to determine w which has five degrees of freedom.
We hence need to know what information is missing from the Kruppa equation. State alternatively,
can we get extra independent constraints on w from the fundamental matrix other than the Kruppa
equation?

The proof of Theorem 2 suggests another equation can be derived from the fundamental matrix
F= )\A_TRTAT}/;’ with |[p|| = 1. Since F}/;’FT = M ARTp, we can obtain the vector a = N2 ARTp =
M ART A=y, Then it is obvious that the following equation for w = A=TA~! holds:

olwa = X wy. (15)
1

Notice that this is a constraint on w, not like the Kruppa equations which are constraints on w™".
Combining the Kruppa equations given in (7) with (15) we have:

;e el e [adlwa
A= T, ,—1 - T -1 - T -1 - T : (16)
MW=z MWTI MWt P wp

Is the last equation algebraically independent of the two Kruppa equations? Although it seems to be
quite different from the Kruppa equations, it is in fact dependent on them. This can be shown either




numerically or using simple algebraic tools such as Maple. Thus, it appears that our effort to look for
extra independent, explicit constraints on A from the fundamental matrix has failed.® In the following,
we will give an explanation to this by showing that not all w which satisfy the Kruppa equations
may give valid Euclidean reconstructions of both the camera motion and scene structure. The extra
constraints which are missing in Kruppa equations are in fact captured by the so called chirality
constraint, which was previously studied in [5]. We now give a clear and concise description between
the relationship of the Kruppa equations and chirality.

Theorem 4 (Kruppa Equations and Chirality) Consider a camera with calibration matriz I and
motion (R, p). If p # 0, among all the solutions Y = A7*A~T of the Kruppa equation ETY E = M*p'Yp
associated to £ = RTp, only those which guarantee ARA™! € SO(3) may provide a valid Euclidean
reconstruction of both camera motion and scene structure in the sense that any other solution pushes
some plane N C R? to the plane at infinity, and feature points on different sides of the plane N have
different signs of recovered depth.

Proof: The images X3, x; of any point ¢ € R? satisfy the coordinate transformation:
A2X2 = Alel + p.

If there exists Y = A=A~ such that ETY E = A?2pTY D for some A € R, then the matrix F = A=TEA- =
A_TRTAT];’ is also an essential matrix with p’ = Ap, that is, there exists R € SO(3) such that F = ]%T];’
(see [10] for an account of properties of essential matrices). Under the new calibration A, the coordinate
transformation is in fact:

AQAXQ = /\1ARA_1(AX1) —|—p/

Since F = ]%T]/)\’ = AiTRTAT]/)\’, we have ARA™' = R + p/vT for some v € R3. Then the above equation
becomes: AygAxy = A\ R(Ax1) +Ap'vT (Axy)+p'. Let 8 = A\joT (Axy) € R, we can further rewrite the equation
as:

AgAxy = M RAx + (6 + 1) (17)
Nevertheless, with respect to the solution A, the reconstructed images Axy, Axs and (]%,p’) must also satisfy:
Yo Axy = 'ylf%Axl +p (18)

for some scale factors v1,v2 € R. Now we prove by contradiction that v # 0 is impossible for a valid Euclidean
reconstruction. Suppose that v # 0 and we define the plane N = {q € R*v’¢ = —1}. Then for any
g = MAx; € N, we have § = —1. Hence, from (17), Ax;, Axz satisfy Ay Ax, = A\ RAx;. Since Axy, Ax, also
satisfy (18) and p’ # 0, both 47 and 72 in (18) must be co. That is, the plane N is “pushed” to the plane at
infinity by the solution A. For points not on the plane N, we have g+ 1 # 0. Comparing the two equations
(17) and (18), we get v; = A\;/(F+1),¢=1,2. Then for a point in the far side of the plane N, i.e., 3+1 < 0,
the recovered depth scale + is negative; for a point in the near side of N, i.e., f+ 1 > 0, the recovered depth
scale v is positive. Thus, we must have that v = 0. m

Comments 5 (Quasi-affine Reconstruction) Theorem j essentially implies the chirality constraints
studied in [5]. According to the above theorem, if only finitely many feature points are measured, a solution
of the calibration matriz A which may allow a valid Fuclidean reconstruction should induce a plane N not
cutting through the convex hull spanned by all the feature points and camera centers. Such a reconstruction is
referred as quasi-affine in [5].

®Nevertheless, extra implicit constraints on A may still be obtained from other algebraic facts. For example, the so
called modulus constraints give three implicit constraints on A by introducing three extra unknowns, for more details

see [13].
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It is known that, in general, all A’s which make ARA™! a rotation matrix form a one parameter
family [9]. Thus, following Theorem 4, a camera calibration can be uniquely determined by two
independent rotations regardless of translation if enough feature points are available. An intuitive
example is provided in Figure 2.

-y

el
e

(RL,pD)

L1

Figure 2: A camera undergoes two motions (Ry,p1) and (R, p2) observing a rig consisting of three
straight lines Ly, Ly, Ls. Then the camera calibration is uniquely determined as long as R; and R,
have independent rotation axes and rotation angles in (0, ), regardless of py, ps. This is because, for
any invalid solution A, the associated plane N (see the proof of Theorem 4) must intersect the three
lines at some point, say ¢. Then the reconstructed depth of point ¢ with respect to the solution A
would be infinite (points beyond the plane N would have negative recovered depth). This gives us a
criteria to exclude all such invalid solutions.

The significance of Theorem 4 is that it explains why we get only two constraints from one funda-
mental matrix even in the two special cases when the Kruppa equations can be renormalized — extra
ones are imposed by the structure, not the motion. The theorem also resolves the discrepancy between
the Kruppa equations and the necessary and sufficient condition for a unique calibration: the Kruppa
equations, although convenient to use, do not provide sufficient conditions for a valid calibration which
allows a valid Euclidean reconstruction of both the camera motion and scene structure. However, the
fact given in Theorem 4 is somewhat difficult to harness in algorithms. For example, in order to
exclude invalid solutions, one needs feature points on or beyond the plane N.° Alternatively, if such
feature points are not available, one may first obtain a projective reconstruction and then use the
so called absolute quadric constraints to calibrate the camera [16]. However, in such a method, the
camera motion needs to satisfy a stronger condition than requiring only two independent rotations,
i.e., it cannot be critical in the sense specified in [15].

4 Simulation Results

In this section, we test the performance of the proposed algorithms through different experiments.
The error measure between the actual calibration matrix A and the estimated calibration matrix

A was chosen to be error = ”?l;lﬂl” x 100. Table 2 shows the simulation parameters used in the

experiments.” The calibration matrix A is simply the transformation from the original 2 x 2 (in unit

%Some possible ways of harnessing the constraints provided by chirality have been discussed in [5]. Basically they
give wnequality constraints on the possible solutions of the calibration.
“u.fl. stands for unit of focal length.
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Table 2: Simulation parameters

| Parameter | Unit | Value |
Number of trials 100
Number of points 20
Number of frames 3-4
Field of view degrees 90
Depth variation u.f.l. 100 - 400
Image size pixels | 500 x 500

of focal length) image to the 500 x 500 pixel image. For these parameters, the true A should be

250 0 250
A= 0 250 250 |]. The ratio of the magnitude of translation and rotation, or simply the T/ R
0 0 1

ratio, is compared at the center of the random cloud (scattered in the truncated pyramid specified by
the given field of view and depth variation). For all simulations, the number of trials is 100.

Pure rotation case: For comparison, we here also implement the linear algorithm proposed by
Hartley [4] for calibrating a pure rotating camera. Figures 3, 4 and 5 show the experiments performed
in the pure rotation case. The axes of rotation are X and Y for Figures 3 and 5, and X and Z for
Figure 4. The amount of rotation is 20°. The perfect data was corrupted with zero-mean Gaussian
noise with standard deviation o varying from 0 to 5 pixels. In Figures 3 and 4 it can be observed that
the algorithm performs very well in the presence of noise, reaching errors of less than 6% for a noise
level of 5 pixels. Figure 5 shows the effect of the amount of translation. This experiment is aimed
to test the robustness of the pure rotation algorithm with respect to translation. The T/ R ratio was
varied from 0 to 0.5 and the noise level was set to 2 pixels. It can be observed that the algorithm is
not robust with respect to the amount of translation.
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ror in the estimation of A [%]
rror in the estimation of A [%]

; . | | 1 . | 1 | | ; 1 |
0 05 1 15 2 25 3 35 4 45 5 0 05 1 15 2 25 3 35 4 45 5
Noise level [pixels] Noise level [pixels]

Figure 3: Pure rotation algorithm. Rota- Figure 4: Pure rotation algorithm. Rota-
tion axes X-Y. tion axes X-7.

Translation parallel to rotation axis: Figures 6 and 7 show the experiments performed for
our algorithm® when translation is parallel to the axis of rotation.? The non-isotropic normalization
procedure proposed by Hartley [2] and statistically justified by Miihlich and Mester [12] was used to

8Although in this paper we do not outline the algorithm, it should be clear from Section 3.2.
9For specifying the Rotation/Translation axes, we simply use symbols such as “XY-YY-ZZ” which means: for the
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0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
T/R ratio

Figure 5: Rotation axes X-Y, o0 = 2.

estimate the fundamental matrix. Figure 6 shows the effect of noise in the estimation of the calibration
matrix for T/R = 1 and a rotation of § = 20° between consecutive frames. It can be seen that the
normalization procedure improves the estimation of the calibration matrix, but the improvement is
not significant. This result is consistent with that of [12], since the effect of normalization is more
important for large noise levels. On the other hand, the performance of the algorithm is not as good
as that of the pure rotation case, but still an error of 5% is reached for a noise level of 2 pixels. Figure
7 shows the effect of the angle of rotation in the estimation of the calibration matrix for a noise level of
2 pixels. It can be concluded that a minimum angle of rotation between consecutive frames is required
for the algorithm to succeed.

—e—  Without normalization
——  With normalization

the estimation of A [%]
®
T 7

the estimation of A [%]

Ef
Ef

L L L L L L L L L L L L L L
25 3 35 4 45 5 10 1 12 13 14 15 16 17 18 19 20

; i |
05 1 15 2
Noise level [pixels] Amount of rotation [degrees]

Figure 6: Rotation parallel to translation Figure 7: Rotation parallel to translation
case. § = 20°. Rotation/Translation axes: case. o = 2. Rotation/Translation axes:
XX-YY-ZZ, T/R ratio = 1. XX-YY-ZZ, T/R ratio = 1.

Translation perpendicular to rotation axis: Figures 8 and 9 show the experiments performed
for our algorithm when translation is perpendicular to the axis of rotation. It can be observed that
this algorithm is much more sensitive to noise. The noise has to be less than 0.5 pixels in order to
get an error of 5%. Experimentally it was found that Kruppa equations are very sensitive to the

~T
normalization of the fundamental matrix F' and that the eigenvalues Ay and Ay of Fp/ are close
to each other. Therefore in the presence of noise, the estimation of those eigenvalues might be ill
conditioned (even complex eigenvalues are obtained) and so might the solution of Kruppa equations.

first pair of images the relative motion is rotation along X and translation along Y'; for the second pair both rotation
and translation are along Y; and for the third pair both rotation and translation are along 7.
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Another experimental problem is that more than one non-degenerate solution to Kruppa equations

can be found. This is because, when taking all possible combinations of eigenvalues of F}/v\’T in order
to normalize F', the smallest eigenvalue of the linear map associated to “incorrect” Kruppa equations
can be very small. Besides, the eigenvector associated to this eigenvalue can eventually give a non-
degenerate matrix. Thus in the presence of noise, you can not distinguish between the correct and one
of these incorrect solutions. The results presented here correspond to the best match to the ground
truth when more than one solution is found. Finally it is important to note that large motions can
significantly improve the performance of the algorithm. Figure 9 shows the error in the estimation of
the calibration matrix for a rotation of 30°. It can be observed that the results are comparable to that
of the parallel case with a rotation of 20°.

Robustness: We denote the angle between the rotation axis and translation by ¢. The two linear
algorithms we have studied in the above are only supposed to work for the cases ¢ = 0° and ¢ = 90°.
In order to check how robust these algorithms are, we run them anyway for cases when ¢ varies from 0°
to 90°. The noise level is 2 pixels, amount of rotation is always 20° and the 7'/ R ratio is 1. Translation
and rotation axes are given by Figure 10. Surprisingly, as we can see from the results given in Figure
11, for the range 0° < ¢ < 50°, both algorithms give pretty close estimates. Heuristically, this is

~T
because, for this range of angle, the eigenvalues of the matrix F'p’ are complex and numerically their
norm is very close to the norm of the matrix Fp/FT. Therefore, the computed renormalization scale
A from both algorithms is very close, as is the calibration estimate. For ¢ > 50°, the eigenvalues

of F}/;’T become real and the performance of the two algorithms is no longer the same. Near the
conditions under which these algorithms are designed to work, the algorithm for the perpendicular
case 1s apparently more sensitive to the perturbation in the angle ¢ than the one for the parallel case:
As clear from the figure, a variation of 10° degree of ¢ results an increase of error almost 50%. We are
currently conducting experiments on real images and trying to find ways to overcome this difficulty.

ror in the estimation of A [%
the estimation of A [%]

L L L L L L L L L L L L L
25 3 35 4 45 5 0 05 1 15 25 3 35 4 45 5

; i |
0 05 1 15 2 2
Noise level [pixels] Noise level [pixels]

Figure 8: Rotation orthogonal to transla- Figure 9: Rotation orthogonal to transla-
tion case. # = 20°. Rotation/Translation tion case. # = 30°. Rotation/Translation
axes: XY-YZ-ZX, T/R ratio = 1. axes: XY-YZ-ZX, T/R ratio = 1.

5 Conclusions

In this paper, we have revisited the Kruppa equations based approach for camera self-calibration.
Through a detailed study of the cases when the camera rotation axis is parallel or perpendicular
to the translation, we have discovered generic difficulties in the conventional self-calibration schemes
based on directly solving the nonlinear Kruppa equations. Our results not only complete existing
results in the literature regarding the solutions of Kruppa equations but also provide brand new linear
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Figure 10: The relation of the three rota- Figure 11: Estimation error in calibration
tion axes wi,ws,ws and three translations w.r.t. different angle ¢. Noise level o = 2.
P1, P2, P3- Rotation and translation axes are show by

the figure to the left. Rotation amount is
always 20° and T'/ R ratio is 1.

algorithms for self-calibration other than the well-known one for a pure rotating camera. Simulation
results show that, under the given conditions, these linear algorithms provide good estimates of the
camera calibration despite the degeneracy of the Kruppa equations. The performance is close to that
of the pure rotation case.
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