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Abstract

In this paper� we study general questions about the solvability of the Kruppa equations and
show that� in several special cases� the Kruppa equations can be renormalized and become lin�
ear� In particular� for cases when the camera motion is such that its rotation axis is parallel or
perpendicular to translation� we can obtain linear algorithms for self�calibration� A further study
of these cases not only reveals generic di�culties with degeneracy in conventional self�calibration
methods based on the nonlinear Kruppa equations� but also clari�es some incomplete discussion
in the literature about the solutions of the Kruppa equations� We demonstrate that Kruppa
equations do not provide su�cient constraints on camera calibration and give a complete account
of exactly what is missing in Kruppa equations� In particular� a clear relationship between the
Kruppa equations and chirality is revealed� The results then resolve the discrepancy between the
Kruppa equations and the necessary and su�cient condition for a unique calibration� Simula�
tion results are presented for evaluation of the sensitivity and robustness of the proposed linear
algorithms�

Keywords� Camera self�calibration� epipolar geometry� fundamental matrix� Kruppa equations�
renormalization of Kruppa equations� degeneracy of Kruppa equations� chirality�

� Introduction

The problem of camera self�calibration refers to the problem of obtaining intrinsic parameters of a
camera using only information from image measurements� without any a priori knowledge about the
motion between frames and the structure of the observed scene� The original question of determining
whether the image measurements only are su�cient for obtaining intrinsic parameters of a camera was
initially answered in ����� The proposed approach and solution utilize invariant properties of the image
of the so called absolute conic� Since the absolute conic is invariant under Euclidean transformations
�i�e�� its representation is independent of the position of the camera� and depends only on the camera
intrinsic parameters� the recovery of the image of the absolute conic is then equivalent to the recovery
of the camera intrinsic parameter matrix� The constraints on the absolute conic are captured by the
so called Kruppa equations initially discovered by Kruppa in �	�
� In Section 
� we will provide a
much more concise derivation of the Kruppa equations�
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Certain algebraic and numerical approaches for solving the Kruppa equations were �rst discussed
in ����� Some alternative and additional schemes have been explored in ��� ���� Nevertheless� it has
been well�known that� in the presence of noise� these Kruppa equation based approaches are not
guaranteed to provide a good estimate of the camera calibration and many erroneous solutions will
occur ���� Because of this� we decide to revisit the Kruppa equation based approach in this paper�
More speci�cally� we address the following two questions

�� Under what conditions do the Kruppa equations become degenerate or ill�conditioned�

�� When conditions for degeneracy are satis�ed� how do the self�calibration algorithms need to be
modi�ed�

In this paper� we show that the answer to the former question is rather unfortunate for camera motions
such that the rotation axis is parallel or perpendicular to the translation� the Kruppa equations become
degenerate� This explains why conventional approaches to self�calibration based on the �nonlinear�
Kruppa equations often fail� Most practical images are� in fact� taken through motions close to these
two types� The parallel case shows up very frequently in motion of aerial mobile robots such as
an helicopter� The perpendicular case is interesting in robot navigation� where the main rotation
of the on�board camera is yaw and pitch� whose axes are perpendicular to the direction of robot
heading� Nevertheless� in this paper� we take one step further to show that when such motions occur�
the corresponding Kruppa equations can be renormalized and become linear� This fact allows us to
correct �or salvage� classical Kruppa equation based self�calibration algorithms so as to obtain much
more stable linear self�calibration algorithms� other than the pure rotation case known to Hartley ����
Our study also clari�es and completes previous analysis and results in the literature regarding the
solutions of the Kruppa equations ����� This is discussed in Section 
���

Relations to Previous Works� Besides the Kruppa equation based self�calibration approach� al�
ternative methods have also been studied extensively� For example some of them use the so called
absolute quadric constraints �����modulus constraints ��
� and chirality constraints ���� Some
others restrict to special cases such as stationary camera ��� or to time�varying focal�length ��� ���� We
hope that� by a more detailed study of the Kruppa equations� we may gain a better understanding of
the relationships among the various self�calibration methods� This is discussed in Section 
�
�

� Epipolar Geometry Basics

To introduce the notation� we �rst review in this section the well�known epipolar geometry and some
properties of fundamental matrix to aid the derivation and study of Kruppa equations�

The camera motion is represented by �R� p� where R is a rotation matrix as an element in the
special orthogonal group SO�
� and p � R� is a three dimensional vector representing the translation
of the camera� That is� �R� p� represents a rigid body motion as an element in the special Euclidean
group SE�
�� The three dimensional coordinates �with respect to the camera frame� of a generic point
q in the world are related by the following Euclidean transformation

q�t�� � R�t�� t��q�t�� � p�t�� t��� �t�� t� � R� ���

We use the matrix A � R��� to represent the intrinsic parameters of the camera� which we also refer
to as the calibration matrix of the camera� In this paper� without loss of generality� we will assume
det�A� � �� i�e�� A is an element in the special linear group SL�
�� SL�
� is the group consisting of
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 real matrices with determinant equal to �� This choice of A is slightly di�erent from �and more
general than� the traditional choice in the literature� but� mathematically� it is more natural to deal
with� Then the �uncalibrated� image x �on the image plane in R�� of the point q at time t is given
through the following equation

��t�x�t� � Aq�t�� �t � R� ���

where ��t� � R is a scalar encoding the depth of the point q� Note that this model does not
di�erentiate the spherical or perspective projection�

Since we primarily consider the two�view case in this paper� to simplify the notation� we will drop
the time dependency from the motion �R�t�� t��� p�t�� t��� and simply denote it as �R� p�� and also use
x��x� as shorthand for x�t���x�t�� respectively� Also� for a three dimensional vector p � R�� we can
always associate to it a skew symmetric matrix bp � R��� such that p� q � bpq for all q � R���

Then it is well known that the two image points x� and x� must satisfy the so called epipolar
constraint

xT
�
A�TRT bpA��x� � �� �
�

The matrix F � A�TRT bpA�� � R��� is the so called fundamental matrix in Computer Vision
literature� When A � I� the fundamental matrix simply becomes RT bp which is called essential
matrix and plays a very important role in motion recovery ����� The following simple but extremely
useful lemma will allow us to write the fundamental matrix in a more convenient form

Lemma � �The Hat Operator� If p � R� and A � SL�
�� then AT bpA ��A��p�

Proof� Since both ATc���A and �A����� are linear maps from R� to R���� using the fact that det�A� � ��
one may directly verify that these two linear maps are equal on the bases	 ��� 
� 
�T� �
� �� 
�T or �
� 
� ��T �

This simple lemma will be frequently used throughout the paper� By this lemma� we have

F � A�TRT bpA�� � A�TRTATA�T bpA�� � A�TRTAT bp� ���

where p� � Ap � R� is the so called epipole� This equation in fact has a more fundamental inter�
pretation an uncalibrated camera in a calibrated world is mathematically equivalent to a calibrated
camera in an uncalibrated world �for more details see �	��� As we will soon see� the last form of the
fundamental matrix in the above equation is the most useful one for deriving and solving the Kruppa
equations�

� The Kruppa Equations

Without loss of generality� we may assume that both the rotation R and translation p are non�trivial�
i�e�� R �� I and p �� � hence the epipolar constraint �
� is not degenerate and the fundamental matrix
can be estimated� The camera self�calibration problem is then reduced to recovering the symmetric
matrix � � A�TA�� or ��� � AAT from fundamental matrices� It can be shown� even if we have

�In the computer vision literature� such a skew symmetric matrix is also often denoted as p�� But we here use the
notation consistent to robotics and matrix Lie group theory� where bp is used to denote to elements in the Lie algebra
so��� of SO����






chosen A to be an arbitrary element in SL�
�� A can only be recovered up to a rotation� i�e�� as an
element in the quotient space SL�
��SO�
�� for more details see �	�� Note that SL�
��SO�
� is only
a ��dimensional space� From the fundamental matrix� the epipole vector p� can be directly computed
�up to an arbitrary scale� as the null space of F � Given a fundamental matrix F � A�TRTAT bp��
its scale� usually denoted as �� is de�ned as the norm of p�� If � � kp�k � �� such a F is called a
normalized fundamental matrix�� For now� we assume that the fundamental matrix F happens
to be normalized�

Suppose the standard basis of R� is e� � ��� �� ��T � e� � ��� �� ��T � e� � ��� �� ��T � R�� Now pick

any rotation matrix R� � SO�
� such that R�p
� � e�� Using Lemma �� we have bp� � RT

�
be�R�� De�ne

matrix D � R��� to be

D � FRT

�
� A�TRTATRT

�
be� � A�TRTATRT

�
�e���e�� ��� ���

Then D has the form D � ���� ��� �� with ��� �� � R� being the �rst and second column vectors of
D� Hence we have �� � A�TRTATRT

�
e�� �� � A�TRTAT ��RT

�
e��� De�ne vectors ��� �� � R� as

�� � �RT

�
e�� �� � RT

�
e�� then it is direct to check that ��� satis�es

�T
�
����� � �T

�
������ �T

�
����� � �T

�
������ �T

�
����� � �T

�
������ ���

We thus obtain three homogeneous constraints on the matrix ���� the inverse �dual� of the matrix
�conic� �� These constraints can be used to compute ��� hence ��

The above derivation is based on the assumption that the fundamental matrix F is normalized�
i�e�� kp�k � �� However� since the epipolar constraint is homogeneous in the fundamental matrix F �
it can only be determined up to an arbitrary scale� Suppose � is the length of the vector p� � R� in
F � A�TRTAT bp�� Consequently� the vectors �� and �� are also scaled by the same �� Then the ratio
between the left and right hand side quantities in each equation of ��� is equal to ��� This gives two
equations on ���� the so called Kruppa equations �after its initial discovery by Kruppa in �	�
�

�� �
�T
�
�����

�T
�
�����

�
�T
�
�����

�T
�
�����

�
�T
�
�����

�T
�
�����

� ���

Alternative means of obtaining the Kruppa equations are by utilizing algebraic relationships between
projective geometric quantities ���� or via SVD characterization of F �
�� Here we obtain the same
equations from a quite di�erent approach� Equation ��� further reveals the geometric meaning of the
Kruppa ratio �� it is the square of the length of the vector p� in the fundamental matrix F � This
discovery turns out to be quite useful when we later discuss the renormalization of Kruppa equations�
In general� each fundamental matrix provides at most two algebraic constraints on ���� if the two
equations in ��� happen to be independent� Since the symmetric matrix � has �ve degrees of freedom�
in general at least three fundamental matrices are needed to uniquely determine �� Nevertheless� as
we will soon see� this is not the case for many special camera motions�

Comments � One must be aware that solving Kruppa equations for camera calibration is not equivalent to
the camera self�calibration problem in the sense that there may exist solutions of Kruppa equations which are
not solutions of a �valid� self�calibration� Given a non�critical set of camera motions� the associated Kruppa
equations do not necessarily give enough constraints to solve for the calibration matrix A� See Section ��� for
a complete account�

�Here k � k represents the standard ��norm�
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The above derivation of Kruppa equations is straightforward� but the expression ��� depends on a
particular rotation matrix R� that one chooses � note that the choice of R� is not unique� However�
there is an even simpler way to get an equivalent expression for the Kruppa equations in a matrix
form� Given a normalized fundamental matrix F � A�TRTAT bp�� it is then straightforward to check
that ��� � AAT must satisfy the following equation

F T���F � bp�T���bp�� ���

We call this equation the normalized matrix Kruppa equation� It is readily seen that this equation
is equivalent to ���� If F is not normalized and is scaled by � � R� i�e�� F � �A�TRTAT bp��� we then
have the matrix Kruppa equation

F T���F � ��bp�T���bp�� �	�

This equation is equivalent to the scalar version given by ��� and is independent of the choice of the
rotation matrix R�� In fact� the matrix form reveals that the nature of Kruppa equations is nothing
but inner product invariants of the group ASO�
�A�� �for more details see �	���

��� Solving Kruppa Equations

Algebraic properties of Kruppa equations have been extensively studied �see e�g� ���� ����� However�
conditions on dependency among Kruppa equations obtained from the fundamental matrix have not
been fully discovered� Therefore it is hard to tell in practice whether a given set of Kruppa equations
su�ce to guarantee a unique solution for calibration� As we will soon see in this section� for very
rich classes of camera motions which commonly occur in many practical applications� the Kruppa
equations will become degenerate� Moreover� since the Kruppa equations ��� or �	� are highly nonlinear
in ���� most self�calibration algorithms based on directly solving these equations su�er from being
computationally expensive or having multiple local minima ��� ��� These reasons have motivated us
to study the geometric nature of Kruppa equations in order to gain a better understanding of the
di�culties commonly encountered in camera self�calibration� Our attempt to resolve these di�culties
will lead to simpli�ed algorithms for self�calibration� These algorithms are linear and better conditioned
for these special classes of camera motions�

Given a fundamental matrix F � A�TRTAT bp� with p� of unit length� the normalized matrix Kruppa
equation ��� can be rewritten in the following waybp�T ���� �ARA�����A�TRTAT �bp� � �� ����

According to this form� if we de�ne C � A�TRTAT � a linear �Lyapunov� map �  R��� � R��� as

�  X �� X � CTXC� and a linear map �  R��� � R��� as �  Y �� bp�TY bp�� then the solution ��� of
equation ���� is exactly the �symmetric real� kernel of the composition map

� � �  R���
�
�� R���

�
�� R���� ����

This interpretation of Kruppa equations clearly decomposes e�ects of the rotational and translational
parts of the motion if there is no translation i�e�� p � �� then there is no map � � if the translation
is non�zero� the kernel is enlarged due to the composition with map � � In general� the symmetric real
kernel of the composition map � � � is 
 dimensional � while the kernel of � is only � dimensional
�see �	��� The solutions for the unnormalized Kruppa are much more complicated due to the unknown
scale �� However� we have the following lemma to simplify things a little bit�

�Without loss of generality� from now on� we always assume kp�k � ��
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Lemma � Given a fundamental matrix F � A�TRTAT bp� with p� � Ap� a real symmetric matrix

X � R��� is a solution of F TXF � ��bp�TXbp� if and only if Y � A��XA�T is a solution of ETY E �
��bpTY bp with E � RT bp�
Using Lemma �� the proof of this lemma is simply algebraic� This simple lemma� however� states a

very important fact given a set of fundamental matrices Fi � A�TRT

i
AT bp�

i
with p�

i
� Api� i � �� � � � � n�

there is a one�to�one correspondence between the set of solutions of the equations

F T

i
XFi � ��

i
bp�
i

T

X bp�
i
� i � �� � � � � n� ����

and the set of solutions of the equations

ET

i
Y Ei � ��

i
bpT
i
Y bpi� i � �� � � � � n ��
�

where Ei � RT

i
bpi are essential matrices associated to the given fundamental matrices� Note that these

essential matrices are determined only by the camera motion� Therefore� the conditions of uniqueness
of the solution of Kruppa equations only depend on the camera motion� Our next task is then to study
how the solutions of Kruppa equations depend on the camera motion�

��� Renormalization and Degeneracy of Kruppa Equations

From the derivation of the Kruppa equations ��� or �	�� we observe that the reason why they are
nonlinear is that we do not usually know the scale �� It is then helpful to know under what conditions
the matrix Kruppa equation will have the same solutions as the normalized one� i�e�� with � set to ��
Here we will study two special cases for which we are able to know directly what the missing � is� The
fundamental matrix can then be renormalized and we can therefore solve the camera calibration from
the normalized matrix Kruppa equations� which are linear� These two cases are when the rotation axis
is parallel or perpendicular to the translation� That is� if the motion is represented by �R� p� � SE�
�
and the unit vector u � R� is the axis of R�� then the two cases are when u is parallel or perpendicular
to p� As we will soon see� these two cases are of great theoretical importance Not only does the
calibration algorithm become linear� but it also reveals certain subtleties of the Kruppa equations and
explains when the nonlinear Kruppa equations are most likely to become ill�conditioned�

Lemma � Consider a camera motion �R� p� � SE�
� where R � ebu�� 	 � ��� 
� and the axis u � R�

is parallel or perpendicular to p� If � � R and positive de�nite matrix Y are a solution to the matrix
Kruppa equation� bpTRY RT bp � ��bpTY bp associated to the essential matrix RT bp� then we must have
�� � �� Consequently� Y is a solution of the normalized matrix Kruppa equation� bpTRY RT bp � bpTY bp�
Proof� Without loss of generality we assume kpk � �� For the parallel case� let x � R� be a vector of unit
length in the plane spanned by the column vectors of bp� All such x lie on a unit circle� There exists x� � R

�

on the circle such that xT
�
Y x� is maximum� We then have xT

�
RY RTx� � ��xT

�
Y x�� hence �

� � �� Similarly�
if we pick x� such that xT

�
Y x� is minimum� we have �� � �� Therefore� �� � �� For the perpendicular case�

since the columns of bp span the subspace which is perpendicular to the vector p� the eigenvector u of R is
in this subspace� Thus we have	 uTRY RTu � ��uTY u � uTY u � ��uTY u� Hence �� � � if Y is positive
de�nite�

Combining Lemma 
 and Lemma �� we immediately have

�R can always be written of the form R � ebu� for some � � 	
� �� and u �S��
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Theorem � �Renormalization of Kruppa Equations� Consider an unnormalized fundamental ma�

trix F � A�TRTAT bp� where R � ebu�� 	 � ��� 
� and the axis u � R� is parallel or perpendicular to
p � A��p�� Let e � p��kp�k� Then if � � R and a positive de�nite matrix � are a solution to the
matrix Kruppa equation� F T���F � ��beT���be� we must have �� � kp�k��

This theorem claims that� for the two types of special motions considered here� there is no solution
for � in the Kruppa equation �	� besides the true scale of the fundamental matrix� Hence we can
decompose the problem into �nding � �rst and then solving for � or ���� The following theorem
allows to directly compute the scale � for a given fundamental matrix

Theorem � �Renormalization of Fundamental Matrix� Given an unnormalized fundamental ma�

trix F � �A�TRTAT bp� with kp�k � �� if p � A��p� is parallel to the axis of R� then �� is kF bp�F Tk�

and if p is perpendicular to the axis of R� then � is one of the two non�zero eigenvalues of F bp�T �
Proof� Note that� since bp�bp�

T

is a projection matrix to the plane spanned by the column vectors of bp��

we have the identity bp�bp�
T
bp� � bp�� First we prove the parallel case� It is straightforward to check that� in

general� F bp�FT � ���ARTp� Since the axis of R is parallel to p� we have RTp � p so that F bp�FT � ��bp��
For the perpendicular case� let u � R� be the axis of R� By assumption p � A��p� is perpendicular to u�

Then there exists v � R� such that u � bpA��v� Then it is direct to check that bp�v is the eigenvector of F bp�
T

corresponding to the eigenvalue ��

Then for these two types of special motions� the associated fundamental matrix can be immediately
normalized by being divided by the scale �� Once the fundamental matrices are normalized� the
problem of �nding the calibration matrix ��� from normalized matrix Kruppa equations ��� becomes a
simple linear one� A normalized matrix Kruppa equation in general imposes three linearly independent
constraints on the unknown calibration matrix given by ���� However� this is no longer the case for
the special motions that we are considering here�

Theorem � �Degeneracy of Kruppa Equations� Consider a camera motion �R� p� � SE�
� where
R � ebu� has the angle 	 � ��� 
�� If the axis u � R� is parallel or perpendicular to p� then the normal�
ized matrix Kruppa equation� bpTRY RT bp � bpTY bp imposes only two linearly independent constraints on
the symmetric matrix Y �

Proof� For the parallel case� by restricting Y to the plane spanned by the column vectors of bp� it is a
symmetric matrix �Y in R���� The rotation matrix R � SO��� restricted to this plane is a rotation �R � SO���

The normalized matrix Kruppa equation is then equivalent to �Y � �R �Y �RT � 
� Since 
 � � � �� this equation
imposes exactly two constraints on the three dimensional space of � real symmetric matrices� The identity
I��� is the only solution� Hence the normalized Kruppa equation imposes exactly two linearly independent
constraints on Y �

For the perpendicular case� since u is in the plane spanned by the column vectors of bp� there exist v � R�

such that �u� v� form an orthonormal basis of the plane� Then the normalized matrix Kruppa equation is
equivalent to	

bpTRY RT
bp � bpTY bp � �u� v�TRY RT �u� v� � �u� v�TY �u� v�� ����

Since RTu � u� the above matrix equation is equivalent to two equations vTRY u � vTY u� vTRY RT v � vTY v�
These are the only two constraints given by the normalized Kruppa equation�

According to this theorem� although we can renormalize the fundamental matrix when rotation
axis and translation are parallel or perpendicular� we only get two independent constraints from the
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resulting �normalized� Kruppa equation corresponding to a single fundamental matrix� Hence for these
motions� in general� we still need three such fundamental matrices to uniquely determine the unknown
calibration� On the other hand� if we do not renormalize the fundamental matrix in these cases
and directly use the unnormalized Kruppa equations ��� to solve for calibration� the two nonlinear
equations in ��� are in fact algebraically dependent� Therefore� one can only get one constraint� as
opposed to the expected two� on the unknown calibration ���� This is summarized in Table ��

Table � Dependency of Kruppa equation on angle � � ��� 
� between the rotation and translation�

Cases Type of Constraints � of Constraints on ���

Unnormalized Kruppa Equation ��� �� �� and �� �� �

�
�

Normalized Kruppa Equation 

Unnormalized Kruppa Equation ��� � �� or �� � �

�
�

Normalized Kruppa Equation �

Although� mathematically� motion involving translation either parallel or perpendicular to the
rotation is only a zero�measure subset of SE�
�� they are very commonly encountered in applica�
tions Many images sequences are usually taken by moving the camera around an object in trajectory
composed of orbital motions� in which case the rotation axis and translation direction are likely per�
pendicular to each other� Another example is a so called screw motion� whose rotation axis and
translation are parallel� Such a motion shows up frequently in aerial mobile motion� Our analysis
shows that� for these types of motions� even if the su�cient conditions for a unique calibration are
satis�ed� a self�calibration algorithm based on directly solving the Kruppa equations ��� is likely to
be ill�conditioned ���� To intuitively demonstrate the practical signi�cance of our results� we give an
example in Figure �� Our analysis reveals that in these cases� it is crucial to renormalize the Kruppa
equation using Theorem 
 once the fundamental matrix or Kruppa equations are renormalized� not
only is one more constraint recovered� but we also obtain linear �normalized Kruppa� equations�

3

21

Figure � Two consecutive orbital motions with independent rotations even if pairwise fundamental
matrices among the three views are considered� one only gets at most ����� � � e�ective constraints
on the camera intrinsic matrix if the three matrix Kruppa equations are not renormalized� After
renormalization� however� we may get back to � � � � � � � constraints�
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Comments � �Special Motion Sequences� Interestingly� the case that the yaw and pitch whose axes
are perpendicular to the direction of heading can often be found in vision�guided navigation systems� on�board
planar mobile robots� The screw motion� on the other hand� shows up very frequently in motion of aerial
mobile robots such as an autonomous helicopter� The orbital motion shown in Figure � most likely shows up
in photographs taken by hand held camera� All these motions fall in the two special categories which cause
degeneracy in Kruppa equations�

Comments � �Solutions of the Normalized Kruppa Equations� Claims of Theorem � run con�
trary to the claims of Propositions B�� hence B�� in 	�
�� In Proposition B�� of 	�
�� it is claimed that the
solution space of the normalized Kruppa equations when the translation is parallel or perpendicular to the
rotation axis is two or three dimensional� In Theorem �� we claim that the solution space is always four
dimensional� Theorem � does not cover the case when the rotation angle � is �� However� if one allows the
rotation to be �� the solutions of normalized Kruppa equations are even more complicated� For example� we
know ebu�bp � �bp if u is of unit length and parallel to p see 	���� Therefore� if R � ebu�� the corresponding
normalized Kruppa equation is completely degenerate and imposes no constraints at all on the calibration
matrix�

Comments � �Number of Solutions� Although Theorem � claims that for the perpendicular case � is

one of the two non�zero eigenvalues of F bp�
T

� unfortunately� there is no way to tell which one is the right one
� simulations show that it could be either the larger or smaller one� Therefore� in a numerical algorithm� for
given n � � fundamental matrices� one needs to consider all possible n combinations� According to Theorem
�� in the noise�free case� only one of the solutions can be positive de�nite� which corresponds to the the true
calibration�

��� Kruppa Equations and Chirality

It can be shown that if the scene is rich enough �with to come�� then the necessary and su�cient
condition for a unique camera calibration �see �	�� says that two general motions with rotation around
di�erent axes already determine a unique Euclidean solution for camera motion� calibration and scene
structure� However� the two Kruppa equations obtained from these two motions will only give us at
most four constraints on �� which is not enough to determine � which has �ve degrees of freedom�
We hence need to know what information is missing from the Kruppa equation� State alternatively�
can we get extra independent constraints on � from the fundamental matrix other than the Kruppa
equation�

The proof of Theorem � suggests another equation can be derived from the fundamental matrix

F � �A�TRTAT bp� with kp�k � �� Since F bp�F T � ���ARTp� we can obtain the vector  � ��ARTp �
��ARTA��p�� Then it is obvious that the following equation for � � A�TA�� holds

T� � ��p�
T
�p�� ����

Notice that this is a constraint on �� not like the Kruppa equations which are constraints on ����
Combining the Kruppa equations given in ��� with ���� we have

�� �
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�
�����
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�
�����
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�
�����
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�
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Is the last equation algebraically independent of the two Kruppa equations� Although it seems to be
quite di�erent from the Kruppa equations� it is in fact dependent on them� This can be shown either

	



numerically or using simple algebraic tools such as Maple� Thus� it appears that our e�ort to look for
extra independent� explicit constraints on A from the fundamental matrix has failed�� In the following�
we will give an explanation to this by showing that not all � which satisfy the Kruppa equations
may give valid Euclidean reconstructions of both the camera motion and scene structure� The extra
constraints which are missing in Kruppa equations are in fact captured by the so called chirality
constraint� which was previously studied in ���� We now give a clear and concise description between
the relationship of the Kruppa equations and chirality�

Theorem � �Kruppa Equations and Chirality� Consider a camera with calibration matrix I and
motion �R� p�� If p �� �� among all the solutions Y � A��A�T of the Kruppa equation ETY E � ��bpTY bp
associated to E � RT bp� only those which guarantee ARA�� � SO�
� may provide a valid Euclidean
reconstruction of both camera motion and scene structure in the sense that any other solution pushes
some plane N 	 R� to the plane at in�nity� and feature points on di�erent sides of the plane N have
di�erent signs of recovered depth�

Proof� The images x��x� of any point q � R� satisfy the coordinate transformation	

��x� � ��Rx� � p�

If there exists Y � A��A�T such that ETY E � ��bpTY bp for some � � R� then the matrix F � A�TEA�� �

A�TRTAT bp� is also an essential matrix with p� � Ap� that is� there exists �R � SO��� such that F � �RT bp�

�see ��
� for an account of properties of essential matrices�� Under the new calibration A� the coordinate
transformation is in fact	

��Ax� � ��ARA
���Ax�� � p��

Since F � �RT
bp� � A�TRTAT

bp�� we have ARA�� � �R � p�vT for some v � R�� Then the above equation
becomes	 ��Ax� � �� �R�Ax�����p

�vT �Ax���p�� Let � � ��v
T �Ax�� � R� we can further rewrite the equation

as	

��Ax� � �� �RAx� � �� � ��p�� ����

Nevertheless� with respect to the solution A� the reconstructed images Ax�� Ax� and � �R� p�� must also satisfy	

��Ax� � �� �RAx� � p� ����

for some scale factors ��� �� � R� Now we prove by contradiction that v �� 
 is impossible for a valid Euclidean
reconstruction� Suppose that v �� 
 and we de�ne the plane N � fq � R�jvTq � ��g� Then for any
q � ��Ax� � N � we have � � ��� Hence� from ����� Ax�� Ax� satisfy ��Ax� � �� �RAx�� Since Ax�� Ax� also
satisfy ���� and p� �� 
� both �� and �� in ���� must be 	� That is� the plane N is �pushed� to the plane at
in�nity by the solution A� For points not on the plane N � we have � � � �� 
� Comparing the two equations
���� and ����� we get �i � �i������� i � �� � Then for a point in the far side of the plane N � i�e�� ��� � 
�
the recovered depth scale � is negative� for a point in the near side of N � i�e�� � � � 	 
� the recovered depth
scale � is positive� Thus� we must have that v � 
�

Comments � �Quasi�a	ne Reconstruction� Theorem � essentially implies the chirality constraints
studied in 	��� According to the above theorem� if only �nitely many feature points are measured� a solution
of the calibration matrix A which may allow a valid Euclidean reconstruction should induce a plane N not
cutting through the convex hull spanned by all the feature points and camera centers� Such a reconstruction is
referred as quasi�a�ne in 	���

�Nevertheless� extra implicit constraints on A may still be obtained from other algebraic facts� For example� the so
called modulus constraints give three implicit constraints on A by introducing three extra unknowns� for more details
see 	����

��



It is known that� in general� all A�s which make ARA�� a rotation matrix form a one parameter
family �	�� Thus� following Theorem �� a camera calibration can be uniquely determined by two
independent rotations regardless of translation if enough feature points are available� An intuitive
example is provided in Figure ��

C3
L3

L2

L1

C1
C2

Ν

q

(R2, p2)

(R1, p1)

Figure � A camera undergoes two motions �R�� p�� and �R�� p�� observing a rig consisting of three
straight lines L�� L�� L�� Then the camera calibration is uniquely determined as long as R� and R�

have independent rotation axes and rotation angles in ��� 
�� regardless of p�� p�� This is because� for
any invalid solution A� the associated plane N �see the proof of Theorem �� must intersect the three
lines at some point� say q� Then the reconstructed depth of point q with respect to the solution A
would be in�nite �points beyond the plane N would have negative recovered depth�� This gives us a
criteria to exclude all such invalid solutions�

The signi�cance of Theorem � is that it explains why we get only two constraints from one funda�
mental matrix even in the two special cases when the Kruppa equations can be renormalized � extra
ones are imposed by the structure� not the motion� The theorem also resolves the discrepancy between
the Kruppa equations and the necessary and su�cient condition for a unique calibration the Kruppa
equations� although convenient to use� do not provide su�cient conditions for a valid calibration which
allows a valid Euclidean reconstruction of both the camera motion and scene structure� However� the
fact given in Theorem � is somewhat di�cult to harness in algorithms� For example� in order to
exclude invalid solutions� one needs feature points on or beyond the plane N �� Alternatively� if such
feature points are not available� one may �rst obtain a projective reconstruction and then use the
so called absolute quadric constraints to calibrate the camera ����� However� in such a method� the
camera motion needs to satisfy a stronger condition than requiring only two independent rotations�
i�e�� it cannot be critical in the sense speci�ed in �����

� Simulation Results

In this section� we test the performance of the proposed algorithms through di�erent experiments�
The error measure between the actual calibration matrix A and the estimated calibration matrix
�A was chosen to be error � kA� �Ak

kAk � ���� Table � shows the simulation parameters used in the

experiments�� The calibration matrix A is simply the transformation from the original � � � �in unit

�Some possible ways of harnessing the constraints provided by chirality have been discussed in 	��� Basically they
give inequality constraints on the possible solutions of the calibration�

�u�f�l� stands for unit of focal length�

��



Table � Simulation parameters

Parameter Unit Value

Number of trials ���
Number of points ��
Number of frames 
��
Field of view degrees 	�
Depth variation u�f�l� ��� � ���
Image size pixels ��� � ���

of focal length� image to the ��� � ��� pixel image� For these parameters� the true A should be

A �

�� ��� � ���
� ��� ���
� � �

�A� The ratio of the magnitude of translation and rotation� or simply the T�R

ratio� is compared at the center of the random cloud �scattered in the truncated pyramid speci�ed by
the given �eld of view and depth variation�� For all simulations� the number of trials is ����

Pure rotation case� For comparison� we here also implement the linear algorithm proposed by
Hartley ��� for calibrating a pure rotating camera� Figures 
� � and � show the experiments performed
in the pure rotation case� The axes of rotation are X and Y for Figures 
 and �� and X and Z for
Figure �� The amount of rotation is ��o� The perfect data was corrupted with zero�mean Gaussian
noise with standard deviation � varying from � to � pixels� In Figures 
 and � it can be observed that
the algorithm performs very well in the presence of noise� reaching errors of less than �� for a noise
level of � pixels� Figure � shows the e�ect of the amount of translation� This experiment is aimed
to test the robustness of the pure rotation algorithm with respect to translation� The T�R ratio was
varied from � to ��� and the noise level was set to � pixels� It can be observed that the algorithm is
not robust with respect to the amount of translation�
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Figure 
 Pure rotation algorithm� Rota�
tion axes X�Y �
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Figure � Pure rotation algorithm� Rota�
tion axes X�Z�

Translation parallel to rotation axis� Figures � and � show the experiments performed for
our algorithm	 when translation is parallel to the axis of rotation�
 The non�isotropic normalization
procedure proposed by Hartley ��� and statistically justi�ed by M�uhlich and Mester ���� was used to

�Although in this paper we do not outline the algorithm� it should be clear from Section ����
�For specifying the RotationTranslation axes� we simply use symbols such as �XY �Y Y �ZZ� which means� for the

��
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Figure � Rotation axes X�Y � � � ��

estimate the fundamental matrix� Figure � shows the e�ect of noise in the estimation of the calibration
matrix for T�R � � and a rotation of 	 � ��o between consecutive frames� It can be seen that the
normalization procedure improves the estimation of the calibration matrix� but the improvement is
not signi�cant� This result is consistent with that of ����� since the e�ect of normalization is more
important for large noise levels� On the other hand� the performance of the algorithm is not as good
as that of the pure rotation case� but still an error of �� is reached for a noise level of � pixels� Figure
� shows the e�ect of the angle of rotation in the estimation of the calibration matrix for a noise level of
� pixels� It can be concluded that a minimum angle of rotation between consecutive frames is required
for the algorithm to succeed�
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Figure � Rotation parallel to translation
case� 	 � ��o� Rotation Translation axes
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Figure � Rotation parallel to translation
case� � � �� Rotation Translation axes
XX�Y Y �ZZ� T�R ratio � ��

Translation perpendicular to rotation axis� Figures � and 	 show the experiments performed
for our algorithm when translation is perpendicular to the axis of rotation� It can be observed that
this algorithm is much more sensitive to noise� The noise has to be less than ��� pixels in order to
get an error of ��� Experimentally it was found that Kruppa equations are very sensitive to the

normalization of the fundamental matrix F and that the eigenvalues �� and �� of F bp�T are close
to each other� Therefore in the presence of noise� the estimation of those eigenvalues might be ill
conditioned �even complex eigenvalues are obtained� and so might the solution of Kruppa equations�

�rst pair of images the relative motion is rotation along X and translation along Y � for the second pair both rotation
and translation are along Y � and for the third pair both rotation and translation are along Z�

�




Another experimental problem is that more than one non�degenerate solution to Kruppa equations

can be found� This is because� when taking all possible combinations of eigenvalues of F bp�T in order
to normalize F � the smallest eigenvalue of the linear map associated to !incorrect" Kruppa equations
can be very small� Besides� the eigenvector associated to this eigenvalue can eventually give a non�
degenerate matrix� Thus in the presence of noise� you can not distinguish between the correct and one
of these incorrect solutions� The results presented here correspond to the best match to the ground
truth when more than one solution is found� Finally it is important to note that large motions can
signi�cantly improve the performance of the algorithm� Figure 	 shows the error in the estimation of
the calibration matrix for a rotation of 
�o� It can be observed that the results are comparable to that
of the parallel case with a rotation of ��o�

Robustness� We denote the angle between the rotation axis and translation by �� The two linear
algorithms we have studied in the above are only supposed to work for the cases � � �o and � � 	�o�
In order to check how robust these algorithms are� we run them anyway for cases when � varies from �o

to 	�o� The noise level is � pixels� amount of rotation is always ��o and the T�R ratio is �� Translation
and rotation axes are given by Figure ��� Surprisingly� as we can see from the results given in Figure
��� for the range �o 
 � 
 ��o� both algorithms give pretty close estimates� Heuristically� this is

because� for this range of angle� the eigenvalues of the matrix F bp�T are complex and numerically their
norm is very close to the norm of the matrix F bp�F T � Therefore� the computed renormalization scale
� from both algorithms is very close� as is the calibration estimate� For � � ��o� the eigenvalues

of F bp�T become real and the performance of the two algorithms is no longer the same� Near the
conditions under which these algorithms are designed to work� the algorithm for the perpendicular
case is apparently more sensitive to the perturbation in the angle � than the one for the parallel case
As clear from the �gure� a variation of ��o degree of � results an increase of error almost ���� We are
currently conducting experiments on real images and trying to �nd ways to overcome this di�culty�
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Figure � Rotation orthogonal to transla�
tion case� 	 � ��o� Rotation Translation
axes XY �Y Z�ZX� T�R ratio � ��
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Figure 	 Rotation orthogonal to transla�
tion case� 	 � 
�o� Rotation Translation
axes XY �Y Z�ZX� T�R ratio � ��

� Conclusions

In this paper� we have revisited the Kruppa equations based approach for camera self�calibration�
Through a detailed study of the cases when the camera rotation axis is parallel or perpendicular
to the translation� we have discovered generic di�culties in the conventional self�calibration schemes
based on directly solving the nonlinear Kruppa equations� Our results not only complete existing
results in the literature regarding the solutions of Kruppa equations but also provide brand new linear
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Figure �� The relation of the three rota�
tion axes ��� ��� �� and three translations
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Figure �� Estimation error in calibration
w�r�t� di�erent angle �� Noise level � � ��
Rotation and translation axes are show by
the �gure to the left� Rotation amount is
always ��o and T�R ratio is ��

algorithms for self�calibration other than the well�known one for a pure rotating camera� Simulation
results show that� under the given conditions� these linear algorithms provide good estimates of the
camera calibration despite the degeneracy of the Kruppa equations� The performance is close to that
of the pure rotation case�
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