
Categorizing Dynamic Textures Using
a Bag of Dynamical Systems

Avinash Ravichandran, Member, IEEE, Rizwan Chaudhry, Member, IEEE, and

René Vidal, Senior Member, IEEE

Abstract—We consider the problem of categorizing video sequences of dynamic textures, i.e., nonrigid dynamical objects such as fire,

water, steam, flags, etc. This problem is extremely challenging because the shape and appearance of a dynamic texture continuously

change as a function of time. State-of-the-art dynamic texture categorization methods have been successful at classifying videos taken

from the same viewpoint and scale by using a Linear Dynamical System (LDS) to model each video, and using distances or kernels in

the space of LDSs to classify the videos. However, these methods perform poorly when the video sequences are taken under a

different viewpoint or scale. In this paper, we propose a novel dynamic texture categorization framework that can handle such

changes. We model each video sequence with a collection of LDSs, each one describing a small spatiotemporal patch extracted from

the video. This Bag-of-Systems (BoS) representation is analogous to the Bag-of-Features (BoF) representation for object recognition,

except that we use LDSs as feature descriptors. This choice poses several technical challenges in adopting the traditional BoF

approach. Most notably, the space of LDSs is not euclidean; hence, novel methods for clustering LDSs and computing codewords of

LDSs need to be developed. We propose a framework that makes use of nonlinear dimensionality reduction and clustering techniques

combined with the Martin distance for LDSs to tackle these issues. Our experiments compare the proposed BoS approach to existing

dynamic texture categorization methods and show that it can be used for recognizing dynamic textures in challenging scenarios which

could not be handled by existing methods.

Index Terms—Dynamic textures, categorization, linear dynamical systems

Ç

1 INTRODUCTION

DYNAMIC textures are video sequences of complex
nonrigid dynamical objects such as fire, flames, water

on the surface of a lake, a flag fluttering in the wind, etc. The
development of algorithms for the analysis of such video
sequences is important in several applications such as
surveillance, where, for example, one wants to detect fires or
pipe ruptures. However, the continuous change in the shape
and appearance of a dynamic texture makes the application
of traditional computer vision algorithms very challenging.

Over the years, several approaches have been proposed
for modeling and synthesizing video sequences of dynamic
textures [31], [28], [36], [1], [10], [19]. Among them, the
generative model proposed by Doretto et al. [10], where a
dynamic texture is modeled using a Linear Dynamical
System (LDS), has been shown to be very versatile. The
LDS-based model has been successfully used for various
vision tasks such as synthesis, editing, segmentation, regis-
tration, and categorization. In this paper, we are primarily
interested in the problem of categorization of dynamic
textures. That is, given a video sequence of a single dynamic

texture, we want to identify which class (e.g., water, fire, etc.)
the video sequence belongs to.

Most of the existing dynamic texture categorization
methods model the video sequence (or a manually selected
image region) as the output of an LDS. Then, a distance or a
kernel between the model parameters of two dynamical
systems is defined. Once such a distance or kernel has been
defined, classifiers such as Nearest Neighbors (NNs) or
Support Vector Machines (SVMs) [12] can be used to
categorize a query video sequence based on the training
data. Among these methods, Saisan et al. [27] used distances
based on the principal angles between the observability
subspaces associated with the LDSs. Vishwanathan et al. [34]
used Binet-Cauchy kernels to compare the parameters of two
LDSs. Further, Chan and Vasconcelos used both the KL
divergence [5] and the Martin distance [4] as a metric
between dynamical systems. Finally, Woolfe and Fitzgibbon
[39] used the family of Chernoff distances and distances
between cepstrum coefficients as a metric between LDSs.
Other types of approaches for dynamic texture categoriza-
tion, such as Fujita and Nayar [13], divide the video
sequences into blocks and compare the trajectories of the
states in order to perform the inference. Alternatively, Vidal
and Favaro [33] extended boosting to LDSs by using
dynamical systems as weak classifiers.

However, existing approaches to dynamic texture
categorization suffer from two major drawbacks.

1. Rather than using an LDS to model the whole video
sequence, existing approaches are typically applied
to a manually extracted “region of interest” contain-
ing the most dynamic content in the original video. In

342 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 2, FEBRUARY 2013

. A. Ravichandran is with the UCLA Vision Lab, University of California,
Los Angeles, Boelter Hall # 3811A, 405 Hilgard Avenue, Los Angeles,
CA 90095. E-mail: avinash@cs.ucla.edu.

. R. Chaudhry and R. Vidal are with the Center for Imaging Science, The
Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218.
E-mail: rizwanch@cis.jhu.edu, rvidal@jhu.edu .

Manuscript received 16 June 2011; revised 30 Jan. 2012; accepted 18 Mar.
2012; published online 2 Apr. 2012.
Recommended for acceptance by D. Cremers.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number
TPAMI-2011-06-0390.
Digital Object Identifier no. 10.1109/TPAMI.2012.83.

0162-8828/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

practice, automatically identifying a region of interest
for each video sequence might not always be possible.

2. Existing approaches are unable to handle videos
taken under different viewpoint and scale. Indeed,
most existing approaches have been validated on the
database from [27], where videos corresponding to
the same semantic category, e.g., “water,” but taken
from different viewpoints, e.g., close or far, are
assigned to different categories such as “water close”
and “water far.” Hence, the database is interpreted as
having 50 classes, while in reality there are only nine
different semantic categories. As a consequence,
existing methods address a very specific scenario,
which is not very useful for practical applications.

One way to address these drawbacks is to leverage recent
works on image-based object categorization that can handle
variations in viewpoint and scale. One such work is the Bag
of Features (BoF) approach [30], [8], where an image is
hypothesized to be identifiable by the distribution of certain
key features extracted from the image. Specifically, a
collection of feature descriptors is extracted from each image
in the training set. These feature descriptors are quantized
into a dictionary of visual words or codewords and the
distribution of codewords is used to represent each image.
New images are categorized by comparing their distribution
of codewords to those of images in the training set using
classifiers such as NNs or SVMs.

A simple way of extending the BoF approach to videos is
to replace traditional image features by spatiotemporal video
features. This requires methods for detecting points of
interest in space and time as well as methods for describing
a spatiotemporal volume around each of these points.
Several feature descriptors [9], [20], [38], [37], [18] have been
proposed in the existing literature. Laptev [20] extends the
Harris corner detector used for images to video sequences by
considering a second moment matrix of the spatiotemporal
gradients. Willems et al. [37] use the spatiotemporal Hessian.
Dollár et al. [9] convolve the video sequence spatially with a
Gaussian filter and temporally with a quadrature pair of 1D
Gabor filters. Local maxima of this response function are
then selected as feature points. Wong and Cipolla [38] model
the video sequence with an LDS and detect interest points
using the parameters of the LDS, as opposed to directly from
the video sequence. Kläser et al. [18] extend the Histogram of
oriented Gradient (HoG)-based approach from 2D to 3D. A
detailed comparison of these methods can be found in [37]
and an empirical evaluation of these descriptors for action
recognition in videos can be found in [35]. Once the
spatiotemporal features have been extracted, the BoF
approach for videos is identical to that for images.

We contend that simple extensions of the BoF approach to
videos based on spatiotemporal feature descriptors will not
be sufficient for dynamic texture categorization. Our
rationale is that the aforementioned spatiotemporal feature
descriptors are based exclusively on spatial and temporal
image gradients. As a consequence, they fail to capture a
critical property of a dynamic texture: their dynamics.
Although Wong and Cipolla [38] used the LDS representa-
tion to detect interest points in video sequences, they
described the video sequences using the DOLLAR [9]
features, which do not explicitly capture the dynamics.

In this paper, we propose a Bag-of-Systems (BoSs)
approach to categorization of dynamic textures which
extends the BoF approach from images to videos.

Our first contribution is to replace traditional spatiotem-
poral feature descriptors by LDSs. This choice explicitly
models the temporal evolution of the intensities of the
spatiotemporal patch it describes as opposed to implicitly
modeling them using spatiotemporal gradients. Indeed, local
LDS models have been successfully used for dynamic texture
segmentation in [11] and [14]. However, they have not been
used for dynamic texture categorization. The reason for this
in the context of BoF methods is that the parameters of an LDS
live in a non-euclidean space and this makes traditional
methods for forming a codebook based on clustering
euclidean feature descriptors no longer applicable.

Our second contribution is to propose two different
methods for computing a codebook of LDSs. The first
method uses a combination of nonlinear dimensionality
reduction followed by K-Means clustering in the low-
dimensional space. The second method uses the K-Medoid
algorithm applied to the Martin distances among the LDSs.
Given a codebook of LDSs, we use various histogram
schemes for representing each video sequence and several
classification techniques for categorizing novel sequences.
We compare the BoS approach to traditional dynamic texture
classification algorithms and to BoF approaches based on
spatiotemporal features. Our experiments show that our BoS
approach outperforms existing methods and that it can
handle videos of dynamic textures taken under different
viewpoint and scale conditions.

A simpler version of the proposed BoS approach was first
introduced in [24], where we used an interest point detector
to extract patches and a K-Means approach to compute
codewords. In this paper, we use a dense sampling approach
to extract interest points and show that this improves the
performance of BoS. We further extend the method of
forming codebooks by considering two alternative ap-
proaches for clustering the data. We also present numerous
new experiments that evaluate the performance of BoS as a
function of the patch and codebook size. Finally, we compare
BoS against numerous state of the art methods and show that
our proposed method outperforms them.

2 PRELIMINARIES

In this section, we introduce the necessary concepts that are
required for our categorization framework. We first intro-
duce the model for dynamic textures and show how video
sequences can be modeled using LDSs. We then introduce
the Martin distance between two LDSs. This distance will
serve as our (dis)similarity metric for comparing LDS in the
BoS framework.

2.1 Dynamic Texture Model

Given F frames of a video or a spatiotemporal patch of
p pixels, fIðtÞ 2 IRpgFt¼1, we model the pixel intensities of
each frame, IðtÞ, as the output of an LDS, i.e.,

zðtþ 1Þ ¼ AzðtÞ þBvðtÞ; ð1Þ

IðtÞ ¼ C0 þ CzðtÞ þwðtÞ; ð2Þ

RAVICHANDRAN ET AL.: CATEGORIZING DYNAMIC TEXTURES USING A BAG OF DYNAMICAL SYSTEMS 343

where zðtÞ 2 IRn is the hidden state at time t, A 2 IRn�n

models the dynamics of the hidden state,C 2 IRp�n maps the
hidden state to the output of the system,C0 2 IRp is the mean
of the video sequence, and wðtÞ � N ð0; RÞ and BvðtÞ �
N ð0; QÞ are the measurement and process noise, respec-
tively. As is often the case, the transformation Q ¼ BB> is
used to incorporate the B matrix in the noise covariance and
Bvt is replaced by v0t. The dimension of the hidden state, n, is
the order of the system and p is the number of pixels in one
frame of the sequence or patch.

Given a video sequence, learning the parameters of this
dynamical model, i.e., learning ðC0; A; C;Q;RÞ from
fIðtÞgFt¼1, is called system identification and it is a well-
studied problem in the controls community. Several
optimal methods such as N4SID [23] and EM [29] can be
used to learn these parameters. However, due to the high
dimensionality of the output (number of pixels), these
procedures become computationally intractable.

To overcome this difficulty, Doretto et al. [10] introduced
a fast but suboptimal method for computing the system
parameters using a Principal Component Analysis (PCA)-
based approach. In this approach, given the frames of the
video sequence, fIðtÞgFt¼1, a compact, rank n, singular value
decomposition of the matrix

Y ¼ ½Ið1Þ � C0; . . . ; IðF Þ � C0� ¼ U�V >; ð3Þ

is performed where

C0 ¼ 1

N

XF
t¼1

IðtÞ:

The system parameters and the state parameters are then
estimated as

C ¼ U and Z ¼ �V >; ð4Þ

where Z ¼ ½zð1Þ; zð2Þ; . . . ; zðF Þ� are the estimated states of
the system. Notice that in computing Z, the state (1) is not
enforced. This is what makes this method suboptimal.
Given the state sequence, the matrix A can be computed
using least-squares as

A ¼ ½zð2Þ; zð3Þ; . . . ; zðF Þ�½zð1Þ; zð2Þ; . . . ; zðF � 1Þ�y; ð5Þ

where Zy represents the pseudoinverse of Z. Also,

Q ¼ 1

N � 1

XF�1

t¼1

v0t
�
v0t
�>
; ð6Þ

where v0t ¼ BvðtÞ ¼ zðtþ 1Þ �AzðtÞ.
The advantage of this model is that it decouples the

appearance of the spatiotemporal patch, which is modeled by
C, from the dynamics, which are represented by A. Hence,
given a spatiotemporal patch, we describe it using the tuple
M ¼ ðA;CÞ. Such a feature descriptor models both the
dynamics and the appearance in the spatiotemporal patch
as opposed to image gradients that only model local texture.

2.2 Subspace Angles-Based Distance between
LDSs

In any categorization algorithm, features from a new query
video sequence need to be compared with the features from

the training set. In general these features lie in a euclidean
space and the euclidean distance between the features is used
as a metric for comparison. In our case, however, the feature
descriptors are LDSs. Therefore, given two LDSs, M1 ¼
ðA1; C1Þ and M2 ¼ ðA2; C2Þ, we need to define a notion of
similarity between these two descriptors.

One family of distances between two LDSs is based on the
subspace angles between the two systems. The subspace angles
are defined as the principal angles between the observability

subspaces associated with the two model parameters. The
observability subspace is the range-space of the extended
observability matrix of the LDS defined by

O1ðMÞ ¼ ½C>; ðCAÞ>; ðCA2Þ>; . . .�> 2 IR1�n: ð7Þ

The calculation of the subspace angles between the two
models is performed by first solving for P from the
Lyapunov equation A>PA� P ¼ �C>C, where

P ¼ P11 P12

P21 P22

� �
2 IR2n�2n; ð8Þ

A ¼ A1 0
0 A2

� �
2 IR2n�2n; ð9Þ

C ¼ C1 C2½ � 2 IRp�2n: ð10Þ

The cosine of the subspace angles f�igni¼1 is calculated as

cos2 �i ¼ ith eigenvalueðP�1
11 P12P

�1
22 P21Þ: ð11Þ

Using the subspace angles, the Martin distance between M1

and M2 is defined as

dMðM1;M2Þ2 ¼ � ln
Yn
i¼1

cos2 �i: ð12Þ

The Martin distance can be easily extended to deal with
two systems of different orders n1 and n2 by solving for P 2
IRðn1þn2Þ�ðn1þn2Þ from A 2 IRðn1þn2Þ�ðn1þn2Þ and C 2 IRp�ðn1þn2Þ.
However, one limitation of the Martin distance is that the
number of pixels p for both of the models must be the same.
This limitation can be overcome by simply resampling the
images to be the same size. For more details regarding
subspace angle-based distances between LDSs, we refer the
reader to [6].

3 CATEGORIZING VIDEO SEQUENCES USING

A BAG OF DYNAMICAL SYSTEMS

Our approach to solving the dynamic texture categorization
problem is inspired by the BoF approach for categorizing
images. The typical steps followed in the BoF framework
are the following:

1. Features and their corresponding descriptors are
extracted from all the images in the training set.

2. A codebook is formed using clustering methods
such as K-Means, where the cluster centers repre-
sent codewords in the codebook.

3. Each image in the training set is represented by the
distribution of codewords in the image.

344 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 2, FEBRUARY 2013

4. A classifier is chosen to compare the distribution of
codewords of a new query image to the distribution
of codewords of the images in the training set and
thus infer its category.

In this paper, we propose to follow a similar approach
for categorizing video sequences of dynamic textures. Our
key contributions are in the first two steps of the BoF
approach, where we replace traditional spatiotemporal
features by LDSs and introduce a novel method for
computing a codebook of LDSs. This last step is particularly
challenging because it requires clustering in the space of
LDSs. An overview of our framework is shown in Fig. 1.

In the following sections, we will describe the correspond-
ing BoS analogues to each one of the BoF steps. While we will
restrict our description of the BoS analogues corresponding
to the most popular methods of each step in the BoF
framework, notice that one could replace each step with
any alternative approach using the concepts we will
introduce here. For example, in the clustering of LDSs, step 1
could use a hierarchical clustering scheme as outlined in [22]
or use a different representation and classification scheme
such as Latent Dirichlet Allocation [3] or probabilistic latent
semantic analysis [15].

3.1 Feature Extraction and Descriptors

The first step in our framework, and in fact in any BoF
approach, is to extract feature descriptors from the video
sequences. Toward this end, there exist two popular
methods: the interest point approach and the dense sampling
approach. In the interest point approach, certain pixels of the
entire video sequence are selected as “interesting” whenever
they satisfy a particular criterion employed. For example, the
3D Harris detector looks for points that are like corners in
space and time, i.e., points whose spatiotemporal derivatives
have large magnitudes. Once the feature points are detected,
the salient properties such as intensity and optical flow and
their gradients of a neighborhood around each of these points
are described using a descriptor. In the dense sampling
approach, the feature detection step is skipped. Instead, the
given video is divided into regular sized spatiotemporal
volumes with the possibility that these volumes could

overlap. Each of these volumes is then described using a
feature descriptor.

In our framework, we will employ the dense sampling
approach. There are several reasons for this choice. First,
interest point approaches have been shown to be very useful
for describing points of an object that are relevant for
recognition (see, e.g., [8]). As shown in [9], [20], [38], [37], and
[18], this is also the case for recognition of activities in videos,
where spatiotemporal points represent points on the human
body. In our case, however, we are describing the motion of
objects such as water, where every point is as interesting as
any other point. Consequently, we would like to use this
information and not ignore certain regions in the video
sequence. Second, there is support from existing literature on
both image categorization [21] and activity recognition from
videos [35] that the dense sampling approach works better
than the interest point approach.

The main difference between our approach and the
standard BoF approach for videos lies in our choice of
feature descriptors. More specifically, we describe each
spatiotemporal patch using an LDS, as opposed to using
existing spatiotemporal descriptors. In this way, we can
explicitly model both the appearance and the dynamics of
each spatiotemporal patch. As our experiments in Section 4
will show, using LDS feature descriptors almost always
improves the categorization performance with respect to
using regular spatiotemporal descriptors. In the next section,
we will describe how we form codebooks for LDSs in order to
apply the BoF framework.

3.2 Codebook Formation

In the traditional BoF framework, once feature points and
their corresponding descriptors are extracted, the descrip-
tors are clustered using an algorithm such as K-Means to
form a codebook. In our case the descriptors are the
parameters of LDSs, which lie in a non-euclidean manifold.
Hence, in order to cluster the LDSs to form codewords, we
need to generalize K-Means to the non-euclidean space.

In order to perform clustering on the space of dynamical
systems, we would first need to define a Riemannian metric.
The LDS parameters tuple ðA;CÞ belongs to a subset of the

RAVICHANDRAN ET AL.: CATEGORIZING DYNAMIC TEXTURES USING A BAG OF DYNAMICAL SYSTEMS 345

Fig. 1. Outline of the bag-of-systems framework for dynamic texture recognition.

outer-product space GLðnÞ � ST ðp; nÞ, where GLðnÞ is the
group of all invertible matrices of size n and ST ðp; nÞ is the
Stiefel manifold of p� nmatrices with orthonormal columns
(p � n). This subset is characterized by several other
constraints that the tuple ðA;CÞ needs to satisfy. In
particular, A must be a stable matrix, i.e., j�iðAÞj < 1, where
�iðAÞ is the ith eigenvalue ofA. In addition, the system must
be observable. Specifically, the rank of the observability
matrix in (7) must be equal to n. Furthermore, any
Riemannian metric for the space of LDS must be invariant
to a change of basis of the state space. Specifically, if we apply
a linear transformation P 2 GLðnÞ to the state zt, the
dynamical system parameters ðA;CÞ are transformed to
ðPAP�1; CP�1Þ. Therefore, the dynamical systems with
parameters ðA;CÞ and ðPAP�1; CP�1Þ are equivalent and
the distance between them must be zero. All these constraints
make it very difficult to define a Riemannian metric on the
space of LDS that has a closed-form expression. In fact,
finding a Riemannian metric for the space of LDS is an open
problem. Moreover, quantities such as the mean on a
manifold do not always exist or are not always uniquely
defined, and are often calculated using an iterative process.

To get around the difficulty associated with finding a
Riemannian metric for the space of LDS, there have been
some attempts to develop metrics between the space of all
the output sequences generated by two dynamical systems.
The most commonly used distances between LDS consider
the distances between the respective extended observability
subspaces, i.e., the span of the columns of the infinite matrix
O1ðMÞ ¼ ½C>; ðCAÞ>; ðCA2Þ>; . . .�> 2 IR1�n. One could
perform clustering on the manifold of finite observability
subspaces by taking a fixed number of rows of O as an
approximation to clustering on the infinite dimensional
manifold. However, such an approach is computationally
very expensive.

In order to address the aforementioned issues, we
propose two different methods in the following section.

3.2.1 Dimensionality Reduction + K-Means

In our first approach, we exploit the fact that the space of
LDSs is endowed with several distances, e.g., the Martin
distance described in Section 2.2. We use these distances to
find a euclidean embedding of the LDSs into a low-
dimensional linear subspace. Several nonlinear dimension-
ality reduction techniques, such as Locally Linear Embed-
ding (LLE) [26], work directly with the points in the higher
dimensional space, while other methods, such as Multi-
dimensional Scaling (MDS) [7] and Isomap [32], work with
the pairwise distances between the points in the higher
dimensional space. Given a low-dimensional representation,
we apply traditional euclidean clustering algorithms to the
euclidean representation in order to form the codebook.

More specifically, given the set of LDS features fMigTi¼1,
where T represents the total number of features extracted
from theN videos in the training set, we first form the matrix
D 2 IRT�T such that Dij ¼ dMðMi;MjÞ. Once all pairwise
distances between the LDSs are available, we use MDS to
obtain a low-dimensional embedding of these points
fMe

i 2 IRdegTi¼1, where de is the dimension of the embedding.
This low-dimensional representation gives us a set of
euclidean points, which approximately preserve the distance

relationships in the high-dimensional noneuclidean space.
Then, clustering algorithms such asK-Means can be applied
to fMe

i g
T
i¼1 because the low-dimensional space is euclidean.

After the clustering stage, we have K cluster centers
fWe

i g
K
i¼1. However, these cluster centers do not correspond

to any of the original LDSs. Moreover, as a result of MDS,
there exists no explicit map from the lower dimensional
embedding to the original space. Hence, in order to select
LDS codewords, fWigKi¼1, we choose the LDS in the
training set whose corresponding low-dimensional repre-
sentation is closest to the cluster center in the low
dimensional space, i.e.,

Wi ¼Mp; where p ¼ arg min
j
kMe

j �We
i k

2: ð13Þ

3.2.2 K-Medoid

Our second approach to form the codebook is to use the
distance matrix D directly instead of embedding the points
into the euclidean space. One such algorithm that works
with the distance between the points rather than the points
themselves is the K-Medoid algorithm [17]. Similar to the
K-Means algorithm, the K-Medoid algorithm starts by
selecting a subset of data points as cluster centers. The
remaining points are then grouped based on their distances
to these chosen cluster centers. Given the clustering, the
cluster centers are updated as the medoid of the data points
within each group. A medoid of a set of data points is the
data point that minimizes the sum of squared distances to
all other data points. Therefore, the medoid is similar to the
centroid of the data points, except that it is restricted to
be one of the data points. Consequently, after running the
K-Medoid algorithm on the distance matrix D, we can
directly obtain a codebook whose elements are LDSs. This
method is computationally more efficient than the K-Means
approach we proposed.

Using either of the two methods, we can obtain the
codebook W ¼ fW1; . . . ;WKg, where each Wi ¼ ðAi; CiÞ.
Each feature is associated with a membership to the code-
words which is given by

k ¼ arg min
i
dMðM;WiÞ;where i 2 f1; . . . ; Kg: ð14Þ

In the experimental section, we will show the quality of the
codebooks obtained using both these methods and, conse-
quently, their impact on the categorization performance. In
the next section, we show how the codebooks can be used to
represent each of the training and testing video sequences.

3.3 Representing Videos Using the Codebook

Once the K codewords are available, each video sequence
needs to be represented using this vocabulary. This is done
by using a histogram h ¼ ½h1; h2; . . . ; hK �> 2 IRK . There are
several choices for such a representation. In what follows,
we will describe a few approaches that we will use to
represent the video sequences. The experiments in Section 4
show which of these methods performs better.

We first introduce some notation. Let us assume that
codeword k occurs cik times in the ith video sequence. Let N
be the total number of video sequences and Nk be the
number of video sequences in which codeword k occurs at
least once. The simplest representation is called the Term
Frequency (TF) and is defined as

346 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 2, FEBRUARY 2013

hik ¼
cikPK
k¼1 cik

; k ¼ 1; . . . ; K and i ¼ 1; . . . ; N: ð15Þ

Another popular approach is the Term Frequency-Inverse
Document Frequency (TF-IDF) [30], defined as

hik ¼
cikPK
k¼1 cik

 !
ln

N

Nk

� �
: ð16Þ

Each of these two methods has its own advantages. The TF
approach is the simplest of the approaches outlined above.
Here, the focus is solely on the distribution of the codewords
in a test video. The TF-IDF, on the other hand, discounts
features that are common to all classes of video sequences
and focuses on the ones that are unique to a particular class.

Once a histogram h is computed, we normalize it by its
L1 norm. As a consequence, h lies on the unit L1 ball in IRK .
We exploit this fact in our classification framework, which
we introduce in the next section.

3.4 Classification

The final step in our framework is to classify a new query
video sequence using the training data. Given the training
database fðhi; liÞgNi¼1, where hi is a histogram extracted
from the ith training video and li 2 f1; . . . ; Lg is the class
label of the ith training video, our goal is to infer the class
label of a new histogram ~h associated with a new video ~V .

A simple approach to obtain the label associated with ~h is
to use the k-nearest neighbors (k-NN) classifier [12], where
the query video sequence is assigned the majority class label
of its k closest histograms from the training database. In
order to do this, we first need a notion of a distance between
histograms hi ¼ ½hi1; . . . ; hiK � of the training set and the
query histogram ~h. We can use standard distances between
histograms such as the �2-distance or the square root
distance on the sphere [12], which are defined as

d�2ðh1;h2Þ ¼
1

2

XK
k¼1

jh1k � h2kj2

h1k þ h2k
; ð17Þ

dpðh1;h2Þ ¼ arccos
XK
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
h1kh2k

p !
; ð18Þ

where hik denotes the kth element of the histogram vector hi.
Another approach is to use a discriminative classification

scheme such as a kernel SVM. The standard kernel used for
histograms is the radial basis kernel, defined as Kðh1;h2Þ ¼
e��dðh1;h2Þ, where � is a free parameter usually learned by
cross validation and dðh1;h2Þ is any distance on the space of
histograms.

Alternatively, one could use a generative classifier such
as the Naive Bayes (NB) classifier used in [8]. The naive
Bayes classifier assumes that, given a category, each
codeword is independently drawn from a multinomial
distribution specific to that particular category. Moreover,
each category is selected according to a prior probability. A
training set of labeled sequences is used to learn the
category prior and category-specific multinomial codeword
distributions. Finally, given the codeword distribution in a
test video, the maximum a posteriori estimate of the
category is computed using Bayes’ rule to determine the
category of the test video sequence. We refer the readers to
[8] for more details on the implementation of the classifier.

4 EXPERIMENTAL RESULTS

In this section, we present a detailed experimental evalua-
tion of various aspects of our algorithm. We use the dataset
from [27]. This dataset consists of 50 classes of 4 video
sequences each. The state-of-the-art recognition results on
this dataset, reported by Chan and Vasconcelos [4], are
97.5 percent by using the kernel version of the dynamic
texture model and 96.5 percent by using just the Martin
distance on the LDS parameters.

However, as we argued in the introduction, existing
experiments suffer from two drawbacks. First, the reported
results are not obtained on the entire video sequences, but on
a manually extracted patch of size 48� 48. The selection of
the patch is not consistent across the video; hence the results
are not reproducible for novel videos without having to first
select a patch of interest. Second, the 50 classes are obtained
by artificially separating videos of the same semantic class
that are taken from different viewpoints and scales and
treating them as different classes. For example, water far and
water close were considered as separate classes. If one
combines the sequences of the same dynamic texture that
were taken from different viewpoints/scales, the dataset can
be reduced to a nine class dataset with the classes being
boiling water (8), fire (8), flowers (12), fountains (20), sea (12),
smoke (4), water (12), waterfall (16), and plants (108). Here
the numbers in parenthesis represent the number of
sequences in the dataset. Since the number of sequences of
plants far outnumbered the number of sequences for the
other classes, in this paper we consider two reorganized
datasets: UCLA8, which contains 88 videos of 8 classes, and
UCLA9, which contains 112 videos of 9 classes.1 Fig. 2 shows
some sample frames from this database

RAVICHANDRAN ET AL.: CATEGORIZING DYNAMIC TEXTURES USING A BAG OF DYNAMICAL SYSTEMS 347

Fig. 2. Sample snapshots from the UCLA8 database, which is a reorganized version of the UCLA50 dynamic texture database. Each image
represents a sample frame from a different video sequence in the database.

1. The UCLA9 database contains 32 randomly chosen plant video
sequences as opposed to all 108 to prevent training bias.

Before presenting the results of our method on these two
databases, we first explain implementation details of the
various stages in our pipeline as well as the state-of-the art
methods we compare against.

4.1 Implementation Details

Feature extraction. As stated earlier, we use a dense sampling
approach for extracting features from the video sequences.
Given a video sequence, we divide it into non-overlapping
spatiotemporal volumes of size �� �� � , where � represents
the spatial size and � represents the temporal size. We vary
the spatiotemporal volumes such that � 2 f20; 30; 60g and
� 2 f15; 25g. This gives rise to six different sets of spatiotem-
poral volumes. We model each spatiotemporal volume using
an LDS of order n. In the experiments, we chosen ¼ 3 and we
do not optimize this parameter. Additionally, we wish to
point out that we use each of the six sets separately and do not
combine spatiotemporal patches of different sizes. In order to
be able to extract such nonoverlapping volumes and make
sure we do not have partial volumes, we resample the spatial
size of the video sequences. In the original database, each
frame of the video sequence is of size 110� 160 and the video
sequence contains 75 frames. We resample all the video
sequences such that each frame is of size 120� 180 to ensure
that we utilized the entire video sequence while extracting
nonoverlapping patches and not disregard any region. We
then extract our features from the resampled videos as
opposed to the original video sequences.

Codebook formation. In order to obtain the codebook
for our categorization framework, we use the two
approaches outlined earlier in Section 3.2. In the case of
the K-Medoid approach, we run the algorithm directly on
the Martin distances between the LDSs identified from the
spatiotemporal volumes extracted from the training videos.
For the K-Means approach, we first perform MDS on the
distance matrix D as described in Section 3.2 and then use
the K-Means algorithm to cluster the low-dimensional
representation. We wish to point out that the dimension de
of the euclidean points is directly obtained by the MDS
algorithm. We do not specify a dimension a priori nor do
we reduce the dimension of the points after the MDS step.
For both approaches, we varied the number of clusters K
from 8 to 96 in steps of 8.

Representation and classification. Once the codebook is
formed, we have two choices by which we can represent a
video sequence, namely TF and TF-IDF. Also, we have two
choices of distances between histograms, namely, the
�2-distance and the square root distance on the sphere. In
addition, the classifier can be k-NN with k ¼ 1 or 3, naive
Bayes, or SVM. This results in eight k-NN classifiers, one
naive Bayes classifier, and two SVM classifiers, which gives
a total of 11 possible classifiers. We show results using all
these methods and discuss which method is best. All results
reported in this paper are averaged over 10 runs of our
algorithm for each parameter choice. This is because in each
run of the algorithm, the codebook can change as the
K-Means and the K-Medoid algorithms are initialized
randomly and can converge to different cluster centers.

From each class in the database, we choose 50 percent of
the sequences for training codewords and the remaining
50 percent for testing purposes. For comparison, the same

training/testing split is used for all the baseline methods
which we will explain in the following.

4.2 Baseline Methods

We compare the performance of our BoS approach with two
baselines. Our first baseline is the traditional single LDS
approach to categorize dynamic textures [27] and our
second baseline is the BoF approach [18], [37], [9] for
categorizing videos. We briefly explain these methods and
give some implementation details.

Single LDS approach. In our first baseline method, we
model the entire video sequence using a single LDS. Given
a test video sequence, we compute the Martin distance
between the test LDS and each of the LDS models of the
testing set. Based on this distance, we use three different
classifiers, namely, the k-NN classifier with k ¼ 1 and k ¼ 3
and an SVM classifier and compare our results against the
best out of these. As for the system order, we tested all
system orders in the range ½2; . . . ; 10�, and considered the
best result out of these as the single LDS baseline. This
approach is identical to the one originally proposed in [27].

Comparison of spatiotemporal features. Our second
baseline method is the BoF approach for categorizing video
sequences. We extract different features from each of the
spatiotemporal volumes using the dense sampling approach
and compare their performance. We use five different types
of descriptors for each spatiotemporal volume, namely, the
Dollar descriptor [9], the 3DHOG descriptor [18], and three
different versions of the descriptors proposed in Willems
et al. [37].

For the Dollar descriptor, we extract the gradients from
each spatiotemporal volume and concatenate it into a single
vector. Similarly to other works [9], [35] that use the Dollar
descriptor, we reduce the dimensionality of the feature
vector to a 100-dimensional vector using PCA [16]. We
denote this feature as DOLLAR100. In order to obtain
the descriptors we used the original code provided by the
authors at http://vision.ucsd.edu/pdollar/toolbox/doc/
index.html.

For the Willems detector, we used three types of features
based on the original representation. These include sum of
gradients, sum of gradients along with their absolute sum,
and the sum of the gradients in each directions. We denote
these features as ESURF, ESURF1, and ESURF2 since they
are extended version of the SURF descriptors [2] that are
used for images. We use the code provided by the authors
at http://homes.psat.kuleuven.be/gwillems/research/
Hes-STIP/ to extract these features.

Finally, for the 3DHOG descriptor, we use the code from
http://lear.inrialpes.fr/software and use the dense sam-
pling approach to extract the features.

For each of these descriptors, we use the K-Means
algorithm to cluster them and then use them in a BoF
approach. Similarly to our approach, we varied the code-
book size from 8 to 96 in steps of 8 to be able to compare the
results directly with our methods.

4.3 Results

As described above, there are a number of implementation
details that need to be considered. Especially important are

348 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 2, FEBRUARY 2013

1. the size of the spatiotemporal patch,
2. the clustering approach,
3. the number of clusters, and
4. the feature representation and classifier used.

All these factors directly affect the categorization perfor-
mance and, while considering the parameter choices for one
factor, we need to marginalize over the effect of all other
factors. To analyze the variation in categorization perfor-
mance with respect to each parameter, we will report various
statistics of the categorization performance while fixing one
particular parameter choice and varying across all other
choices for the remaining parameters. For example, when
testing the performance against patch sizes (six choices),
there are two choices for the clustering method, 12 choices for
the number of clusters, and 11 choices for the type of
representation and classification method used. For each
configuration of parameter choices, we ran 10 instances of the
proposed categorization pipeline by randomly initializing
the clustering method, and use the mean of these 10 runs as
the categorization rate for that particular parameter choice
configuration. This results in 132 different categorization
results for each of K-Means and K-Medoid and each patch
size. Therefore, to compare the categorization performance
against patch sizes, we need to report statistics for the
132 runs for each patch size.

Box plots. We choose to display the results using box plots
that will represent several statistics of categorization perfor-
mance for each parameter choice over all variations of all
other parameters. Fig. 3 shows a generic box-plot. Each plot
displays a range of statistics for each group of data/results.
The bottom and top whiskers represent nonoutliers (de-
scribed later) minimum and maximum categorization
percentages, the bottom and top of the box represent 25-
and 75-percentiles and the central dot represents the median
categorization rates. The dots beyond the whiskers represent
automatically computed outliers that correspond to categor-
ization performances greater than or smaller than 1.5 times
the interquartile range beyond each of the respective
quartiles. This corresponds to approximately �2:7� or

99.3 coverage if the categorization percentages were nor-
mally distributed. The notches around the median represent
ranges for confidence intervals to determine whether the
difference in two median performances is statistically
significant with 95 percent confidence under a Gaussian
assumption. In particular, in Fig. 3, the difference between
the two medians is statistically significant with 95 percent
confidence as the notches do not overlap.

4.3.1 UCLA8 Database

Effect of patch size. Fig. 4 illustrates the categorization
performance of the K-Means and K-Medoid-based cluster-
ing approaches against several patch sizes and the dense
sampling approach. As we can see, the maximum categor-
ization rate is achieved using K-Means-based clustering
and a spatiotemporal patch size of 20� 20� 25, whereas
the median performance using a patch size of 30� 30� 25
is statistically significantly better than the median perfor-
mance across all other patch sizes. Although, the median
performance of K-Means is not always significantly better
than K-Medoid, the maximum performance of K-Means is
always better than K-Medoid for all patch sizes.

We also experimented with a different sampling strategy,
namely, the grid sampling approach. One of the disadvantages
of using the dense sampling approach is that for the same
video size, as the patch size decreases, the number of patches
that can be extracted increases. This introduces a sampling
bias as the total number of patches extracted for a small patch
size is larger than the total number of patches extracted for a
large patch size. To remove this sampling bias, we use grid
sampling, where the number of extracted patches is the same
for all patch sizes. We first divide the video into a grid of
the largest patch size. Patches for all other patch sizes are
extracted centered at the same pixels as the largest patch size.
This guarantees that the number of spatiotemporal patch
samples is the same across all patch sizes for a fair
comparison between patch sizes. Fig. 5 shows the categor-
ization rates. We see that for all patch sizes, the dense
sampling approach gives better results than the grid-based
approach. Moreover, the median performance for using

RAVICHANDRAN ET AL.: CATEGORIZING DYNAMIC TEXTURES USING A BAG OF DYNAMICAL SYSTEMS 349

Fig. 3. Example of a box plot used to compare the statistics of two sets
of categorization performances. The graphs display the nonoutlier
minimum and maximum performance, the 25- and 75-percentiles,
median and outliers. The notches around the median represent ranges
for statistical significance tests at 95 percent for difference in median
performance.

Fig. 4. Categorization performance of BoS on UCLA8 as a function of
the patch size. Smaller patch sizes (� ¼ 20; 30) with larger temporal
extents (� ¼ 25) perform better than large patch sizes (� ¼ 60) or smaller
temporal extents (� ¼ 15).

dense patches is always better in a statistically significant
sense. We observe that smaller patch sizes with larger
temporal extents give the best overall performance
(20� 20� 25) as well as the best statistically significant
median performance (30� 30� 25). Larger patch sizes lead
to degradation in performance.

Effect of representation and classifier. Fig. 6 displays the
categorization performance against the choice of the classi-
fier. We can see that overall the choice of the classifier does
not affect the median performance of the algorithm by more
than 10 percent. In fact, other than the naive Bayes classifier,
the difference in median performance of any two classifiers is
not necessarily statistically significant. Therefore, our frame-
work is not particularly dependent on the choice of the
representation, or the classifier used, but empirically, the
median performance of TF-based representations is better
than IDF-based representation. In this case, the naive Bayes

classifier is overall the better choice with a slightly better
median and maximum categorization rate.

Number of codewords/clusters. Fig. 7 displays the
performance of all the algorithms against the number of
clusters used. As expected, using more clusters leads to
increased performance, with the best performance
achieved with 96 clusters. Again, we see that the
performance of K-Means-based clustering is better than
that of K-Medoid. Moreover, the difference in median
performance when using more than 64 clusters is not
statistically significant and hence, beyond a certain point,
the choice of the number of clusters does not significantly
change the categorization performance.
K-Means versusK-Medoid. From Figs. 4, 6, and 7, we see

that although the difference in the median performance of
K-Means versus K-Medoid-based clustering is not always
statistically significant, except for the case of the naive Bayes
classifier, the maximum performance of K-Means-based
clustering approaches is always better than that of
K-Medoid. This is because K-Means computes a geome-
trically accurate mean of each cluster. However, there is a
tradeoff as K-Medoid gives better computational perfor-
mance than K-Means at the cost of decreased accuracy.
Overall, the choice of usingK-Means versusK-Medoid does
not affect the categorization performance in a significant way
and either of the clustering methods can be chosen based on
the tradeoffs mentioned.

Comparison to state of the art. Finally, to compare our
approach against standard BoF-based approaches, we used
the same patch sizes, number of clusters, and classifiers with
K-Means-based clustering as for our BoS approach. Fig. 10
shows statistics of categorization performance of our BoS
method against other BoF methods. Across all patch sizes, the
maximum categorization rate of our proposed approach is at-
par or better than other feature-based approaches. Moreover,
for larger patch sizes, our approach performs significantly
better than other BoF-based methods. The standard LDS-
based approach performs at 52 percent, which is much worse
than even standard BoF-based methods. Fig. 9 shows the
confusion matrix for our approach on the UCLA8 database
corresponding to the best categorization rate achieved,
84 percent. Comparing this to the confusion matrix in Fig. 8
using the single LDS-based approach, with a categorization

350 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 2, FEBRUARY 2013

Fig. 5. Categorization performance of BoS on UCLA8 as a function of
the patch sampling approach. Dense sampling performs better than
grid-based sampling. Smaller patch sizes with larger temporal extent
perform better for grid-based approaches as well.

Fig. 6. Categorization performance of BoS on UCLA8 as a function of
the classifier. The choice of representation and classifier does not
significantly (statistically) affect the categorization performance. Here,
the different classifiers are denoted by the tuple n-R-D, where n is the
number of nearest neighbors (1 or 3), or SVM, R is the histogram
representation (TF (T) or TF-IDF(I)), and D is the histogram distance
(the chi-square distance (CS) or the distance on the sphere (FR)). For
SVM, we only use the chi-square distance, and therefore we skip it in the
axis labels.

Fig. 7. Categorization performance of BoS on UCLA8 as a function of
the codebook size. Larger codebooks give better performance for both
K-Means and K-Medoid-based approaches. However, the performance
saturates after a certain codebook size.

rate of 52 percent, we can clearly see that our approach
performs significantly better than the state of the art. In
particular, our method only makes errors in two classes, fire
and fountain, whereas the single LDS method altogether fails
to recognize some classes, fire, smoke, sea, and boiling, and
makes large errors in the remaining classes.

4.3.2 UCLA9 Database

We also tested our approach on the UCLA9 database that
contains the additional plants class and all eight classes in
UCLA8. Similar to our experiments for the UCLA8 dataset,
Fig. 11 shows statistics for categorization performance of
our approach against several state-of-the-art BoF-based
approaches. We again see that overall our proposed
approach performs at-par with or better than all state-of-
the-art bag-of-features-based approaches and much better
than the single LDS approach. The median performance of
our approach is statistically better than all other approaches
for all patch sizes except 20� 20� 15. Fig. 13 displays the

confusion matrix for the best categorization performance of
our approach and Fig. 12 displays the confusion matrix
achieved using the single LDS method. We achieve an
overall categorization rate of 78 percent compared to
48 percent for the state-of-the-art single LDS approach.
Here again we see that our method performs much better
than the single LDS approach and only makes errors in four
classes, whereas the single LDS method makes errors in all
classes except one. We conclude that the increase in
categorization comes from explicitly using local dynamical
systems for modeling dynamic textures as opposed to using
a single global model.

5 DISCUSSION AND CONCLUSIONS

In this paper, we proposed a Bag-of-Systems approach for
categorizing dynamic textures. By modeling a video with
the distributions of local dynamical models extracted from
it, we showed that we are able to better handle the
variations in view-point and scale in the training and test

RAVICHANDRAN ET AL.: CATEGORIZING DYNAMIC TEXTURES USING A BAG OF DYNAMICAL SYSTEMS 351

Fig. 8. Confusion matrix of the best performing single LDS baseline
method on UCLA8 (Martin distance with SVM classifier). The overall
categorization performance is 52 percent.

Fig. 9. Confusion matrix of the best performing BoS approach on
UCLA8. The overall categorization rate is 84 percent.

Fig. 10. Comparison of the categorization performance of the BoS method against several state-of-the-art BoF-based methods for different patch
sizes on the UCLA8 database. A dashed line indicates the best performance of the single LDS approach from [10].

data as compared to modeling the entire video sequence
with a single global model. In order to construct the BoS
model for a video sequence, we had to tackle several
challenges, specifically in the codebook formation step of
the pipeline. Toward this end, we proposed a method that
uses distances on the space of dynamical systems, nonlinear
dimensionality reduction techniques, and K-Means or
K-Medoid to efficiently construct the dynamical systems
codebook. We extensively compared our algorithm with
standard Bag of Features approaches using a variety of
different features for categorizing video sequences as well
as the original single LDS approach. Our experimental
results showed that our approach produces better results
across different parameter choices and empirically estab-
lished the superior performance of our proposed approach.
By moving from the traditional single model approach to
multiple models, we can see that the performance increases.
One way to further improve this model is to combine both
local and global methods. Our recent approach [25] showed
that we achieve a better categorization performance by
combining both local and global models.

REFERENCES

[1] Z. Bar-Joseph, R. El-Yaniv, D. Lischinski, and M. Werman,
“Texture Mixing and Texture Movie Synthesis Using Statistical
Learning,” IEEE Trans. Visualization and Computer Graphics, vol. 7,
no. 2, pp. 120-135, Apr.-June 2001.

[2] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded Up
Robust Features,” Proc. European Conf. Computer Vision, May
2006.

[3] D. Blei, A. Ng, and M. Jordan, “Latent Dirichlet Allocation,”
J. Machine Learning Research, vol. 3, pp. 993-1022, 2003.

[4] A. Chan and N. Vasconcelos, “Classifying Video with Kernel
Dynamic Textures,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, pp. 1-6, 2007.

[5] A. Chan and N. Vasconcelos, “Probabilistic Kernels for the
Classification of Auto-Regressive Visual Processes,” Proc. IEEE
Conf. Computer Vision and Pattern Recognition, vol. 1, pp. 846-851,
2005.

[6] K.D. Cock and B.D. Moor, “Subspace Angles and Distances
between ARMA Models,” System and Control Letters, vol. 46, no. 4,
pp. 265-270, 2002.

352 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 2, FEBRUARY 2013

Fig. 11. Comparison of the categorization performance of the BoS method against several state-of-the-art BoF-based methods for different patch

sizes on the UCLA9 database. A dashed line indicates the best performance of the single LDS approach from [10].

Fig. 12. Confusion matrix of the best performing single LDS baseline
method on UCLA9. The overall categorization performance is
48 percent.

Fig. 13. Confusion matrix of the best performing BoS approach on
UCLA9. The overall categorization performance is 78 percent.

[7] T.F. Cox and M.A.A. Cox, Multidimensional Scaling. Chapman and
Hall, 1994.

[8] C. Dance, J. Willamowski, L. Fan, C. Bray, and G. Csurka, “Visual
Categorization with Bags of Keypoints,” Proc. European Conf.
Computer Vision, 2004.

[9] P. Dollár, V. Rabaud, G. Cottrell, and S. Belongie, “Behavior
Recognition via Sparse Spatio-Temporal Features,” Proc. IEEE Int’l
Workshop Visual Surveillance and Performance Evaluation of Tracking
and Surveillance, Oct. 2005.

[10] G. Doretto, A. Chiuso, Y. Wu, and S. Soatto, “Dynamic Textures,”
Int’l J. Computer Vision, vol. 51, no. 2, pp. 91-109, 2003.

[11] G. Doretto, D. Cremers, P. Favaro, and S. Soatto, “Dynamic Texture
Segmentation,” Proc. IEEE Conf. Computer Vision, pp. 44-49, 2003.

[12] R. Duda, P. Hart, and D. Stork, Pattern Classification. Wiley-
Interscience, Oct. 2004.

[13] K. Fujita and S. Nayar, “Recognition of Dynamic Textures Using
Impulse Responses of State Variables,” Proc. Third Int’l Workshop
Texture Analysis and Synthesis, Oct. 2003.

[14] A. Ghoreyshi and R. Vidal, “Segmenting Dynamic Textures with
Ising Descriptors, ARX Models and Level Sets,” Proc. Int’l
Workshop Dynamic Vision, pp. 127-141, 2006.

[15] T. Hofmann, “Probabilistic Latent Semantic Analysis,” Proc.
Uncertainty in Artificial Intelligence, 1999.

[16] I. Jolliffe, Principal Component Analysis, second ed. Springer-Verlag,
2002.

[17] L. Kaufman and P. Rousseeuw, Finding Groups in Data: An
Introduction to Cluster Analysis. Wiley, 1990.

[18] A. Kläser, M. Marszałek, and C. Schmid, “A Spatio-Temporal
Descriptor Based on 3D-Gradients,” Proc. British Machine Vision
Conf., pp. 995-1004, 2008.

[19] V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick, “Graphcut
Textures: Image and Video Synthesis Using Graph Cuts,” ACM
Trans. Graphics, vol. 22, pp. 277-286, 2003.

[20] I. Laptev, “On Space-Time Interest Points,” Int’l J. Computer Vision,
vol. 64, nos. 2/3, pp. 107-123, 2005.

[21] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond Bags of Features:
Spatial Pyramid Matching for Recognizing Natural Scene Cate-
gories,” Proc. IEEE Conf. Computer Vision and Pattern Recognition,
vol. 2, pp. 2169-2178, 2006.

[22] D. Nister and H. Stewenius, “Scalable Recognition with a
Vocabulary Tree,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, pp. 2161-2168, 2006.

[23] P.V. Overschee and B.D. Moor, “N4SID : Subspace Algorithms for
the Identification of Combined Deterministic-Stochastic Systems,”
Automatica, vol. 30, pp. 75-93, 1994.

[24] A. Ravichandran, R. Chaudhry, and R. Vidal, “View-Invariant
Dynamic Texture Recognition Using a Bag of Dynamical Systems,”
Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2009.

[25] A. Ravichandran, P. Favaro, and R. Vidal, “A Unified Approach to
Segmentation and Categorization of Dynamic Textures,” Proc.
Asian Conf. Computer Vision, pp. 425-438, 2010.

[26] S. Roweis and L. Saul, “Nonlinear Dimensionality Reduction by
Locally Linear Embedding,” Science, vol. 290, no. 5500, pp. 2323-
2326, 2000.

[27] P. Saisan, G. Doretto, Y.N. Wu, and S. Soatto, “Dynamic Texture
Recognition,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, vol. 2, pp. 58-63, 2001.

[28] A. Schödl, R. Szeliski, D.H. Salesin, and I. Essa, “Video Textures,”
Proc. ACM Siggraph, pp. 489-498, 2000.

[29] R. Shumway and D. Stoffer, “An Approach to Time Series
Smoothing and Forecasting Using the EM Algorithm,” J. Time
Series Analysis, vol. 3, no. 4, pp. 253-264, 1982.

[30] J. Sivic and A. Zisserman, “Video Google: A Text Retrieval
Approach to Object Matching in Videos,” Proc. IEEE Int’l Conf.
Computer Vision, pp. 1470-1477, 2003.

[31] M. Szummer and R.W. Picard, “Temporal Texture Modeling,”
Proc. IEEE Int’l Conf. Image Processing, vol. 3, pp. 823-826, 1996.

[32] J.B. Tenenbaum, V. de Silva, and J.C. Langford, “A Global
Geometric Framework for Nonlinear Dimensionality Reduction,”
Science, vol. 290, no. 5500, pp. 2319-2323, 2000.

[33] R. Vidal and P. Favaro, “Dynamicboost: Boosting Time Series
Generated by Dynamical Systems,” Proc. IEEE Int’l Conf. Computer
Vision, 2007.

[34] S. Vishwanathan, A. Smola, and R. Vidal, “Binet-Cauchy Kernels
on Dynamical Systems and Its Application to the Analysis of
Dynamic Scenes,” Int’l J. Computer Vision, vol. 73, no. 1, pp. 95-119,
2007.

[35] H. Wang, M.M. Ullah, A. Kläser, I. Laptev, and C. Schmid,
“Evaluation of Local Spatio-Temporal Features for Action
Recognition,” Proc. British Machine Vision Conf., p. 127, Sept. 2009.

[36] L. Wei and M. Levoy, “Fast Texture Synthesis Using Tree-
Structured Vector Quantization,” Proc. ACM Siggraph, pp. 479-488,
2000.

[37] G. Willems, T. Tuytelaars, and L.J.V. Gool, “An Efficient Dense
and Scale-Invariant Spatio-Temporal Interest Point Detector,”
Proc. European Conf. Computer Vision, 2008.

[38] S.-F. Wong and R. Cipolla, “Extracting Spatiotemporal Interest
Points Using Global Information,” Proc. IEEE Int’l Conf. Computer
Vision, pp. 1-8, 2007.

[39] F. Woolfe and A. Fitzgibbon, “Shift-Invariant Dynamic Texture
Recognition,” Proc. European Conf. Computer Vision, pp. 549-562,
2006.

Avinash Ravichandran received the BE degree
in electronics and communication engineering
from the University of Madras in 2003, the
master’s degree in electrical and computer
engineering in 2007, the master’s degree in
applied mathematics and statistics in 2009, and
the PhD degree in electrical and computer
engineering in 2010 from The Johns Hopkins
University. Currently, he is working as a post-
doctoral fellow with the Vision Lab at the

University of California, Los Angeles. His research interests include
analysis of temporal events, activities, and dynamic textures. He is a
member of the IEEE.

Rizwan Chaudhry received the BSc (Honors)
degree with a double major in computer
science and mathematics from the Lahore
University of Management Sciences in Lahore,
Pakistan, in 2005. He received the PhD degree
in computer science from The Johns Hopkins
University in 2012 where he was associated
with the Vision, Dynamics and Learning lab. He
is currently part of the Video Cognition group at
Microsoft. His areas of research include model-

ing dynamic visual phenomena, human activity recognition, and
tracking. He is a member of the IEEE.

René Vidal received the BS degree in electrical
engineering (highest honors) from the Pontificia
Universidad Catolica de Chile in 1997 and the
MS and PhD degrees in electrical engineering
and computer sciences from the University of
California, Berkeley, in 2000 and 2003, respec-
tively. He was a research fellow at the National
ICT Australia in the Fall of 2003 and currently is
an associate professor in the Department of
Biomedical Engineering at The Johns Hopkins

University. He has coauthored more than 150 articles in biomedical
image analysis, computer vision, machine learning, hybrid systems, and
robotics. He is a recipient of the 2012 J.K. Aggarwal Prize “for
outstanding contributions to generalized principal component analysis
(GPCA) and subspace clustering in computer vision and pattern
recognition,” the 2012 Best Paper Award in Medical Robotics and
Computer Assisted Interventions, 2011 Best Paper Award Finalist at the
IEEE Conference on Decision and Control, the 2009 ONR Young
Investigator Award, the 2009 Sloan Research Fellowship, the 2005 NFS
CAREER Award, and the 2004 Best Paper Award Honorable Mention at
the European Conference on Computer Vision. He also received the
2004 Sakrison Memorial Prize for completing an exceptionally docu-
mented piece of research, the 2003 Eli Jury award for outstanding
achievement in the area of systems, communications, control, or signal
processing, the 2002 Student Continuation Award from NASA Ames, the
1998 Marcos Orrego Puelma Award from the Institute of Engineers of
Chile, and the 1997 Award of the School of Engineering of the Pontificia
Universidad Catolica de Chile to the best graduating student of the
school. He is a senior member of the IEEE and the ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

RAVICHANDRAN ET AL.: CATEGORIZING DYNAMIC TEXTURES USING A BAG OF DYNAMICAL SYSTEMS 353

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

