1832

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 10, OCTOBER 2010

Motion Segmentation in the Presence of
Outlying, Incomplete, or Corrupted Trajectories

Shankar Rao, Member, IEEE, Roberto Tron, Student Member, IEEE,
René Vidal, Member, IEEE, and Yi Ma, Senior Member, IEEE

Abstract—In this paper, we study the problem of segmenting tracked feature point trajectories of multiple moving objects in an image
sequence. Using the affine camera model, this problem can be cast as the problem of segmenting samples drawn from multiple linear
subspaces. In practice, due to limitations of the tracker, occlusions, and the presence of nonrigid objects in the scene, the obtained
motion trajectories may contain grossly mistracked features, missing entries, or corrupted entries. In this paper, we develop a robust
subspace separation scheme that deals with these practical issues in a unified mathematical framework. Our methods draw strong
connections between lossy compression, rank minimization, and sparse representation. We test our methods extensively on the
Hopkins155 motion segmentation database and other motion sequences with outliers and missing data. We compare the performance
of our methods to state-of-the-art motion segmentation methods based on expectation-maximization and spectral clustering. For data
without outliers or missing information, the results of our methods are on par with the state-of-the-art results and, in many cases,
exceed them. In addition, our methods give surprisingly good performance in the presence of the three types of pathological
trajectories mentioned above. All code and results are publicly available at http://perception.csl.uiuc.edu/coding/motion/.

Index Terms—Motion segmentation, subspace separation, lossy compression, incomplete data, error correction, sparse

representation, matrix rank minimization.

1 INTRODUCTION

fundamental problem in computer vision is to infer

structures and movements of 3D objects from a video
sequence. While classical multiple-view geometry typically
deals with the situation where the scene is static, recently
there has been growing interest in the analysis of dynamic
scenes. Such scenes often contain multiple motions as there
could be multiple objects moving independently in a scene,
in addition to the motion of the camera. Thus, an important
initial step in the analysis of video sequences is the motion
segmentation problem. That is, given a set of feature points
that are tracked through a sequence of video frames, one
seeks to cluster the trajectories of those points according to
the different motions these trajectories belong to.

In the literature, many different camera models have
been proposed and studied, such as orthographic, para-
perspective, affine, and perspective. Among these, the
affine camera model (which includes orthographic and

paraperspective) is arguably the most popular, due largely

e S. Rao is with HRL Laboratories, LLC, 3011 Malibu Canyon Rd., Malibu,
CA 90265. E-mail: srrao@hrl.com.

e R.Tronand R. Vidal are with the Center for Imaging Science, Department of
Biomedical Engineering, Johns Hopkins University, 301B Clark Hall, 3400
N. Charles St., Baltimore, MD 21218. E-mail: {tron, rvidal }@cis.jhu.edu.

e Y. Ma is with the Electrical and Computer Engineering Department,
University of Illinois at Urbana-Champaign, Coordinated Science
Laboratory, 1308 W. Main St., Urbana, IL 61801 and with Microsoft
Research Asia, 5/F, Beijing Sigma Center, No. 49, Zhichun Road, Hai Dian
District, Beijing, China 100190. E-mail: yima@illinois.edu.

Manuscript received 3 Dec. 2008; revised 30 May 2009; accepted 3 Sept. 2009;
published online 18 Nov. 2009.

Recommended for acceptance by |. Kosecka.

For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number
TPAMI-2008-12-0832.

Digital Object Identifier no. 10.1109/TPAMI.2009.191.

0162-8828/10/$26.00 © 2010 IEEE

to its generality and simplicity. Thus, in this paper, we
assume the affine camera model and show how to develop
a more robust solution to the motion segmentation problem.

1.1 Basic Formulation of Motion Segmentation
Under the affine camera model, a feature point in 3D space
(X,Y,Z) € R?is related to its projection on the image plane
(z,y) € R? by

100 0
KOlOO[gTI] 7 (1)
000 1

—
< R
[EE—
Il

— N e

AcR>*

where A is the affine motion matrix, parameterized by the
camera calibration matrix K € IR*** and the relative orienta-
tion of the image plane with respect to the world
coordinates (R,t) € SE(3).

Suppose we are given trajectories of P tracked feature
points of a rigid object {(zy,, yf,,)}];.ill“:]; from F' 2D image
frames taken by a moving camera. The linear constraints in
(1) can be combined for multiple points across multiple
frames so that the tracked feature points are related to their

3D coordinates {(X,,Y), Zp)}f:1 by the matrix equation:

i X2 zip
X X
Yir - Y12 Yop Ay ! P
Y Yp
N Zi - Zp |’
T T T A (2)
F1 F2 FP F 1 ... 1
—
1 1 2F x4
LYF1 YF2 Yrp | AcR Xl P
YERZFXP
Y = AX

)

Published by the IEEE Computer Society

RAO ET AL.: MOTION SEGMENTATION IN THE PRESENCE OF OUTLYING, INCOMPLETE, OR CORRUPTED TRAJECTORIES

where A; is the affine motion matrix at frame f. From this
formulation, we see that

rank(Y) = rank(AX) < min(rank (4), rank(X)) <4. (3)

Thus, the affine camera model postulates that trajectories of
feature points from a single rigid motion will all lie in a
linear subspace of IR*”" of dimension at most four.

A dynamic scene can contain multiple moving objects, in
which case the affine camera model for a single rigid
motion cannot be directly applied. Now let us assume that
the given P trajectories correspond to N moving objects. In
this case, the set of all trajectories will lie in a union of
N linear subspaces in IR*" (see, for instance, [27] for details),
but we do not know which trajectories belong to which
subspace. Thus, the problem of assigning each trajectory to
its corresponding motion reduces to the problem of
segmenting data drawn from multiple subspaces, which
we refer to as subspace separation.

Problem 1 (Motion segmentation via subspace separa-
tion). Given a set of trajectories of P feature points Y =
[Y1,Yss -, yp] € R*P from N rigidly moving objects in a
dynamic scene, find a permutation I" of the columns of the data
matrix Y:

YT = [Y1,Ys,...,Yy] (4)

such that the columns of each submatrix Y,, n=1,..., N, are
trajectories of a single motion.

1.2 Related Work on Motion Segmentation

In the literature, there are many approaches to motion
segmentation that can roughly be grouped into three
categories: factorization-based, algebraic, and statistical.

Factorization-based approaches [5], [12], [16], [17] at-
tempt to directly factor Y according to (4). To make such
approaches tractable, the motions must be independent of
one another, i.e., the motion subspaces intersect only at the
origin. However, for most dynamic scenes with a moving
camera or containing articulated objects, the motions are at
least partially dependent on each other. This has motivated
the development of algorithms designed to deal with
dependent motions.

Algebraic methods such as Generalized Principal Com-
ponent Analysis (GPCA) [26] are designed as generic
subspace separation algorithms that do not place any
restriction on the relative orientations of the motion
subspaces. For instance, they allow the subspaces to
intersect into lower dimensional subspaces, and hence,
they can deal with partially dependent motions. In
principle, algebraic methods such as GPCA can be extended
to deal with missing data [27] and outliers [32]. However,
its complexity grows exponentially with respect to both the
dimension of the ambient space and the number of motions
in the scene, and so is not scalable in practice.

The statistical methods come in many flavors. Many
formulate motion segmentation as a statistical clustering
problem that is tackled with Expectation-Maximization (EM)
or variations of it [14], [18], [23]. As such, they are iterative
methods that require good initialization, and can potentially
get stuck in suboptimal local minima. Other statistical
methods use local information around each trajectory to
create a pairwise similarity matrix that can then be
segmented using spectral clustering techniques [10], [31], [33].

1833

1.3 Robustness Issue

Many of the above approaches assume that all trajectories
are good, with perhaps a moderate amount of noise.
However, real motion data acquired by a tracker can be
much more complicated:

I. A trajectory may correspond to certain nonrigid or
random motions that do not obey the affine camera
model (an outlying trajectory).

2. Some of the features may be missing in some frames,
causing a trajectory to have some missing entries (an
incomplete trajectory).

3. Even worse, some feature points may be mis-
tracked (with the tracker unaware), causing a
trajectory to have some entries with gross errors
(a corrupted trajectory).

While some of the methods can be modified to be robust
to one of such problems [10], [14], [27], [31], [32], to our
knowledge there is no motion segmentation algorithm that
can elegantly deal with all of these problems in a unified
fashion.

1.4 Our Approach

In order to uniformly and effectively deal with clustering
and robustness issues, we rely on Occam’s Razor: All other
things being equal, the simplest solution is the best. This means
that when choosing among multiple viable segmentations
for motion data, one should pick the segmentation that
most simply explains the data. There are many empirical
metrics that can be used to express the simplicity of data.
One such measure is the coding length, which is the
minimal number of bits needed to represent data. The
coding length has been used effectively for data compres-
sion and model selection [1] as well as for segmentation
[20]. In recent years, there has been increasing interest in
findings representations for data that are sparse, ie.,
having few nonzero entries. This interest has been mainly
fueled by the discovery that when the sparsity is high
enough, such representations can be efficiently computed
using convex optimization [4], [8]. The sparse structure of
data has also been shown to be highly robust and can be
used to deal with incomplete and corrupted data [3].

In this paper, we propose a new motion segmentation
scheme that draws heavily from the principles of both data
compression and sparse representation. We show that the
notion of coding length and sparsity are highly related,
and by properly exploiting them, we are able to make
motion segmentation robust to all three types of pathological
trajectories listed above. In particular, we adapt the lossy
compression-based agglomerative clustering algorithm
from [20], referred to as Agglomerative Lossy Compression
(ALC), to the problem of motion segmentation. The algo-
rithm is noniterative and requires only a single parameter.
We will show how it can be naturally adapted to deal with
outliers in our context. We supplement ALC with techniques
from sparse representation, allowing our method to handle
incomplete and corrupted trajectories even before the
segmentation is obtained. To our knowledge, our paper is
the first to apply sparse representation to the problem of
motion segmentation.

1834

1.4.1 Organization of This Paper

We first review our agglomerative algorithm (Section 2.1),
then show how we apply the derived algorithm to motion
segmentation (Section 2.2), and test the effectiveness of the
algorithm on the publicly available Hopkins155 motion
segmentation database (Section 2.3). We show that the new
algorithm naturally handles outlying trajectories (Section 3.1),
and can be extended to repair incomplete (Section 3.2) or
corrupted trajectories (Section 3.3). Note our distinction
between incomplete and corrupted trajectories: For incom-
plete trajectories, we know in which frames the features are
missing; for corrupted ones, we do not have that knowledge.
Our methods use the affine camera model assumption, so we
make comparisons with similar methods, but not with
perspective camera-based methods.' As most extant methods
for motion segmentation assume that the number of motions
is known, for fair comparison we also assume that the group
count is given.

2 AGGLOMERATIVE Lossy COMPRESSION (ALC)

In this section, we describe the subspace separation method
that we use for motion segmentation. Section 2.1 reviews
the principles of matrix rank minimization, data compres-
sion, and sparse representation behind ALC. Section 2.2
shows how ALC can be applied to the motion segmentation
problem when the motion trajectories are complete and
contain no outliers. Finally, Section 2.3 shows the results of
the segmentation algorithm on the Hopkins155 database
(which does not contain outliers).

2.1 Matrix Rank Minimization and Lossy Data

Compression

According to the problem formulation (4), to a large extent
the goal of subspace separation is to find a partition of the
data matrix Y into submatrices {Yn}fyzl such that each Y,
spans a subspace of the lowest possible dimension. In other
words, each Y, as a matrix is maximally rank deficient.
Matrix rank minimization (MRM) is itself a very challenging
problem. The rank function is neither smooth nor convex,
and it is notoriously difficult to minimize directly. Finding a
matrix M* that is maximally rank deficient among a convex
set of matrices 2 is known to be NP-Hard [25]. Also, the
rank function is highly unstable in the presence of noise.

Recent progress in compressed sensing has led to some
groundbreaking work in rank minimization. In particular, it
has been shown that when the matrix rank is low enough,
minimizing the matrix rank over a convex domain is
equivalent to minimizing the matrix nuclear norm” |M]|,,
which can be solved efficiently by semidefinite program-
ming [21]. If Q is a convex set of symmetric positive
semidefinite matrices, one can find the minimum rank M* €
Q by solving

1
M* = argmin Js(M) = log, det (I + —M), (5)
MeQ 4

1. Refer to [22] for work on robust motion segmentation with a
perspective camera model.
2. The nuclear norm of a matrix M is the sum of all of its singular values

Yo

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 10, OCTOBER 2010

lllly = ||

log(1 + %2)
[lz|lo = rank(z)

Fig. 1. Comparison of Js(z), rank(z) = ||z, and the nuclear norm
(1-norm) ||z||; = |=| in one dimension.

where the constant ¢ > 0 is a small regularization parameter
[11]. It is easy to see that the function J; is approximately the
sum of the logarithm of the singular values (up to a scale).
So, unlike the nuclear norm, which is convex, the function Js
is no longer convex in M, though it is a smooth surrogate.
Nevertheless, .J;(M) has the same global minimum as rank(M),
as shown in Fig. 1 (for each singular value).

Here, we are not minimizing rank(Y,,) over a convex set.
Recall that each Y, is a submatrix of Y, and the set {Yn}f:[:l
forms a partition of Y. The number of partitions of the data
matrix Y into {Y,}) | is combinatorial and this makes the
space of all segmentations of Y a very complicated domain.
Thus, technically subspace separation cannot be reduced to
an instance of MRM over a convex domain. However, with
slight modification to the function Js(M) in (5), we can see a
clear connection between (5) and the principle of (lossy)
minimum description length (MDL) [20]. Given a data matrix
Y, € RP*™, Ma et al. [20] proposed the following function
for estimating the number of bits needed to code Y, up to
distortion &2:

D+ P, 1
L(Y,, &) = J; ' Jﬁ (— Y,,LYT)
D+ P,
2

(6)

log, det (I + %YnYZ) .
This function is still a smooth surrogate for rank(Y,,) as it is
obtained by scaling Js(M) by a constant term with M =
pY,Y) and 6 = 2. It was shown in [20] that as € — 0, (6)
converges to the optimal rate distortion for a Gaussian
source, and it is also a tight upper bound for the coding
length of subspace-like data. Thus, (6) provides a reason-
able estimate of the number of bits needed to code a set of
samples drawn from either a Gaussian distribution or a
linear subspace.

Now suppose the data matrix Y € R”*” can be parti-
tioned into disjoint subsets Y = [Y;...Yy] of corresponding
sizes P, +---+ Py = P. If we encode each subset sepa-
rately, the total number of bits required to encode Y up to
distortion &? is

N
S . \ P,

L¥({Y1,...,Yy},6) = ;L(Yms) — Pylogs 5. (7)
The second term in this equation counts the number of bits
needed to represent the membership of the P vectors in the
N subsets (e.g., by Huffman coding). In [20], Ma et al.
showed that for data drawn from a mixture of multiple
(degenerate) Gaussians, the segmentation that minimizes

RAO ET AL.: MOTION SEGMENTATION IN THE PRESENCE OF OUTLYING, INCOMPLETE, OR CORRUPTED TRAJECTORIES

(7) is, in fact, the segmentation that partitions the samples
into groups corresponding to different Gaussians in the
mixture. Thus, by finding the global minimum of (7), we
also find the “true” segmentation of the data. It is worth
noticing that once the distortion parameter ¢ is fixed, the
number of groups in the segmentation is automatically
determined. This completely avoids the necessity of
additional model selection criterion usually required with
traditional segmentation methods.

The issue now is that finding a global minimum of (7) is
a combinatorial problem. Nevertheless, an agglomerative
algorithm, proposed in [20], has been shown to be very
effective for minimizing (7). Algorithm 1, listed below,
initially treats each sample as its own group, iteratively
merging pairs of groups so that the resulting coding length
is maximally reduced at each iteration. The algorithm
terminates when it can no longer reduce the coding length.
We refer to Algorithm 1 as ALC. See [20] for more details.

Algorithm 1. Agglomerative Lossy Compression.
cInput: Y = [y;,9,...,yp] € RPP c € R
c Let S={{y.}.-.. . {yp}}
: done := false
while not done do
{¥;,¥;} i=argmingy v s L({[Y: Y)]},€) —
LS({Y;,Y]},E)
if L ({[Y] Yj}},e) — L‘*({Y;f,Yj},s) > 0 then
done := true
else
= (S\ (¥ v;}) u{ly; Y]}
10: end if
11: end while
12: output: S

—_

2.2 ALC and Motion Segmentation

In this section, we explore many of the practical issues with
applying ALC to the motion segmentation problem. We first
show how trajectories from many types of motion lie on low-
dimensional linear subspaces. We propose a simple and
effective method for choosing the distortion level ¢, the single
parameter required by ALC. We then describe how dimen-
sionality reduction techniques can be used to improve both
the convergence and tractability of our agglomerative
approach. Finally, we discuss the computational complexity
of the method and show how it can be improved.

2.2.1 Motions as Linear Subspaces

As seen in Section 1.1, under the affine camera model,
trajectories from a single general rigid-body motion lie on a
linear subspace of dimensionality four in the 2F-dimensional
trajectory space. For motions along a line or within a plane,
their corresponding trajectories lie on subspaces of dimen-
sionality two or three, respectively. Thus, in a dynamic scene
with multiple motions, trajectories from the different
motions lie on multiple subspaces with possibly different
dimensionalities. Because ALC is designed to cluster data
from multiple subspaces of mixed dimensionalities, it should
be highly effective for affine motion segmentation.

We can also use linear subspaces to model many kinds of
nonrigid motion. In an articulated motion, the motion

1835

1RT2TCRT_B

Error
°
&

Y

Computed Group Count

(b)

Fig. 2. (a) The “/RT2TCRT_B” sequence from the Hopkins155 database.
(b) The misclassification rate (top) and estimated group count (bottom) as
a function of e.

consists of two or more “submotions” that are joined at a
link. Each submotion is a rigid-body motion whose
trajectories lie on a subspace of dimensionality at most four.
However, the motions of the linked parts are dependent,
and consequently, their subspaces have intersections of
dimensionality one or two, depending on whether the link is
a joint or an axis. Other nonrigid motions, such as facial
expressions, can be approximated by a piecewise linear
combination of a number of “key shapes.” As shown in [31],
the trajectories of a nonrigid motion with K key shapes will
lie on a linear subspace of dimensionality at most 3K + 1.
ALC should, in principle, be able to segment trajectories in
scenes containing articulated and nonrigid motions. How-
ever, due to the greedy nature of ALC, the dependencies
between submotions, and higher dimensional subspace
embeddings, for scenes with these kinds of motions, it is
possible for ALC to obtain suboptimal segmentations.

2.2.2 Choosing the Distortion Level e

In principle, ¢ could be determined in some heuristic
fashion from the statistics of the data, see, e.g., [17].
However, note that the distortion level ¢ is directly related
to the number of motions N: The smaller ¢ is, the larger NV is
and vice versa. Since most extant motion segmentation
algorithms require the number of motions as a parameter, in
order to make a fair comparison with other methods, we
assume that the number of motions is given, and use it to
determine e. Fig. 2 shows an example motion sequence. We
run ALC on this sequence for several choices of €. On the
right, we plot the misclassification rate and estimated group
count as a function of . We see that the correct segmenta-
tion is stable over a fairly large interval. Using this
observation, we developed the following voting scheme:

1. For a given motion sequence, run the algorithm
multiple times over a number of choices of .’
2. Discard any ¢ that does not give rise to a segmenta-
tion with the correct number of groups.*
3. With the remaining choices of ¢, find all of the
distinct segmentations that are produced.
4. Choose the ¢ that minimizes the coding length for the
most segmentations, relative to the other choices of ¢.
This scheme is quite simple, and by no means optimal,
but as our experiments show, it works very well in practice.

3. Our experiments use 101 steps of ¢ in the interval [107°,10%].
4. If none of the choices of ¢ produce the right number of groups, we
select the e that minimizes the “penalized” coding length proposed in [20].

1836

2.2.3 Improving ALC with Dimensionality Reduction

ALC applies a greedy approach to make minimization of (7)
computationally feasible. Due to this greedy approach, ALC
can obtain a segmentation that does not globally minimize
the coding length. In fact, precise theoretical conditions for
ALC to converge to the minimum coding length segmenta-
tion are not yet known. Ma et al. demonstrated empirically
that for data in high-dimensional spaces, suboptimal
segmentations can be found if the samples do not
adequately cover each subspace [20]. Thus, dimensionality
reduction can potentially improve the results of ALC by
making the subspaces more dense with samples.

Dimensionality reduction can also improve the compu-
tational tractability of subspace separation without ad-
versely affecting the quality of the segmentation. This is
because, with probability one, projection onto an arbitrary
d-dimensional subspace preserves the multisubspace struc-
ture of data lying on subspaces with dimensionality strictly
less than d. Thus, for segmenting affine motions, Vidal et al.
[27] suggest projecting the trajectories onto a 5D subspace.
However, as we have discussed, for more complicated
scenes, such as scenes with articulated or nonrigid motion,
five dimensions may not be sufficient.

A balance needs to be struck between expressiveness and
sample density. One choice, recently proposed in the sparse
representation community [9], is the sparsity-preserving
dimension dg,:

ds, = min d subject to d > 2klog(D/d), (8)

where D is the dimensionality of the ambient space and % is
the true low dimensionality of the data. It has been shown
that, asymptotically, as D — oo, this d is the smallest
dimensionality of projection such that the low-dimensional
multisubspace structure of the data is preserved with high
probability under a random projection. For our problem,
using the affine camera model, the dimensionality of the
motion subspaces is at most 4, so we can assume that k& = 4
and obtain a conservative estimate for the dimensionality of
the projection d. As our experimental results will show, this
choice works well in practice.

In our experiments, we test ALC with dimensionalities of
projection d =5 (as suggested in [27]), and the sparsity-
preserving d stated above.” We refer to the two versions of
the algorithm as ALCs and ALCy,, respectively.

2.2.4 Algorithmic Improvements to ALC.

As discussed in [20], the computational complexity of a
straightforward implementation of ALC is

O(P* + P*D?). 9)

The first term in (9) corresponds to, for each of O(P)
iterations, searching a table of size O(P) x O(P) for the pair
of groups that, when merged, maximally decrease the
overall coding length. The second term in (9) corresponds
to, for each of O(P) iterations, the cost of updating O(P)
entries in the table via an O(D?) log-determinant computa-
tion. In practice, the running time of ALC is dominated by
this second term. We have observed empirically that the vast
majority of the time, one of the two groups to be merged
contains only one sample. In this case, the log-determinant

5. In our implementations of ALC, we use Principal Component Analysis
(PCA) for dimensionality reduction.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 10, OCTOBER 2010

TABLE 1
Misclassification Rates (in Percent) for Sequences
of Two and Three Motions in the Hopkins155 Database

Checkerboard | MSL | LSA |ALCs | ALCsp
Average (4.46%|2.57% |2.56% | 1.49%
Median |0.00%|0.27% |0.00%| 0.27%
Traffic MSL | LSA |ALC; |ALCsp
Average |2.23%|5.43% |2.83%| 1.75%
Median |0.00%|1.48% |0.30%| 1.51%

Articulated | MSL | LSA |ALC5 |ALCsp
Average |7.23%|4.10% |6.90%|10.70%
Median |0.00%|1.22% |0.89%| 0.95%

All Sequences| MSL | LSA |ALC; | ALCgp
Average (4.14%)|3.45% |3.03% | 2.40%

Median |0.00%|0.59% |0.00%| 0.43%
(@)

Checkerboard | MSL | LSA | ALCs | ALCsp
Average [10.38%| 5.80% [6.78% | 5.00%
Median 4.61% | 1.77% |0.92% | 0.66%
Traffic MSL | LSA |ALC; [ALCsp
Average 1.80% |25.07%|4.01% | 8.86%
Median 0.00% |23.79%|1.35% | 0.51%

Articulated | MSL | LSA |ALCs |ALCgp
Average |2.71% | 7.25% |7.25% |21.08%
Median 2.71% | 7.25% |7.25% |21.08%

All Sequences| MSL | LSA | ALCs |ALCsp
Average 8.23% | 9.73% 6.26% | 6.69%
Median 1.76% | 2.33% | 1.02% | 0.67%

(b)

(a) Two-motion sequences and (b) three-motion sequences.

can be computed via a rank-1 update to the Cholesky
factorization of a D x D matrix [29]. By doing so, the
computational complexity of ALC becomes

O(P? + P’D* + PD?), (10)

allowing the speed of ALC to scale more gracefully with the
dimensionality of the data. We quantitatively demonstrate
this decrease in the running time of ALC in the next section.

2.3 Results on the Hopkins155 Database

We now test the efficacy of ALC for motion segmentation, by
applying the algorithm to the Hopkins155 database [24]. The
Hopkins155 database consists of 155 motion sequences that
can be categorized as checkerboard, traffic, or articulated.
The motion sequences were obtained using an automatic
tracker, and errors in tracking were manually corrected for
each sequence. Thus, in this experiment, there is no attempt
to deal with incomplete or corrupted trajectories. See [24] for
more details on the Hopkins155 database.

We run ALCs; and ALC, on the checkerboard, traffic, and
articulated sequences using the voting scheme described
earlier to determine ¢. For each category of sequences, we
compute the average and median misclassification rates, and
the average computation times. We list these results in
Tables 1 and 2 along with the reported results for Multistage
Learning (MSL) [18] and Local Subspace Affinity (LSA) [31]°

6. For LSA, we report the results for the version that projects the data
onto a 4N-dimensional space.

RAO ET AL.: MOTION SEGMENTATION IN THE PRESENCE OF OUTLYING, INCOMPLETE, OR CORRUPTED TRAJECTORIES

TABLE 2
Performance over Entire Hopkins155 Database
Checkerboard | MSL. | LSA | ALCs | ALCsp
Average 5.94% | 3.38% | 3.61% | 2.37%
Median 0.00% | 0.57% | 0.00% | 0.31%
Traffic MSL | LSA | ALCs | ALCyp
Average 215% | 9.05% | 3.05% | 3.06%
Median 0.00% | 1.96% | 0.92% | 1.35%
Articulated MSL | LSA | ALGCs | ALCyp
Average 6.53% | 4.58% | 6.95% | 12.30%
Median 0.00% | 1.22% | 0.89% | 0.95%
All Sequences | MSL | LSA | ALC5 | ALCsp
Average 5.06% | 4.87% | 3.76% | 3.37%
Median 0.00% | 0.90% | 0.26% | 0.49%
(a)
| Method | MSL | LSA | ALCs [ALCsp |
Checkerboard |17h 40m|10.423s| 12m 6s | 24m 4s
(6m 5s) [(7m 12s)
Traffic 12h 42m| 8.433s | 8m 42s |17m 19s
(4m 15s)|(4m 56s)
Articulated | 7h 35m | 3.551s | 4m 51s | 10m 43s
(2m 16s)|(2m 40s)
All Sequences|15h 36m| 9.474s | 10m 32s| 21m 3s
(5m 15s)|(6m 115s)

(b)
(a) Misclassification rates (in percent) and (b) average computation
times. Results in parentheses for ALC use the rank-1 Cholesky update
discussed in Section 2.2.

on the same database. Fig. 3 gives two histograms of the
misclassification rates over the sequences with two and three
motions, respectively. There are several other algorithms
that have been tested on the Hopkins155 database (GPCA,
RANSAC, etc.), but we list these two algorithms because
they have, to date, the best reported misclassification rates in
many categories of sequences.

As these results show, ALC performs well compared to
the state of the art. It has the best overall misclassification
rate as well as for the checkerboard sequences. In categories
where ALC is not the best, its performance is still
competitive. As expected, the performance of ALC for the
articulated sequences is not as good, primarily because, in
the Hopkins155 database, many of the scenes with articu-
lated motions are, in fact, scenes of human motion with only
a few tracked features.

In terms of computation time, we see that the algorithms
fall into three categories: The spectral method LSA runs on
the order of seconds, our agglomerative methods run on the
order of minutes, and the iterative method MSL runs on the
order of hours. Keep in mind that our methods are run for
101 different choices of the parameter ¢. Also, by using the
rank-1 Cholesky update, both ALCs and ALC,, run two to
four times faster on each sequence. Finally, with regard to
the projection dimension, our results indicate that, overall,
ALC, performs better than ALC:s.

3 ROBUST SUBSPACE SEPARATION

In this section, we show how to make subspace separation
robust to the three kinds of pathologies discussed earlier. In

1837

Classification error for two groups

100 .
5 5 - | I visL
S || . SRR S | I LSA
8 ol SR R | COALG,
2 . . .
[
5
Q
O
(@)

0 10 20 30 40 50
Misclassification error [%]

Classification error for three groups

80 :
I VISL

X 60t [LSA
2 AL,
e

o

5

Q

O

o

0 10 20 30 40 50 60
Misclassification error [%]

Fig. 3. Misclassification rate histograms for various algorithms on the
Hopkins155 database.

particular, we show that ALC naturally deals with outliers,
and by harnessing the low-dimensional subspace structure
of the data, we can repair incomplete and corrupted
samples prior to subspace separation.

3.1 Outlying Trajectories

Dynamic scenes often contain trajectories that do not
correspond to any of the motion models in the scene. Such
trajectories can arise from motions not well described by the
affine camera model, such as the motion of nonrigid objects.
These kinds of trajectories have been referred to as “sample
outliers” by [7], suggesting that no subset of the trajectory
corresponds to any affine motion model. Fortunately, ALC
deals with such sample outliers in an elegant fashion. In
[20], it was observed that in low-dimensional spaces, a
sufficient number of outliers will cover the entire space, and
so, the algorithm tends to group all outliers into a single
group. Such a group can be easily detected because the
number of bits per vector in that group will be very large
relative to other groups. However, in higher dimensional
spaces, such as in our motion segmentation problem, it
would require an enormous number of outliers to fill the
space. If outliers are thinly scattered in the ambient space,
they will be most efficiently encoded when each outlier is in
its own group. Such small groups are also easily detectable.

3.1.1 Experiments with Simulated Outliers

In these experiments, we compare the robustness to sample
outliers of ALC” and LSA [31], a spectral clustering-based

7. For this simulation, we use ALC3, the version of ALC that projects the
data onto a 5D space.

1838

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 10, OCTOBER 2010

Fig. 4. Example image frames from three motion sequences from the Hopkins155 database [24]. (a) 1R2RC sequence. (b) Arm sequence.

(b) cars10 sequence.

motion segmentation algorithm that is reasonably robust to
outliers. We choose three representative sequences from
the Hopkins155 database for simulation: “1R2RC” (check-
erboard), “arm” (articulation), and “cars10” (traffic) (see
Fig. 4). We add between 0 and 25 percent outlying
trajectories to the data set of a given motion sequence.
Outlying trajectories were generated by choosing a random
initial point in the first frame and then selecting a random
increment between successive frames. Each increment is
generated by taking the difference between the coordinates
of a randomly chosen point in two randomly chosen
consecutive frames. In this way, the outlying trajectories
will qualitatively have the same statistical properties as the
other trajectories, but will not obey any particular motion
model. We then input these data sets into LSA and ALC,
respectively, and compute the misclassification rate and
outlier detection rate for both algorithms.® For each
experiment, we run 100 trials with different randomly
generated outlying trajectories. Table 3 shows the average
misclassification rates and outlier detection rates for each
experiment. As the results show, ALC can easily detect
outliers without hindering motion segmentation, whereas
for LSA, the outliers tend to interfere with the classification
of valid trajectories. Hence, for subsequent experiments in
this paper, we will not compare our methods with LSA.

3.1.2 Experiments with Real Outliers

We apply ALC to four motion sequences with real outlying
trajectories, as shown in Fig. 5. For each sequence,
trajectories were obtained with an automatic tracker, and
the ground-truth segmentation was manually determined.
A trajectory was termed an inlier if it is correctly tracked in
all frames, and an outlier if it is incorrectly tracked in all
frames.’ Information about the number of motions, samples
for each group, and the number of outliers in each sequence
are listed in Table 4.

The Misclassification and Outlier Detection rates are
listed in Table 5. As these results show, ALCy, is able to
detect and remove real outliers without substantially

8. In ALC, a trajectory is labeled an outlier if it belongs to a group with
less than five samples. In our implementation of LSA, a trajectory is labeled
as an outlier if its distance from the nearest motion subspace is greater than
a predetermined threshold.

9. For this experiment, trajectories with partial corruption were removed
from the data set. This is because trajectories with partial corruption still
retain a valid class label. Thus, it is better to deal with such trajectories as
incomplete or corrupted, which we will discuss in Sections 3.2 and 3.3.

affecting segmentation of inliers, while ALCs is not. The
one exception is the “carsbus3” sequence, where ALCj
seems to outperform ALCg,. However, qualitatively exam-
ining the segmentation results, we see that ALCy, achieves
its 9.74 percent misclassification rate by falsely grouping
some outliers with features from the car in the foreground.
However, these trajectories are fairly close to the car, so it
could be argued that they are, in fact, noisy or corrupted
trajectories rather than outliers. On the other hand, ALC;
gets its low misclassification rate of 1.62 percent by falsely
rejecting most of the trajectories from that same car as
outliers. This experiment suggests that to reliably segment
motion data in the presence of outliers, the data should be
projected into a space with more than just five dimensions.

3.2 Incomplete Trajectories

In practice, due to occlusions or limitations of the tracker,
some features may be missing in some image frames and
lead to incomplete trajectories in Y. There are many
methods in the computer vision literature for filling in the
missing entries of a matrix of motion trajectories [14], [15],
[19]. These methods typically assume that the data matrix is
low rank. For a matrix with low column rank, the problem
of completing missing data can, in fact, be cast as a rank
minimization problem:

Y = argmin rank(X)

X

subject to M(X) = M(Y), (11)
where M(-) is a mask that matches given entries in Y. As we
mentioned earlier, rank minimization is a difficult problem
and most of the methods in computer vision mentioned
above rely on an iterative alternative minimization scheme.
There has been a significant breakthrough in the com-
pressed sensing literature that shows that the above
problem can be solved correctly and efficiently by semi-
definite programming when the rank is low enough. In fact,
a very sharp bound is derived for how many entries are
needed for an exact completion of the matrix [2].1°
However, these powerful tools for entry completion run
into serious problems when the columns of the data matrix
are from multiple subspaces. Data drawn from a union of
subspaces can potentially be full rank—the matrix Y is often
overcomplete. As such, the problem becomes extremely

10. According to this new result, rather surprisingly the percentage of
entries needed for an exact completion goes to zero as the dimension goes to
infinity, whereas for the iterative schemes, such as Power Factorization [15],
the conventional rule of thumb is that one needs about at least 20-30 percent
entries for a good chance of success.

RAO ET AL.: MOTION SEGMENTATION IN THE PRESENCE OF OUTLYING, INCOMPLETE, OR CORRUPTED TRAJECTORIES 1839

TABLE 3 TABLE 4
Misclassification and Outlier Detection Rates for LSA and ALC Information about the Four Motion Sequences in Fig. 5
as a Function of the Outlier Percentage (from 0 to 25 Percent) Containing Real Outlying Trajectories (Numbers of Motions,
for Three Motion Sequences in Fig. 4 Samples for Each Group, and Outliers)
1R2RC [%] arm [%] cars10 [%] [Sequence [# motions | # samples [# outliers |
[%] || LSA | ALC || LSA | ALC || LSA | ALC books 5 45, 41, 28, 71, 30 127
0 || 240 | 1.09 [[22.08| 0.00 || 16.84 | 1.34 carsbus3 3 85, 45, 89 89
7 |] 691 | 1.29 [[24.17] 0.13 |[31.97] 0.40 carsTurning 4 51, 114, 52, 517 43
15 |[3.09 | 1.31 || 1538 0.06 [[26.43]0.19 nrbooks3 3 129, 168, 91 35
25 || 2.69 | 1.16 || 10.25| 0.04 || 24.59 0.17

(a)
underdetermined as there is, in general, no unique solution
IR2RC [%] || arm [%] cars10 [%] for the values of the missing entries as a linear combination
[%] || LSA | ALC || LSA | ALC|| LSA | ALC . .
of the known entries. However, by harnessing the low-

0 |/98.04| 100 || 77.9 | 100 || 86.87 | 100 . . . -y
7179475 199.99 (19279 | 100 [[96.82199.70 dimensional multiple-subspace structure of the data set, it is

15 |[98.04[99.98 [[91.34 | 100 || 98.84 | 99.81 actually possible to complete these trajectories prior to
25 |1 98.20199.97 || 95.56 | 100 || 98.76 | 99.83 subspace separation.
. The key observation is that samples drawn from a low-
(b) dimensional linear subspace are self-expressive, meaning that

(a) Misclassification rates and (b) outlier detection rates. X
a sample can be expressed in terms of a few other samples

from the same linear subspace. More precisely, if the given
sample is y € R” and Y € R”*" is the data matrix whose

(c) (d)

Fig. 5. Example image frames from four motion sequences containing real outlying trajectories. Feature points from outlying trajectories are labeled
as yellow squares. (a) Books sequence. (b) carsbus3 sequence. (c) carsTurning sequence. (d) nrbooks3 sequence.

1840

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 10, OCTOBER 2010

TABLE 5
Misclassification and Outlier Detection Rates for ALCs; and ALCg, on Four Motion Sequences with Real Outlying Trajectories

books [%] carsbus3 [%] || carsTurning [%] || nrbooks3 [%]
ALC5 [ALCgp || ALCs [ALCsp |[ALCs [ALCsp || ALC5 [ALCgp

Misclassification Rate || 7.89 2.05 1.62 9.74 15.44 0.26 11.11 | 047
Outlier Detection Rate || 98.25 | 99.42 || 76.95 100 75.16 | 97.04 || 27.66 | 98.58

columns are all of the other samples in the data set, then
there exists a coefficient vector ¢ € IR” that satisfies

y=Yc. (12)

As the number of samples P is usually much greater than
the dimension of the ambient space D, (12) is a highly
underdetermined system of linear equations, and so, in
general, c is not unique. In fact, any D vectors in the set that
span IR” can serve as a basis for representing y. However,
since y lies in a low-dimensional linear subspace, it can be
represented as a linear combination of only a few vectors
from the same subspace. Hence, its coefficient vector should
have only a few nonzero entries corresponding to vectors
from the same subspace. Thus, what we seek is the sparsest c:

¢" = argmin ||¢||, subject to y = Ye, (13)
c

where || - || is the “/° norm” equal to the number of nonzero
entries in the vector. The sparsest coefficient vector c* is
unique when ||¢*||, < D/2. In the general case, /’ minimiza-
tion, like MRM, is known to be NP-Hard.™ Fortunately, due
to the findings of Donoho [8], it is known that if ¢* is
sufficiently sparse (i.e., ||c*[|, ~ |%1]), then the ¢ minimiza-
tion in (13) is equivalent to the following ¢! minimization:

¢" = argmin ||c||; subject to y = Ye, (14)
which is essentially a linear program.

We apply these results to the problem of dealing with
incomplete data. Suppose we have a sample y ¢ IR” with
missing entries {y;},.;, I C {1,...,D} and a data set Y €
IRP*” with no missing entries. The idea is to use the
available entries in y and the corresponding rows in Y to
complete the vector. Let 3 € R and ¥ € RP-HD*P pe 4
and Y with the rows indexed by I removed, respectively. By
removing these rows, we are essentially projecting the data
onto the (D —|I|)-dimensional subspace orthogonal to
span({e; : i € I}), where ¢; is the ith vector in the canonical
basis for IR”. This is licit because, as long as the dimension
of each subspace is strictly less than d = (D — |I]), an
arbitrary d-dimensional projection preserves the structural
relationships between the subspaces with probability one.
Thus, if we solve the linear program'?

¢* = argmin ||¢||, subject to § = Ye, (15)
c

11. In fact, when MRM is applied to a set of diagonal matrices, it reduces
to " minimization.

12. As suggested in [30], one can deal with noisy data by replacing the
equality constraint in (15) with ||§ — Ye||, < . Though no longer a linear
program, the problem can still be solved efficiently via semidefinite
programming.

then the completed vector y* can be recovered as

y =Y (16)
3.2.1 Experiments with Simulated Missing Data

We now test the accuracy of our ¢'-based method for entry
completion. In each trial, we randomly select a trajectory y,
from the data set for a given sequence, and remove 1 < m <
D —1=2F — 1 of its entries. We then apply (15) and (16) to
recover the missing entries.'” In order to simulate many
trajectories with missing entries in the data set, we perform
five different experiments. In each experiment, we use a
subset Y. containing between 20 and 100 percent of the
remaining trajectories to complete y,,.

We also compare the performance of our method with
Power Factorization [15], an iterative technique that has
been applied to incomplete motion data [27]. Note that
the two approaches work under different operating
conditions. Our ¢!-based approach uses a set of complete
vectors to fill in the missing entries of incomplete vectors,
one vector at a time. Power Factorization fills in the entries
of all incomplete vectors simultaneously, but relies on a
low-rank representation for the whole matrix. For fair
comparison, we embed the trajectories in a data matrix Y,
and then randomly remove m entries from y,, as well as
each column of Y\ Y.. We then apply Power Factorization
to Y to fill in its missing entries, subject to a rank
constraint of » = 4N, where N is the number of motions
in the scene.

Fig. 6 shows the results for 200 trials. For each method
and each sequence, we plot the average per-entry error of
the recovered trajectory ¢, with respect to the ground truth
versus the percentage of missing entries in each incomplete
trajectory. The different colored plots are for the experi-
ments with varying percentage of the data set used for
completion. For all motion sequences, our method is able to
reconstruct trajectories to within subpixel accuracy even
with over 80 percent of the entries missing. The perfor-
mance of both methods remains consistent even when the
entries are completed with small subsets of the remaining
data. This suggests that both methods can work well even if
a large number of trajectories have missing features.
However, as these simulations show, our method clearly
outperforms Power Factorization, obtaining lower per-entry
error and converging for a larger percentage of missing
entries. This is because our method takes advantage of the
multiple-subspace structure in the data, while Power
Factorization does not.

13. For all of our experiments that use ¢!-minimization, we use the freely
available CVX toolbox for MATLAB [13].

RAO ET AL.: MOTION SEGMENTATION IN THE PRESENCE OF OUTLYING, INCOMPLETE, OR CORRUPTED TRAJECTORIES

1841

5 T T T T 5 T T T T
—100% —100%
2 4{—s0% { B 4)—s0% |
 ||——e0% 2 |[—860%
76 3H—40% 4 E 3H—40% J
= —20% = —20%
o 2f {1 o2t 1
o o
g g
g4 {1 €4} 1
< <
0 - 1 1 1 o 1 1 1
0 20 40 60 80 100 0 20 40 60 80 100
% of Missing Entries % of Missing Entries
(@) (b)
S— — T Y ¥ 5 r r r ,
B I’ —100%
g 1 @ 4f—80%)l
2 || 0% 3 ||—s0%
53— 1 %3f—40% 1
= —20% = e
w S 20%
w
o 2F 1 © 2F 4
g
$1 L {1 g1} g
< <
o 1 1 1 1 o = — 1
0 20 40 60 80 100 0 20 40 60 80 100
% of Missing Entries % of Missing Entries
(©) (d)
5 5 T T T T
—100%
A7 { B 4{—s0%]
g, -
£ g ||—a20%
a2 4 @ afF -
4 g
21 {1 21t 4
< <
0 I 1 1 I 0 Sy 1 1 1
0 20 40 60 80 100 0 20 40 60 80 100
% of Missing Entries % of Missing Entries

)

()

Fig. 6. Errors on the recovered trajectories using our ¢*-based trajectory completion for the sequences: “1R2RC,” “arm,” and “cars10.” The different
colored plots are for experiments with varying percentage of the data set used for completion. (a) 1R2RC—PF. (b) 1R2RC—¢'. (c) arm—PF.

(d) arm—+¢". (e) cars10—PF. (f) cars10—¢".

3.2.2 Experiments with Real Missing Data

We now test our robust subspace separation method on real
motion sequences with incomplete or corrupted trajectories.
We first use the three motion sequences, as shown in Fig. 7.
These sequences are taken from [27] and are similar to the
checkerboard sequences in Hopkins155. Each sequence
contains three different motions and was split into three
new sequences containing only trajectories from the first
and second groups, first and third groups, and second and
third groups, respectively. Thus, in total, we have 12 motion
sequences: nine with two motions and three with three
motions. For these sequences, between 4 and 35 percent of
the entries in the data matrix of trajectories are corrupted.
These entries were manually located and labeled.

To see how ¢!-based entry completion affects the quality
of segmentation, we remove the entries of trajectories that
were marked as corrupted so that we may treat them as
missing entries. We apply our /!-based entry completion
method to this data, and input the completed data into
ALCs and ALC,,, respectively. For comparison, we also use
Power Factorization and Robust PCA [7] to complete the
data before segmentation. The misclassification rate for each
sequence is listed in Table 6a. Our ('-based approach
performs competitively with both Power Factorization and
Robust PCA. The average performance of ¢' + ALC; is
skewed by its misclassification rate for the “0c2R3RCRT”
sequence. This is likely an artifact of the method we use to

choose ¢. Note that while both Robust PCA and Power
Factorization work well when combined with ALC;, their
performance degrades significantly when combined with
ALC,,. Thus, alternative minimization techniques like
Power Factorization and Robust PCA tend to work well
only when the dimensionality of projection is small.

We also test our Power Factorization, Robust PCA, and
our ¢'-based approach on the four motion sequences in Fig. 5.
In this experiment, we remove the outlying trajectories from
each sequence and instead use the partially corrupted
trajectories. Each trajectory has between 0 and 75 percent of
its entries missing. The number and location of missing
entries for each trajectory were manually determined. These
sequences contain many corrupted trajectories, and so, it is
possible that an incomplete trajectory cannot be satisfactorily
completed, and will likely be classified as an outlier. Thus, to
get a sense of how well the entries of incomplete trajectories
are filled in, we compute both the misclassification rate and
the outlier detection rate for each sequence. The results are
listed in Tables 6b and 6c. For all four sequences, our ¢ L_based
approach in conjunction with ALCy, can effectively deal with
incomplete trajectories, treating the fewest as possible as
outliers. For the cases where RPCA+ALC or PF+ALC
achieves low misclassification rates, note that the outlier
detection rate is also low. This suggests that these iterative
methods were unable to recover the missing entries of the
incomplete trajectories, and so, such trajectories are incor-
rectly rejected as outliers.

1842

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32,

NO. 10, OCTOBER 2010

Fig. 7. Example frames from three motion sequences with incomplete or corrupted trajectories. Sequences taken from [27]. (a) oc1R2RC.

(b) oc1R2RCT. (c) oc2R3RCRT.

3.3 Corrupted Trajectories
Corrupted entries can be present in a trajectory when the
tracker unknowingly loses track of feature points.'* Such
entries are gross errors that could have arbitrary magni-
tude. One could treat corrupted trajectories as sample
outliers.'® However, in a corrupted trajectory, a portion of
the entries still corresponds to a motion in the scene; hence,
it seems wasteful to simply discard such information.
Repairing a vector with corrupted entries is a much more
difficult problem than the entry completion problem in
Section 3.2 because both the number and location of the
corrupted entries in the vector are not known. Once again, by
taking advantage of the low-dimensional multisubspace
structure of the data set, we can both detect and repair
vectors with corrupted entries prior to subspace separation.
A corrupted vector ¢ can be modeled as

i=y+te (17)

where y is the uncorrupted vector and e € IR” is a vector that
contains all of the gross errors. We assume that there are only
a few gross errors, so e will only have a few nonzero entries
and thus be sparse.'® As long as there are enough
uncorrupted vectors in the data set, we can express y as a
linear combination of the other vectors in the data set, as
shown in Section 3.2. If Y € IR”*? is a matrix whose columns
are the other vectors in the data set, then (17) becomes

J=Ycte=[Y I}{Z]iBw. (18)
We would like both the coefficient vector ¢ and the error
vector e to be sparse.'” If the true ¢ and e are sufficiently
sparse, we can simultaneously find the sparsest ¢ and e by
solving the linear program:

(19)

w" = argmin ||w||; subjectto ¥ = Bw.
w

The convex optimization problem in (19) has been
successfully applied to robust face recognition in the

14. These kinds of trajectories are called “intrasample outliers” in [7].

15. Indeed, if a data set with some corrupted trajectories is input to ALC,
the algorithm will classify those trajectories as outliers as the gross errors
will greatly increase the coding length of their ground truth motion group.

16. We realize that, in practice, trajectories may be corrupted by a large
number of gross errors. However, it is unlikely that any method can repair
such trajectories and so it is the best to treat them as sample outliers.

17. The columns of Y should be scaled to have unit > norm to ensure that
no vector is preferred in the sparse representation of w.

presence of occlusion [30], and is provably optimal for
certain types of corruption [28]. Once w* is computed, we
decompose it into w* =[c* e* |, where ¢* € R” is the
recovered coefficient vector and e* € IR” is the recovered
error vector. The repaired vector y* is simply

Y =Yc". (20)

TABLE 6
Comparison of Power Factorization and Robust PCA
with Our ¢*-Based Approach for Real Motion Sequences
with Incomplete Data

PF RPCA 2
[%] ALC5 [ALCgp|ALC5 [ALCgp|ALC5 [ALCyp
ocIR2RC 015 [625 [015 [228 [0.15 | 0.15
ocIR2RC_gi12 || 8.79 | 14.01 | 0.00 | 879 | 0.00 | 0.00
ocIR2RC_gI3 || 0.00 | 1.02 | 3.67 | 7.76 | 0.00 | 0.00
ocIR2RC_g23 || 0.19 | 1.75 | 0.19 | 155 | 0.19 | 0.19
ocIR2RCT 1.82 | 345 | 2.00 | 691 | 0.91 | 1.27
ocIR2RCT_gI2 || 0.00 | 15.15 | 0.43 | 1428 | 0.87 | 0.87
ocIR2RCT_gI3 || 5.16 | 2.58 | 0.94 | 7.75 | 0.70 | 1.41
ocIR2RCT_g23 || 339 | 3.61 | 045 | 2.48 | 0.00 | 0.90
0c2R3RCRT 2.36 | 21.20 | 2.36 | 27.62 | 4240 | 2.57
0c2R3RCRT _gi2|[0.00 | 3457 | 0.00 | 41.36 | 0.00 | 1.23
0c2R3RCRT gI3|[0.51 | 16.62 | 0.51 | 21.74 | 0.51 | 4.35
0c2R3RCRT_g23|[0.26 | 9.45 | 0.00 | 22.83 | 0.00 | 2.36
Average 1.89 [10.81] 0.89 [1378] 3.81 | 1.28
Median 039 | 785 | 044 | 827 | 0.17 | 1.07
(a)
PF RPCA A

[%] ALC5 [ALCsp|ALC5 [ALCsp|ALC5 [ALCgp

books 0.00 | 1.88 [0.13 | 0.00 | 0.75 | 0.00

carsbus3 || 0.00 | 0.00 | 15.60 | 0.00 | 0.00 | 0.00

carsTurning|| 15.03 | 1.44 | 0.00 | 0.85 | 16.07 | 0.00

nrbooks3 || 10.05 [0.00 | 552 | 0.00 | 5.19 | 0.00

(b)
PF RPCA ot

[%] ALC5 [ALCgp|ALC5 [ALCsp|ALCs [ALCsp

books 57.06 | 63.09 | 40.65 | 44.03 | 76.84 | 91.34

carsbus3 || 74.79 | 93.59 | 77.68 | 75.22 | 74.36 | 100.00

carsTurning || 78.06 | 76.00 | 74.47 | 94.04 | 65.29 | 98.35

nrbooks3 || 52.51 | 76.18 | 37.50 | 75.29 | 62.89 | 87.52

(c)
(a) Misclassification rates for the 12 sequences in Fig. 7,
(b) misclassification rates for the four sequences in Fig. 5, and
(c) outlier detection rates for the four sequences in Fig. 5.

RAO ET AL.: MOTION SEGMENTATION IN THE PRESENCE OF OUTLYING, INCOMPLETE, OR CORRUPTED TRAJECTORIES

(4

£

)

N

Average Error (pixels)

% of Corrupted Entries

(a)

5 T T T T T

£

(2]

Average Error (pixels)
N

-

(b)

£

(2]

N

Average Error (pixels)

o

60

0
% of Corrupted Features

(©)

Fig. 8. Results for our ¢'-based detection and repair of corrupted
trajectories for the sequences: (a) “1R2RC,” (b) “arm,” and (c) “cars10.”
The different colors represent experiments with varying percentage of
corrupted trajectories in the data set.

The error vector e* also provides useful information. The
nonzero entries of e are precisely the gross errors in .

3.3.1 Experiments with Simulated Corrupted Data

We now test the limits of our ¢'-based method for repair of
corrupted trajectories. For each trial in the experiments, we
randomly select a trajectory y, from the given data set, and
randomly select and corrupt between 1 and D —1=2F —1
entries in the vector. To corrupt the selected entries, we
replace them with random values drawn from a distribution
that is uniform in the pixel coordinate space. We then apply
(19) and (20) to both detect the locations of corrupted entries,
as well as repair them. In each experiment, we run 200 trials
and average the errors. We perform five experiments of this
type, each with a portion (from 0 to 80 percent) of the
remaining data set Y being corrupted in the same way as y,,.
The results of these experiments are shown in Fig. 8c. For
each sequence, we plot the average per-entry error of the
repaired vector with respect to the ground truth versus the
percentage of corrupted entries in each vector. The different
colors represent experiments with varying portions of
corrupted Y. As shown in Fig. 8, this method is able to
reconstruct vectors to within subpixel accuracy even with
roughly one-third of the entries corrupted. This is in line

1843

TABLE 7
Comparison of Robust PCA with Our ¢'-Based Approach for
Real Motion Sequences with Corrupted Data

RPCA A
[%] ALCs [ALCsp|ALCs [ALCsp
oclR2RC 1.68 | 0.15 | 0.15 | 0.15
oc1R2RC_gl12 || 0.00 | 2.61 | 0.00 | 0.00
oc1R2RC_g13 0.00 | 0.20 | 0.00 | 0.00
oc1R2RC_g23 0.19 | 0.00 | 0.19 | 0.00
oclR2RCT 8.36 | 1.64 | 0.91 | 1.45
oc1R2RCT_g12 || 0.43 | 0.00 | 0.00 | 0.43
oclR2RCT _g13 || 047 | 1.88 | 0.23 | 1.64
ocIR2RCT_g23 || 0.19 | 0.00 | 0.00 | 1.35
0c2R3RCRT 42.61| 7.49 |41.97| 9.64
0c2R3RCRT_gl12]| 0.62 | 0.62 | 0.62 | 0.00
0c2R3RCRT_g13|| 3.83 | 9.97 | 2.81 | 8.95
0c2R3RCRT_g23|| 6.56 | 9.97 | 2.89 | 12.60
Average 5.66 | 3.01 | 4.15 | 3.02
Median 1.15 | 1.61 | 0.21 | 0.89
()
RPCA 0
[%] ALCs |ALCsp|ALCs [ALCgp
books 21.58| 3.08 | 2.78 | 0.00
carsbus3 0.00 | 0.00 | 0.00 | 0.00
carsTurning|| 14.02 | 0.00 | 17.95| 3.67
nrbooks3 || 3.25 | 0.00 | 6.45 | 0.00
(b)
RPCA o
[%] ALCs |ALCsp|ALCs [ALCsp
books 30.16 | 36.60 | 85.19 | 83.95
carsbus3 || 62.13]95.32 |78.83 [100.00
carsTurning || 95.32 | 76.66 | 72.82 | 97.72
nrbooks3 6.20 | 65.29166.73 | 82.26

(©)
(a) Misclassification rates for the 12 real sequences in Fig. 7,
(b) misclassification rates for the four real sequences in Fig. 5, and
(c) outlier detection rates for the four real sequences in Fig. 5

with the bound [|¢*|, < [2] given by [8]. We also see that
the performance remains consistent even if 80 percent of the
entire data set is corrupted.

3.3.2 Experiments with Real Corrupted Data

We test our ability to repair corrupted trajectories and
observe the effects of the repair on segmentation. We apply
our /!-based repair and detection method to the raw motion
sequences in Fig. 7, and then input the repaired data to ALCs
and ALC,, respectively. For comparison, we also use
Robust PCA to complete the data before segmentation. The
misclassification rate for each sequence is listed in Table 7a.
Both Robust PCA and our ¢'-based approach can repair
corrupted trajectories to achieve reasonable segmentations.

We also test our ¢'-based approach for error corrections
on the four motion sequences in Fig. 5. In this experiment,
each trajectory has between 0 and 25 percent of its entries
corrupted. The misclassification and outlier detection rates
for each sequence are listed in Table 7b. For these more
realistic sequences, we see that our ¢!-based approach can
still effectively deal with corrupted trajectories, treating the

1844

fewest possible as outliers. For the cases where
RPCA+ALC achieves good misclassification rates, note
that the outlier detection is also low, meaning that Robust
PCA was unable to detect and correct the errors in the
corrupted trajectories. Finally, in both of these experiments,
we note that both methods tend to work better when
combined with ALCj,.

4 CONCLUSIONS AND FUTURE WORK

In this paper, we have investigated the problem of motion
segmentation from the perspective of robust subspace
separation. We have shown that the key for correct
segmentation, data completion, and error correction is to
correctly harness the intrinsic low-dimensional, sparse
structures within such data. This has made the proper
choice of measures for sparsity and compactness the central
issue. We have shown that in our context, both the (lossy)
coding length and 1-norm are good surrogates for the
matrix rank and vector sparsity, respectively. Not only is
the use of these measures theoretically well founded, but
we have also demonstrated with extensive simulations and
experiments that they indeed lead to algorithms with
superior performance for segmenting motion trajectories
despite outliers, incomplete data, and random errors. The
proposed techniques and algorithms are, in fact, generic to
subspace separation, and can conceivably be used in other
application domains with little modification.

This paper provides strong, encouraging empirical
evidence for people to work on many exciting open
theoretical problems. We have explored several schemes
for improving both the speed and convergence of the
coding-length-based agglomerative algorithm. In the algo-
rithm, the coding length is used as a “distance” measure
between pairs of subsets. It is worth investigating if such a
measure exhibits locality-sensitive hashing properties [6] as
other norms so that more principled speedup algorithms
can be derived.

We have seen that, typically, the agglomerative algo-
rithm converges to the correct motion segmentation for a
wide range of choice of . There is still a lack of proof for
under what conditions the agglomerative algorithm is
expected to converge to the segmentation with globally
minimum coding length. Experiments in this paper and
simulations in [20] seem to indicate that there is a phase
transition between convergence and divergence of the
agglomerative algorithm, similar to the phase transition
for (*-(° equivalence observed in [9]. This remains an open
problem that we will investigate in the future.

Although the problem of completing a low-rank matrix
has recently been solved [2], the problem of completing a
matrix with columns from multiple subspaces remains a
widely open problem. In this paper, we have seen
surprisingly good performance with the ¢!-minimization.
However, there is no proof yet whether this is the best one
can do for this problem nor is there a clear characterization
for the amount of entries needed.

Empirically, we have observed that the sparse coefficients
¢ computed in our method are indicative of the membership
of motion trajectories involved. This suggests that the sparse
coefficients can be used as a measure of similarity for
the trajectories” membership. Hence, one could potentially

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 10, OCTOBER 2010

use graphical cuts or spectral clustering methods for
segmenting the trajectories. It would be interesting to find
out if such an approach could lead to more competitive
clustering results than other similarity measures, such as the
Local Subspace Affinity [31], or results even better than the
methods proposed in this paper.

ACKNOWLEDGMENTS

This work is partially supported by US National Science
Foundation (NSF) grants CRS-EHS-0509151, NSF CCF-TEF-
0514955, ONR YIP N00014-05-1-0633, NSF IIS 07-03756, NSF
CAREER 115-0447739, NSF EHS-0509101, and ONR N00014-
05-10836, and by contract JHU APL-934652.

REFERENCES

[1] A. Barron, J. Rissanen, and B. Yu, “The Minimum Description
Length Principle in Coding and Modeling,” IEEE Trans. Informa-
tion Theory, vol. 44, no. 6, pp. 2743-2760, Oct. 1998.

[2] E. Candes and B. Recht, “Exact Matrix Completion via Convex
Optimization,” Foundations of Computational Math., 2009.

[3] E. Candes, M. Rudelson, R. Vershynin, and T. Tao, “Error
Correction via Linear Programming,” Proc. IEEE Symp. Founda-
tions of Computer Science, pp. 295-308, 2005.

[4] E.Candes and T. Tao, “Decoding by Linear Programming,” IEEE
Trans. Information Theory, vol. 51, no. 12, pp. 4203-4215, Dec. 2005.

[5] J. Costeira and T. Kanade, “A Multibody Factorization Method for
Independently Moving Objects,” Int’l |. Computer Vision, vol. 29,
no. 3, pp. 159-179, 1998.

[6] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni, “Locality-
Sensitive Hashing Scheme Based of p-Stable Distributions,” Proc.
ACM Symp. Computational Geometry, 2004.

[71 F. De la Torre and M.J. Black, “Robust Principal Component
Analysis for Computer Vision,” Proc. Int’l Conf. Computer Vision,
pp- 362-369, 2001.

[8] D.L. Donoho, “For Most Large Underdetermined Systems of
Linear Equations the Minimal ¢!-Norm Solution Is Also the
Sparsest Solution,” Comm. Pure and Applied Math., vol. 59, no. 6,
pp- 797-829, Mar. 2006.

[9] D.L. Donoho and J]. Tanner, “Counting Faces of Randomly
Projected Polytopes When the Projection Radically Lowers
Dimension,” . Am. Math. Soc., vol. 22, no. 1, pp. 1-53, 2009.

[10] Z.Fan,]. Zhou, and Y. Wu, “Multibody Grouping by Inference of
Multiple Subspaces from High Dimensional Data Using Oriented-
Frames,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 28, no. 1, pp. 90-105, Jan. 2006.

[11] M. Fazel, H. Hindi, and S. Boyd, “Log-Det Heuristic for Matrix
Rank Minimization with Applications to Hankel and Euclidean
Distance Matrices,” Proc. Am. Control Conf., pp. 2156-2162, June
2003.

[12] C. Gear, “Multibody Grouping from Motion Images,” Int’l].
Computer Vision, vol. 29, no. 2, pp. 133-150, 1998.

[13] M. Grant and S. Boyd, “CVX: MATLAB Software for Disciplined
Convex Programming [Web Page and Software],” http://
www.stanford.edu/~boyd/cvx/, Nov. 2007.

[14] A. Gruber and Y. Weiss, “Multibody Factorization with Uncer-
tainty and Missing Data Using the EM Algorithm,” Proc. IEEE Conf.
Computer Vision and Pattern Recognition, vol. 1, pp. 769-775, 2004.

[15] R. Hartley and F. Schaffalitzky, “PowerFactorization: An Ap-
proach to Affine Reconstruction with Missing and Uncertain
Data,” Proc. Australia-Japan Advanced Workshop Computer Vision,
2003.

[16] N. Ichimura, “Motion Segmentation Based on Factorization and
Discriminant Criterion,” Proc. IEEE Int’l Conf. Computer Vision, pp.
600-605, 1999.

[17] K. Kanatani, “Motion Segmentation by Subspace Separation and
Model Selection,” Proc. IEEE Int’l Conf. Computer Vision, vol. 2,
pp. 586-591, 2001.

[18] K. Kanatani and Y. Sugaya, “Multi-Stage Optimization for Multi-
Body Motion Segmentation,” Proc. Australia-Japan Advanced Work-
shop Computer Vision, 2003.

RAO ET AL.: MOTION SEGMENTATION IN THE PRESENCE OF OUTLYING, INCOMPLETE, OR CORRUPTED TRAJECTORIES

[19] Q. Ke and T. Kanade, “Robust /!-Norm Factorization in the
Presence of Outliers and Missing Data by Alternative Convex
Programming,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, pp. 739-746, 2005.

[20] Y. Ma, H. Derksen, W. Hong, and J. Wright, “Segmentation of
Multivariate Mixed Data via Lossy Coding and Compression,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 29, no. 9,
pp. 1546-1562, Sept. 2007.

[21] B. Recht, M. Fazel, and P.A. Parillo, “Guaranteed Minimum-Rank
Solutions of Linear Matrix Equations via Nuclear Norm Mini-
mization,” SIAM Rev., 2007.

[22] K. Schindler, D. Suter, and H. Wang, “A Model-Selection
Framework for Multibody Structure-and-Motion of Image
Sequences,” Int’l |. Computer Vision, vol. 79, no. 2, pp. 159-177,
Aug. 2008.

[23] P. Torr, “Geometric Motion Segmentation and Model Selection,”
Philosophical Trans. Royal Soc. of London, vol. 356, pp. 1321-1340,
1998.

[24] R. Tron and R. Vidal, “A Benchmark for the Comparison of 3D
Motion Segmentation Algorithms,” Proc. IEEE Conf. Computer
Vision and Pattern Recognition, pp. 1-8, 2007.

[25] L. Vandenberghe and S. Boyd, “Semidefinite Programming,”
SIAM Rev., vol. 38, no. 1, pp. 49-95, Mar. 1996.

[26] R.Vidal, Y. Ma, and S. Sastry, “Generalized Principal Component
Analysis (GPCA),” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 27, no. 12, pp. 1945-1959, Dec. 2005.

[27] R.Vidal, R. Tron, and R. Hartley, “Multiframe Motion Segmenta-
tion with Missing Data Using PowerFactorization and GPCA,”
Int’l |. Computer Vision, vol. 79, no. 1, pp. 85-105, 2007.

[28] J. Wright and Y. Ma, “Dense Error Correction via ¢! Minimiza-
tion,” IEEE Trans. Information Theory, 2008.

[29] J. Wright, Y. Ma, Y. Tao, Z. Lin, and H.-Y. Shum, “Classification
via Minimum Incremental Coding Length,” SIAM]. Imaging
Sciences, vol. 2, no. 2, pp. 367-395, 2009.

[30] J. Wright, A.Y. Yang, A. Ganesh, S.S. Sastry, and Y. Ma, “Robust
Face Recognition via Sparse Representation,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 31, no. 2, pp. 210-227, Feb.
2009.

[31] J. Yan and M. Pollefeys, “A General Framework for Motion
Segmentation: Independent, Articulated, Rigid, Non-Rigid, De-
generate and Non-Degenerate,” Proc. European Conf. Computer
Vision, pp. 94-106, 2006.

[32] A.Y. Yang, S. Rao, and Y. Ma, “Robust Statistical Estimation and
Segmentation of Multiple Subspaces,” Proc. IEEE Computer Vision
and Pattern Recognition Workshop 25 Years of RANSAC, 2006.

[33] L. Zelnik-Manor and M. Irani, “Degeneracies, Dependencies and
Their Implications in Multi-Body and Multi-Sequence Factoriza-
tion,” Proc. IEEE Conf. Computer Vision and Pattern Recognition,
vol. 2, pp. 287-293, 2003.

Shankar Rao received the BS degree in elec-
trical engineering and computer science from the
University of California, Berkeley, in 2001, and
the MS degree in electrical and computer
engineering, the MS degree in applied mathe-
matics, and the PhD degree in electrical and
computer engineering from the University of
lllinois at Urbana-Champaign in 2004, 2006,
and 2009, respectively. He is currently a research
staff member at HRL Laboratories, LLC. His
research interests include lossy coding-based clustering, robust sub-
space segmentation, manifold learning, and segmentation of images,
motion, and videos. He is a member of the IEEE.

1845

Roberto Tron received the BSc and MSc
degrees (highest honors) in telecommunication
engineering from the Politecnico di Torino in
2004 and 2007, respectively, the Diplome
d’Engenieur from the Eurecom Institute, and
the DEA degree from the Université de Nice
Sophia-Antipolis in 2006. He is currently working
toward the PhD degree in the Department of
Electrical and Computer Engineering at Johns
Hopkins University. His research interests in-
clude motion segmentation and distributed algorithms on camera sensor
networks. He is a student member of the |IEEE.

René Vidal received the BSc degree (highest
honors) in electrical engineering from the Uni-
versidad Catélica de Chile in 1997, and the MSc
and PhD degrees in electrical engineering and
computer sciences from the University of
California, Berkeley, in 2000 and 2003, respec-
tively. In 2004, he joined the Department of
Biomedical Engineering and the Center for
Imaging Science at Johns Hopkins University
as an assistant professor. He was a coeditor
(with Anders Heyden and Yi Ma) of the book Dynamical Vision and has
coauthored more than 100 articles in biomedical imaging, computer
vision, machine learning, hybrid systems, robotics, and vision-based
control. He is a associate editor of the Journal of Mathematical Imaging
and Vision, and a member of the program committees of all of the major
computer vision conferences. He is the recipient of the 2005 US
National Science Foundation (NSF) CAREER Award, the 2004 Best
Paper Award Honorable Mention at the European Conference on
Computer Vision, the 2004 Sakrison Memorial Prize, the 2003 Eli Jury
Award, and the 1997 Award of the School of Engineering of the
Universidad Catdlica de Chile to the best graduating student of the
school. He is a member of the IEEE.

Yi Ma received the two bachelor's degrees in
automation and applied mathematics from Tsin-
ghua University, Beijing, China, in 1995, and the
MS degree in electrical engineering and compu-
ter science in 1997, the MA degree in mathe-
matics in 2000, and the PhD degree in electrical
engineering and computer science in 2000 from
the University of California, Berkeley. Since
2000, he has been on the faculty of the Electrical
and Computer Engineering Department of the
University of lllinois at Urbana-Champaign, where he now holds the rank
of associate professor. Currently, he is also the research manager for
the Visual Computing Group of Microsoft Research Asia in Beijing. His
main research areas are in systems theory and computer vision. He was
the recipient of the David Marr Best Paper Prize at the International
Conference on Computer Vision in 1999 and Honorable Mention for the
Longuet-Higgins Best Paper Award at the European Conference on
Computer Vision in 2004. He received the CAREER Award from the US
National Science Foundation in 2004 and the Young Investigator
Program Award from the US Office of Naval Research in 2005. He is
an associate editor of the |IEEE Transactions on Pattern Analysis and
Machine Intelligence. He is a senior member of the IEEE and a member
of the ACM.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

