
3D Pose Regression using Convolutional Neural Networks

Siddharth Mahendran
siddharthm@jhu.edu

Haider Ali
hali@jhu.edu

René Vidal
rvidal@cis.jhu.edu

Center for Imaging Science, Johns Hopkins University

Abstract

3D pose estimation is a key component of many im-
portant computer vision tasks such as autonomous navi-
gation and 3D scene understanding. Most state-of-the-art
approaches to 3D pose estimation solve this problem as a
pose-classification problem in which the pose space is dis-
cretized into bins and a CNN classifier is used to predict a
pose bin. We argue that the 3D pose space is continuous
and propose to solve the pose estimation problem in a CNN
regression framework with a suitable representation, data
augmentation and loss function that captures the geometry
of the pose space. Experiments on PASCAL3D+ show that
the proposed 3D pose regression approach achieves com-
petitive performance compared to the state-of-the-art.

1. Introduction
A 2D image is a snapshot of the 3D world and retriev-

ing 3D information from images is an old and fundamental
challenge in computer vision. One way to describe the un-
derlying 3D scene is to report the 3D pose of all the objects
present in the scene. This task is known as 3D pose estima-
tion and it is a key component of vision problems such as
scene understanding and 3D reconstruction. It also plays a
vital role in modern vision challenges such as autonomous
navigation, where the ability to quickly and reliably recover
the 3D pose of other automobiles, pedestrians and objects
relative to the camera is very important.

The term 3D pose refers to the transformation between
the object and the camera and is often captured using 6 pa-
rameters: azimuth az, elevation el, camera-tilt ct, distance
to the camera d and image translation (px, py). In this work
however, we are not interested in the full 6-dof pose, but
in the rotation transformation R between the object and the
camera, which is captured by the first three parameters, i.e.
R(az, el, ct). Note that we also make a distinction between
the tasks of 3D pose estimation and 2D detection. We as-
sume that we have the output of a 2D detection system or an
oracle that gives us a bounding box around the object in an
image. We then process the image patch inside the bound-

ing box to predict the rotationR. We do this by using a deep
convolutional neural network (CNN) that regresses the 3D
pose given this 2D image patch.

Related Work There is a rich literature on 3D pose estima-
tion from a single image, from the earlier work of [16] to
the more recent work of [14, 8]. Due to space constraints,
we concentrate our review on CNN-based methods, which
can be grouped into two categories. Methods in the first cat-
egory, such as [21] and [13], predict 2D keypoints from an
image and then use 3D object models to predict the 3D pose
given these keypoints. Methods in the second category, such
as Viewpoints and Keypoints (V&K)[20] and Render-for-
CNN [17], which are closer to what we do, predict 3D pose
directly given an image. Both of these methods discretize
the pose space into bins and solve a pose classification prob-
lem. They have a similar network architecture, which is
shared across object categories up to the second-last layer
and a separate output layer for every category. While
V&K [20] uses a standard cross-entropy loss for classifica-
tion, Render-for-CNN [17] uses a weighted cross-entropy
loss that respects the circular symmetry of angles. While
V&K [20] uses jittered bounding boxes with sufficient over-
lap to augmented annotated training data, Render-for-CNN
[17] uses rendered images with a well-sampled distribution
over pose space, random crops, and backgrounds. Another
method in the second category is [7], which studies multi-
view CNN models for joint object categorization and pose
estimation, and their models also solve for pose labels.

Contributions In this work, we argue that since the 3D
pose space is continuous, the pose estimation problem can
be solved in a regression framework rather than breaking
up the pose space into discrete bins. The challenge is that
the 3D pose space is non-Euclidean, hence CNN algorithms
need to be modified to account for the nonlinear structure of
the output space. Our key contribution is to develop a CNN
regression framework for solving the 3D pose estimation
problem in the continuous domain by designing a suitable
representation, data augmentation and loss function that re-
spect the non-linear structure of the 3D pose space.

More specifically, we use a modified VGG network ar-
chitecture that consists of a feature network that is shared

1

V&K [20] Render-for-CNN [17] Ours
Problem formulation Classification Fine-grained classification Regression

Representation Discretized angles (21 bins) Discretized angles (360 bins) Axis-angle / Quaternion
Loss function Cross-entropy Weighted cross-entropy Geodesic loss

Data augmentation 2D jittering Rendered images 3D pose jittering + rendered images
Network architecture VGG-Net (FC7) AlexNet (FC7) VGG-M (FC6)

Table 1: A comparison of the state-of-the-art methods and our proposed framework

between all object categories and a pose network that is
specific to each category. The pose network models 3D
pose using an appropriate representation, non-linearity and
loss function. We study two representations in particular,
axis-angle and quaternions, and model their constraints us-
ing non-linearities in the output layer. Our loss function is a
geodesic distance on the space of rotation matrices. We also
propose a data augmentation technique that is more suitable
for regression compared to jittering. We also present exper-
iments on the Pascal3D+ dataset together with an ablation
analysis of our various design choices, which show compet-
itive performance with respect to state-of-the-art methods.
We present a comparison of our proposed framework with
current state-of-the-art methods in Table 1.

To the best of our knowledge, our work is the first one
that does 3D object pose regression using CNNs with axis-
angle/quaternion representations and geodesic loss func-
tions, and shows good performance on a challenging dataset
like Pascal3D+ [22]. We also note that 3D pose regression
is commonly used in human pose estimation, to regress the
joint locations of the human skeleton. Quaternions have
also been used to represent 3D pose for camera localiza-
tion in [11, 10, 9], but these works ignore the unit-norm
constraint for computational ease and use a mean-squared
or reprojection loss, whereas we incorporate the constraint
into the network and use a geodesic loss.

2. 3D Pose Regression using CNNs

In this section, we describe our regression framework in
detail. We first describe the two representations of 3D ro-
tation matrices we use: axis-angle and quaternions, and the
corresponding non-linear activations and loss functions. We
then describe our network architecture. Finally, we present
our proposed data augmentation strategy.

2.1. Representing 3D Rotations

Any rotation matrix R lies in the set of special or-
thogonal matrices SO(3)

.
= {R : R ∈ R3×3, RTR =

I3,det(R) = 1}. We can then define a geodesic distance
between two rotation matrices, R1 and R2 as shown in
Eqn. (1), where log is the matrix logarithm and ‖ · ‖F is
the Frobenius norm. This is also the loss function we use in

our networks, simplified depending on the representation.

d(R1, R2) =
‖ log(R1R

T
2)‖F√

2
. (1)

Axis-angle A rotation matrix R captures the rotation of
3D points by an angle θ about an axis v, ‖v‖2 = 1. This
can be expressed as R = exp(θ[v]×), where exp is the
matrix exponential and [v]× is the skew-symmetric oper-

ator of vector v, i.e, [v]× =

 0 −v3 v2
v3 0 −v1
−v2 v1 0

 for

v = [v1, v2, v3]T . So, every rotation matrix R has a cor-
responding axis-angle vector y = θv and vice-versa. We
also restrict θ ∈ [0, π) and define R = I3 ⇔ y = 03, which
ensures a unique mapping between rotation matrix R and
it’s representation y. The matrix exponential can be sim-
plified to R = I3 + sin θ[v]× + (1 − cos θ)[v]2× using the
Rodrigues’ rotation formula. In the same way, Eqn. (1) can
be simplified to get:

dA(R1, R2) = cos−1
[
tr(RT1 R2)− 1

2

]
. (2)

Note that ‖ log
(

exp(θ1[v1]×) exp(θ2[v2]×)T
)
‖F /
√

2
looks very similar to ‖θ1v1 − θ2v2‖2, but it is not
the same because exp(θ1[v1]×) exp(θ2[v2]×)T 6=
exp(θ1[v1]×− θ2[v2]×) in general. The equality holds only
when the matrices [v1]× and [v2]× commute i.e. v1 = ±v2.

Quaternion Another popular representation for 3D rota-
tion matrices are quaternions. Given an axis-angle vec-
tor y = θv, the corresponding quaternion q = (c, s) is
given by (cos θ2 , sin

θ
2v)T . By construction, quaternions are

unit-norm, ‖q‖2 = 1. Using quaternion algebra, we have
(c1, s1).(c2, s2) = (c1c2 − 〈s1, s2〉, c1s2 + c2s1 + s1 × s2)
and (c, s)−1 = (c,−s) for unit norm q = (c, s). Now,
expressing Eqn. (1) in terms of quaternions q1 and q2, we
have:

d(q1, q2) = 2 cos−1(|c|) where (c, s) = q−11 · q2 (3)

which we simplify to get:

dQ(q1, q2) = 2 cos−1(|〈q1, q2〉|). (4)

2.2. Network Architecture

The proposed network is a modification of the VGG-
M network [4] and has two parts, a feature network and
a pose network, as illustrated in Fig. 1. The feature net-
work takes as input an Image I , and outputs the feature
descriptor of the image, ΦF (I;WF), where WF are the
weights associated with the feature network. Our feature
network is identical to the VGG-M upto layer FC6 and is
initialized using pre-trained weights, learned by [4] for the
ImageNet classification task [6]. The pose network takes
the object category label c and the output of the feature
network ΦF (I;WF) as input and predicts the object pose
y = ΦP (ΦF (I;WF);W c

P), where W c
P denote the weights

of the pose network associated with object category label c.
It has 3 fully connected layers with associated activations
and batch normalization as outlined in Fig. 2. The fea-
ture network is shared across all object categories but each
category has its own pose network. Note that this is sim-
ilar to [20, 17] except that we branch out at FC6 whereas
they branch at FC7. Also, note that we use pose here inter-
changeably with rotation as there is a one-to-one correspon-
dence (discussed in §2.1) between pose: axis-angle vector y
or quaternion q, and rotation R.

Figure 1: Overall network architecture which takes image
I and object category label c as input and predicts object
pose y. The feature network ΦF (I;WF) is shared across
all object categories, while each category has its own pose
network ΦP (ΦF ;W c

P).

In
pu

tD
at

a:
40

96
-D

FC
:4

0
9
6
×

4
0
9
6

B
at

ch
N

or
m

R
eL

U

FC
:4

0
9
6
×

5
0
0

B
at

ch
N

or
m

R
eL

U

FC
:5

0
0
×

3

π
ta
n
h

Figure 2: Pose Network for the axis-angle representation

For the axis-angle representation, the output of the pose
network is θv and we model the constraints θ ∈ [0, π) and
vi ∈ [−1, 1] using a π tanh non-linearity. An additional
advantage of modeling pose in the continuous domain is
that we can now use the more appropriate geodesic loss in-
stead of the cross entropy loss for pose-classification or the
mean squared error for standard regression. We optimize

the geodesic error between the ground-truth rotation R and
the estimated rotation R̂, given by L = dA(R, R̂) from
Eqn. (2). For the quaternion representation, the output of
the network is now 4-dimensional and the unit-norm con-
straint is enforced by choosing the non-linearity as L2 nor-
malization. The corresponding loss functionL = dQ(R, R̂)
is obtained from Eqn. (4).

2.3. Data Augmentation by 3D Pose Jittering

We assume that each image is annotated with a 3D rota-
tion R(az, el, ct) = RZ(ct)RX(el)RZ(az), where RZ and
RX denote rotations around the z- and x-axis respectively.
Jittered bounding boxes (bounding boxes with translational
shifts that have sufficient overlap with the original box),
like in V&K [20], introduce small unknown changes in the
corresponding R. Instead, we augment our data by gen-
erating new samples corresponding to known small shifts
in camera-tilt and azimuth. We call this new augmenta-
tion strategy 3D pose jittering (see Fig. 3). Small shifts in
camera-tilt lead to in-plane rotations, which are easily cap-
tured by rotating the image. Small shifts in azimuth lead
to out-of-plane rotations, which are captured by homogra-
phies estimated from 2D projections of 3D point clouds
corresponding to the object. We project the 3D points
at ground-truth pose and perturbed pose to get 2D corre-
spondences, which are then used to estimate the homogra-
phy. We generate a dense grid of samples corresponding to
R(az ± δaz, el, ct ± δct). We also flip all samples, which
corresponds to R(−az, el,−ct).

(a) original (b) δct : +4◦ (c) δct : −4◦

(d) flipped (e) δaz : +2◦ (f) δaz : −2◦

Figure 3: Augmented training samples from a car image

Along with these augmented images, we also use ren-
dered images provided publicly by Render-for-CNN [17] 1

to supplement our training data. We present an analysis in
§3.4 which shows that using these rendered images is im-
portant to reduce the problem of “un-seen” and “under-seen
views”.

1https://shapenet.cs.stanford.edu/media/syn images cropped bkg overlaid.tar

Expt. aero bike boat bottle bus car chair dtable mbike sofa train tv Mean
V&K [20] 13.80 17.70 21.30 12.90 5.80 9.10 14.80 15.20 14.70 13.70 8.70 15.40 13.59

Render [17] 15.40 14.80 25.60 9.30 3.60 6.00 9.70 10.80 16.70 9.50 6.10 12.60 11.67
Ours (axis-angle) 13.97 21.07 35.52 8.99 4.08 7.56 21.18 17.74 17.87 12.70 8.22 15.68 15.38
Ours (quaternion) 14.53 22.55 35.78 9.29 4.28 8.06 19.11 30.62 18.80 13.22 7.32 16.01 16.63

Table 2: A comparison of our framework with two state-of-the-art methods for the axis-angle and quaternion representations.
We report the median geodesic angle error (lower is better). Best result in bold and second best in red (best seen in color).

3. Results and Discussion
In this section, we first discuss the dataset we use (§3.1)

and how we train our network (§3.2). In §3.3, we present
an experimental evaluation of our framework using image
patches inside ground-truth bounding box annotations of
un-occluded and un-truncated objects in an image (same
protocol as V&K [20] - table 1 and Render-for-CNN [17]
- table 2). In §3.4, we provide an analysis of various deci-
sion choices we make, like: (i) depth of feature network, (ii)
choice of feature network, (iii) choice of optimization strat-
egy, (iv) using rendered images for data augmentation, and
(v) finetuning the network. Finally, in §3.5 we report per-
formance using detected bounding boxes returned by Faster
R-CNN [15] under various metrics.

3.1. Dataset

For our experiments, we use the Pascal 3D+ dataset (re-
lease 1.1) [22], which has 3D pose annotations for 12 com-
mon categories of interest: aeroplane (aero), bicycle (bike),
boat, bottle, bus, car, chair, diningtable (dtable), motorbike
(mbike), sofa, train, and tvmonitor (tv). The annotations are
available for both VOC 2012 [1] and ImageNet [6] images.
We use ImageNet data for training, Pascal-train images as
validation data and evaluate our models on Pascal-val im-
ages. For every training image, we generate roughly 162
augmented samples with shifts in the camera-tilt (from−4◦

to +4◦ in steps of 1◦: x9), shifts in azimuth (from −2◦ to
+2◦ in steps of 0.5◦: x9) and flips (x2).

3.2. Training the Network

We train our network in two steps: (i) we train the pose
network for every object category (keeping the feature net-
work fixed) using augmented ImageNet trainval images as
training data and Pascal-train images as validation data, and
(ii) use this as the initialization to fine-tune the overall net-
work with all object categories in an end-to-end manner
using Pascal-train and ImageNet-trainval images with only
flipped augmentation as our training data. While training
the pose networks, we first minimize the mean squared er-
ror (MSE) for 10 epochs and then minimize the geodesic
viewpoint error (GVE) for 10 epochs. Our loss is non-linear
with many local minima and minimizing the MSE allows us
to initialize the weights for the GVE minimization problem.

We use the Adam optimizer with a learning rate schedule of
10−3/(1 + epoch). Our code was written in Keras [5] with
TensorFlow [2] backend.

3.3. Experimental Evaluation

As mentioned earlier, we use ground-truth bounding
boxes of un-occluded and un-truncated objects in an image
to evaluate our framework. As in V&K, we compute the
geodesic angle between the ground-truth rotation and esti-
mated rotation d(R1, R2) =

‖ log(R1R
T
2)‖F√

2
and present the

median angle error (in degrees). We report the mean across
three trials of the experiment corresponding to training the
network from three different random initializations.

As can be seen in Table 2, we show competitive perfor-
mance compared to V&K and Render-for-CNN, getting the
lowest error for 1 category and second lowest error for 6 cat-
egories. We are able to do this in spite of solving a harder
problem, of estimating 3D pose in the continuous domain.

3.4. Ablative Analysis

In this section, we present five experiments that provide
insight into various design choices for our framework. Ex-
periments (i)-(iv) report results after training only the pose
networks (with the feature network fixed). Experiment (v)
discusses the effects of finetuning the overall network.

(i) Depth of Feature Network: FC6 vs FC7 vs POOL5
Our feature network is identical to the VGG-M network
and uses the output at the FC6 layer as input to the pose
networks. This is different from V&K and Render-for-
CNN which use the output at the FC7 layer of their fea-
ture networks. The rationale for using fewer layers is that
a deeper network captures more invariances. This is be-
cause the VGG-M network is trained for classification of
ImageNet Images, hence it is designed to be invariant to the
object pose, which is a nuisance factor for the classification
task. The question, however, is which layers of the network
learn this invariance? The first few layers learn low-level
features like edge detectors and simple shapes and deeper
layers learn more complicated shapes. Similarly, we spec-
ulate that invariances like translation, color and scale are
captured in the the convolutional layers, while pose invari-
ances are learnt in the FC layers. Hence, features at FC7
are more invariant to pose compared to features at FC6 and

POOL5. This is also borne out by the results in rows 5-7
of Table 5 and Fig. 4 where we see that the pose estimation
error is less for networks trained with FC6 features com-
pared to FC7 features for all categories except diningtable.
This is consistent with the behaviour observed in [7] and
[3]. Even though POOL5 results are slightly better than
FC6, we branch at FC6 due to significant increase in com-
putation for marginal increase in performance (POOL5 fea-
tures are 18432 dimensional compared to 4096 dimensional
FC6 features).

Figure 4: Median angle error for pose-networks trained with
features extracted from the FC6, FC7 and POOL5 layers of
the VGG-M network (axis-angle representation)

(ii) Type of Feature Network: VGG-M vs VGG16 An-
other decision choice is the use of the VGG-M network as
our base-network. One could exhaustively search over all
possible choices of pre-trained networks to decide which
network is best suited for pose estimation. We chose not
to do so, but compare the VGG-M and VGG16 networks
which are two versions of the VGG architecture. We ob-
serve, in rows 8-9 of Table 5 and Fig. 5, that the VGG-M
network performs better than the VGG16 network. At the
same time, we observe that pose estimation performance
is not significantly affected by the choice of the feature net-
work. Interestingly, augmenting training data with rendered
images (explained later) worsens the performance of the
VGG16 network (see rows 12 and 16 of Table 5) whereas it
improves the performance of the VGG-M network.

(iii) Optimization Strategy: MSE vs GVE vs Ours As
mentioned earlier, we minimize the MSE for 10 epochs and
then minimize the GVE for 10 epochs. We do this to avoid
the problem of local optima for the non-linear loss func-
tion and representation we use. We now show a compar-
ison of what would happen if we just minimize the MSE
for 20 epochs or the GVE for 20 epochs. As can be seen
from Fig. 6 and Rows 8-11 of Table 5, minimizing only the
GVE leads us to bad local minima. However, initializing the
GVE minimization with the result of the MSE minimization
leads to significantly better performance. This phenomenon

Figure 5: Median angle error under the VGG-M and
VGG16 feature networks (axis-angle representation)

has also been observed in prior work on minimizing the
geodesic distance in SO(3) [19].

Figure 6: Median angle error under the different optimiza-
tion strategies (axis-angle representation)

(iv) Data Augmentation using Rendered Images The
number of images used for training, validation and testing
are shown in Table 3. For training, the number of aug-
mented samples used is roughly 162 times the number of
images in the training set. We dig a little deeper into the
viewpoint distribution to check if there are images in the
training data that are ‘close’ to the images present in the
testing data. This is done using two metrics:

Cost1:
1

|DTest|
∑

i∈DTest

min
j∈DTrain

d(θi, θj), and (5)

Cost2:
1

|DTest|
∑

i∈DTest

∑
j∈DTrain

[d(θi, θj) < ε] . (6)

Cost1 measures how close the nearest training sample is, in
pose space, to each test sample. Cost2 on the other hand,
measures how many training samples lie in an ε neighbour-
hood of each training sample. DTrain is the set of all orig-
inal and flipped training images and DTest is the set of all
testing images. As can be seen by comparing Table 4 and

row 3 of Table 5, we do well for categories that have many
training examples in the ε neighbourhood of a test image,
like bottle, bus, car and train, and don’t do well for cate-
gories like bicycle, chair and motorbike that have few train-
ing examples in the ε neighbourhood. This is another way
of saying that we do well for categories whose pose space is
well sampled and worse for categories whose pose space is
undersampled. Note that because we augment training im-
ages with small perturbations, the number of actual training
samples close to a test sample will roughly be a multiple
(∼ 162) of the entries in column 3 of Table 4.

Pascal3D+
Category Train Val Test
aeroplane 1765 242 244

bicycle 794 108 112
boat 1979 177 163

bottle 1303 201 177
bus 1024 149 144
car 5287 294 262

chair 967 161 180
diningtable 737 26 17
motorbike 634 119 127

sofa 601 38 37
train 1016 100 105

tvmonitor 1195 167 191

Table 3: Number of images in Pascal3D+

Category Cost1 Cost2(ε = 0.1) Cost2(+Rendered)
aeroplane 0.047 23.12 1008.74

bicycle 0.051 11.18 950.622
boat 0.023 58.74 1801.09

bottle 0.024 272.14 7733.42
bus 0.011 168.19 6468.37
car 0.012 217.21 3363.99

chair 0.061 16.07 1124.23
diningtable 0.026 39.71 2319.48
motorbike 0.059 9.55 2319.48

sofa 0.083 40.31 1733.97
train 0.068 213.84 5639.89

tvmonitor 0.029 74.15 3135.37

Table 4: Viewpoint distribution under our two metrics

One way to increase the number of training examples and
reduce this discrepancy of unseen poses is to use rendered
images with known poses that sample the pose space in a
more uniform manner. We use the rendered data made avail-
able by Render-for-CNN [17]. As can be seen in Figs. 7
and 8, and rows 10-12 of Table 5, adding this rendered
data helps reduce the errors significantly for categories like
chair and sofa. This is observed for both the axis-angle and

quaternion representations. Column 4 in Table 4 shows the
updated Cost2 after including rendered images in DTrain.
Note that these numbers indicate neighbours in pose space
and include images of varying sub-categories and appear-
ances. Also, note that training purely on rendered images
(row 14 of Table 5) is worse than training on augmented
data and training with both augmented and rendered data
jointly gives best results.

Figure 7: Median angle error under the axis-angle represen-
tation using rendered data

Figure 8: Median angle error under the quaternion repre-
sentation using rendered data

(v) Finetuning the Joint Network As mentioned earlier,
we train our network in a two-step procedure. We first train
all pose networks with a fixed feature network and we then
finetune the entire network. The finetuning step updates the
pre-trained feature network for the task of pose regression.
We minimize the geodesic viewpoint error for 30 epochs
using the Adam optimizer with original and flipped images
of ImageNet trainval and Pascal train images. We use a
weighted loss inversely proportional to the number of im-
ages per object category. For the axis-angle representation,
we used a learning rate of 10−5 and find an improvement
of ∼ 3◦ in the median angle error averaged across all ob-
ject categories, comparing rows 16 and 20 of Table 5 and
Fig 9. For the quaternion representation, the optimization

converges at a lower learning rate of 10−6, but doesn’t show
a significant improvement after finetuning, comparing rows
17 and 21 of Table 5 and Fig. 10.

Figure 9: Median angle error under the axis-angle represen-
tation after fine-tuning the network

Figure 10: Median angle error under the quaternion repre-
sentation after fine-tuning the network

3.5. Using Detected bounding boxes

The results presented so far have been obtained with
ground-truth bounding boxes for un-occluded and un-
truncated objects. We now present results on detected
bounding boxes. We run the Faster R-CNN [15] detec-
tion code to get bounding boxes for test images and then
run our trained models on the patches extracted from these
bounding boxes to get a corresponding pose. For every
ground-truth bounding box (with annotated 3D pose), we
find the detected box with the largest intersection-over-
union overlap and compute the median angle error between
the ground-truth pose and the estimated pose. As can be
seen from Fig. 11 and Table 6, we lose performance slightly
∼ 2◦ in going from ground-truth bounding boxes to de-
tected bounding boxes. We also compare the performance
of our method with V&K [20] under the ARPθ metric
which requires sufficient overlap (intersection over union
> 0.5) between detected and ground-truth bounding box

Figure 11: Median angle error under the axis-angle repre-
sentation with ground-truth and detected bounding boxes

as well closeness between ground-truth and predicted 3D
pose, ∆(Rgt, Rpred) < θ. For this experiment, we use the
detections provided publicly by V&K 2 for a direct compar-
ison. We compare our performance with V&K under the
ARPπ/6 metric in Table 7 and as can be seen, we perform
slightly worse in all object categories. We also compare un-
der the AVP metric, which requires predicted azimuth az
to be close to the ground-truth azimuth, in Table 8. We per-
form slightly worse than Render-for-CNN and clearly worse
than V&K under this metric. However, we are at a disad-
vantage here, because the other methods train networks that
return azimuth labels directly for this experiment, whereas
we still predict a continuous 3D pose, recover the azimuth
angle from predicted rotation matrix and then bin it to get
predicted azimuth label. Effectively, we’re solving a much
harder problem but still get comparable results.

4. Conclusion

We have proposed a regression framework to estimate
3D object pose given a 2D image. We use axis-angle and
quaternions to represent the 3D pose output by the CNN
and minimize a geodesic loss function during training. We
show competitive performance with current state-of-the-art
methods and provide an analysis of different parts of our
framework.

Acknowledgments This research was supported by NSF
grant 1527340. The research project was conducted us-
ing computational resources at the Maryland Advanced Re-
search Computing Center (MARCC). This work also used
the Extreme Science and Engineering Discovery Environ-
ment (XSEDE) [18], which is supported by National Sci-
ence Foundation grant number OCI-1053575. Specifically,
it used the Bridges system [12], which is supported by NSF
award number ACI-1445606, at the Pittsburgh Supercom-
puting Center (PSC).

2http://www.cs.berkeley.edu/ shubhtuls/cachedir/vpsKps/VOC2012 val det.mat

Expt. aero bike boat bottle bus car chair dtable mbike sofa train tv Mean
1 [20] 13.80 17.70 21.30 12.90 5.80 9.10 14.80 15.20 14.70 13.70 8.70 15.40 13.59
2 [17] 15.40 14.80 25.60 9.30 3.60 6.00 9.70 10.80 16.70 9.50 6.10 12.60 11.67
3 axis-angle 16.24 26.81 46.35 8.47 4.15 8.76 32.90 26.71 22.20 28.91 6.36 17.85 20.48
4 quaternion 16.35 22.99 42.71 8.85 4.15 7.93 32.74 29.70 20.55 25.29 6.73 18.20 19.68
5 fc6 16.24 26.81 46.35 8.47 4.15 8.76 32.90 26.71 22.20 28.91 6.36 17.85 20.48
6 fc7 21.45 28.75 51.13 9.26 5.19 12.42 47.00 19.34 28.50 39.49 7.34 19.47 24.11
7 pool5 16.30 24.85 46.46 9.93 3.72 8.56 32.68 18.91 19.81 25.33 5.59 18.57 19.23
8 mse(10)+gve(10) 16.24 26.81 46.35 8.47 4.15 8.76 32.90 26.71 22.20 28.91 6.36 17.85 20.48
9 mse(20) 17.24 26.42 52.12 9.33 5.79 12.44 35.12 29.02 23.08 27.85 6.48 17.84 21.89

10 gve(20) 53.16 66.32 80.85 46.14 42.33 43.40 67.75 46.73 51.37 50.02 44.72 47.63 53.37
11 vggm 16.24 26.81 46.35 8.47 4.15 8.76 32.90 26.71 22.20 28.91 6.36 17.85 20.48
12 vgg16 18.76 26.62 50.07 9.69 4.81 11.97 40.62 22.55 22.20 29.56 7.81 18.71 21.95
13 augmented 16.24 26.81 46.35 8.47 4.15 8.76 32.90 26.71 22.20 28.91 6.36 17.85 20.48
14 rendered 27.31 24.83 53.25 12.97 10.15 13.84 26.76 33.47 27.19 14.21 13.38 19.58 23.08
15 both 15.56 22.98 40.29 9.09 4.92 8.06 22.21 34.88 22.13 14.09 7.88 16.67 18.23
16 row3 + render 15.56 22.98 40.29 9.09 4.92 8.06 22.21 34.88 22.13 14.09 7.88 16.67 18.23
17 row4 + render 16.35 22.70 36.41 8.77 4.42 8.24 20.53 27.73 19.96 11.53 7.14 16.89 16.72
18 row6 + render 19.43 29.76 49.25 9.37 5.85 10.89 35.14 30.06 26.69 20.06 8.82 17.44 21.90
19 row12 + render 19.65 27.61 49.26 9.85 4.89 12.13 46.66 30.76 23.12 36.80 8.71 19.72 24.10
20 row16 + finetune 13.97 21.07 35.52 8.99 4.08 7.56 21.18 17.74 17.87 12.70 8.22 15.68 15.38
21 row17 + finetune 14.53 22.55 35.78 9.29 4.28 8.06 19.11 30.62 18.80 13.22 7.32 16.01 16.63
22 row14 + finetune 16.00 21.29 39.26 9.85 3.98 7.82 22.19 22.90 18.87 12.18 7.27 16.76 16.53

Table 5: Median angle error under various experiments with ground-truth bounding boxes. Lower is better.

Expt. aero bike boat bottle bus car chair dtable mbike sofa train tv Mean
augmented 18.59 26.43 56.47 9.13 4.31 10.05 41.83 27.00 22.19 27.60 7.06 19.23 22.49
+rendered 17.38 23.32 54.11 10.10 5.22 9.39 25.45 21.98 20.88 18.13 8.27 17.78 19.33
+finetuned 14.71 21.31 45.07 9.47 4.20 8.93 26.36 20.70 19.16 18.80 8.72 15.65 17.76

Table 6: Median angle error under various experiments with detected bounding boxes and axis-angle representation.

Expt aero bike boat bottle bus car chair dtable mbike sofa train tv Mean
[20] 64.0 53.2 21.0 - 69.3 55.1 24.6 16.9 54.0 42.5 59.4 51.2 46.5
Ours 61.95 49.07 20.02 35.18 66.24 49.89 19.78 15.36 49.38 40.92 56.68 49.87 42.86

Table 7: Comparision under the ARP metric for the results of the axis-angle + rendered + finetuned model. Higher is better.

Expt aero bike boat bottle bus car chair dtable mbike sofa train tv Mean
[20]-4V 63.1 59.4 23 - 69.8 55.2 25.1 24.3 61.1 43.8 59.4 55.4 49.1
[20]-8V 57.5 54.8 18.9 - 59.4 51.5 24.7 20.4 59.5 43.7 53.3 45.6 44.5

[20]-16V 46.6 42 12.7 - 64.6 42.8 20.8 18.5 38.8 33.5 42.4 32.9 36.0
[20]-24V 37.0 33.4 10.0 - 54.1 40.0 17.5 19.9 34.3 28.9 43.9 22.7 31.1
[17]-4V 54.0 50.5 15.1 - 57.1 41.8 15.7 18.6 50.8 28.4 46.1 58.2 39.7
[17]-8V 44.5 41.1 10.1 - 48.0 36.6 13.7 15.1 39.9 26.8 39.1 46.5 32.9

[17]-16V 27.5 25.8 6.5 - 45.8 29.7 8.5 12.0 31.4 17.7 29.7 31.4 24.2
[17]-24V 21.5 22.0 4.1 - 38.6 25.5 7.4 11.0 24.4 15.0 28.0 19.8 19.8
Ours-4V 52.43 50.80 19.74 35.66 61.24 46.82 20.85 20.31 50.60 42.01 53.42 53.11 42.25
Ours-8V 42.98 37.96 13.18 34.61 41.59 38.66 16.13 12.55 37.94 33.19 43.00 40.43 32.68
Ours-16V 29.90 24.37 7.73 32.06 38.75 29.23 12.18 10.32 25.62 24.82 29.50 25.16 24.14
Ours-24V 21.71 14.21 5.62 29.44 29.16 25.15 9.16 6.98 18.94 15.47 26.38 17.97 18.35

Table 8: Comparision under the AVP metric for the results of the axis-angle + rendered + finetuned model. Higher is better.
4/8/16/24V refers to number of azimuth bins.

References

[1] The PASCAL Object Recognition Database Col-
lection. http://www.pascal-network.org/
challenges/VOC/databases.html.

[2] TensorFlow: Large-scale machine learning on hetero-
geneous systems, 2015. Software available from ten-
sorflow.org.

[3] A. Bakry, M. Elhoseiny, T. El-Gaaly, and A. Elgam-
mal. Digging deep into the layers of cnns: In search
of how cnns achieve view invariance. In International
Conference on Learning Representations, 2016.

[4] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zis-
serman. Return of the devil in the details: Delving
deep into convolutional nets. In British Machine Vi-
sion Conference, 2014.

[5] F. Chollet. Keras. https://github.com/
fchollet/keras, 2015.

[6] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and
L. Fei-fei. Imagenet: A large-scale hierarchical image
database. In IEEE Conference on Computer Vision
and Pattern Recognition, 2009.

[7] M. Elhoseiny, T. El-Gaaly, A. Bakry, and A. Elgam-
mal. A comparative analysis and study of multiview
CNN models for joint object categorization and pose
estimation. In International Conference on Machine
learning, 2016.

[8] M. Hejrati and D. Ramanan. Analysis by synthe-
sis: 3D object recognition by object reconstruction.
In IEEE Conference on Computer Vision and Pattern
Recognition, 2014.

[9] A. Kendall and R. Cipolla. Modelling uncertainty in
deep learning for camera relocalization. In IEEE In-
ternational Conference on Robotics and Automation,
2016.

[10] A. Kendall and R. Cipolla. Geometric loss func-
tions for camera pose regression with deep learning.
In IEEE Conference on Computer Vision and Pattern
Recognition, 2017.

[11] A. Kendall, M. Grimes, and R. Cipolla. Posenet: A
convolutional network for real-time 6-dof camera re-
localization. In IEEE International Conference on
Computer Vision, 2015.

[12] N. A. Nystrom, M. J. Levine, R. Z. Roskies, and J. R.
Scott. Bridges: A uniquely flexible hpc resource for
new communities and data analytics. In Proceed-
ings of the 2015 XSEDE Conference: Scientific Ad-
vancements Enabled by Enhanced Cyberinfrastruc-
ture, XSEDE ’15, pages 30:1–30:8, New York, NY,
USA, 2015. ACM.

[13] G. Pavlakos, X. Zhou, A. Chan, K. G. Derpanis, and
K. Daniilidis. 6-dof object pose from semantic key-
points. In IEEE International Conference on Robotics
and Automation, 2017.

[14] B. Pepik, M. Stark, P. Gehler, and B. Schiele. Teach-
ing 3D geometry to deformable part models. In IEEE
Conference on Computer Vision and Pattern Recogni-
tion, 2012.

[15] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-
CNN: Towards real-time object detection with region
proposal networks. arXiv preprint arXiv:1506.01497,
2015.

[16] H. Schneiderman and T. Kanade. A statistical ap-
proach to 3D object detection applied to faces and
cars. In IEEE Conference on Computer Vision and
Pattern Recognition, 2000.

[17] H. Su, C. R. Qi, Y. Li, and L. J. Guibas. Render for
CNN: Viewpoint estimation in images using CNNs
trained with rendered 3D model views. In IEEE In-
ternational Conference on Computer Vision, 2015.

[18] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither,
A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka,
G. D. Peterson, R. Roskies, J. R. Scott, and
N. Wilkins-Diehr. XSEDE: Accelerating scientific
discovery. Computing in Science & Engineering,
16(5):62–74, 2014.

[19] R. Tron and R. Vidal. Distributed image-based 3-D
localization in camera sensor networks. In IEEE Con-
ference on Decision and Control, 2009.

[20] S. Tulsiani and J. Malik. Viewpoints and keypoints.
In IEEE Conference on Computer Vision and Pattern
Recognition, 2015.

[21] J. Wu, T. Xue, J. J. Lim, Y. Tian, J. B. Tenenbaum,
A. Torralba, and W. T. Freeman. Single Image 3D In-
terpreter Network. In European Conference on Com-
puter Vision, pages 365–382, 2016.

[22] Y. Xiang, R. Mottaghi, and S. Savarese. Beyond PAS-
CAL: A benchmark for 3D object detection in the
wild. In IEEE Winter Conference on Applications of
Computer Vision, 2014.

http://www.pascal-network.org/challenges/VOC/databases.html
http://www.pascal-network.org/challenges/VOC/databases.html
https://github.com/fchollet/keras
https://github.com/fchollet/keras

