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Abstract

We present a multiple view algorithm for vision based
landing of an unmanned aerial vehicle. Our algorithm
is based on our recent results in multiple view geom-
etry which exploit the rank deficiency of the so called
multiple view matrix. We show how the use of multiple
views significantly improves motion and structure es-
timation. We compare our algorithm to our previous
linear and non-linear two-view algorithms using an ac-
tual flight test. Our results show that the vision-based
state estimates are accurate to within 7cm in each axis
of translation and 4 degrees in each axis of rotation.

1 Introduction

The problem of using computer vision to estimate the
motion of an unmanned aerial vehicle (UAV) relative
to a landing target has recently been an active topic
of research [8, 9, 10, 11, 15]. The problem can be con-
sidered as a special case of the structure from motion
problem in computer vision, in which all the feature
points lie on a plane. This makes the problem a de-
generate case since the generic eight-point algorithm
for two views [3] fails to work. Therefore, a special
algorithm which explicitly uses the knowledge that all
feature points are coplanar has to be used. This spe-
cialized version of the eight-point algorithm is based
on the homography constraint, and has received much
attention in the computer vision literature [1, 4, 14].

In [11], we presented two customized algorithms (linear
and nonlinear) for solving the problem. The linear al-
gorithm is a modified version of the homography-based
algorithm in which the feature points are known. The
nonlinear algorithm is based on a Newton-Raphson it-
eration which minimizes the re-projection error of the
feature points. The linear optimization algorithm is
globally robust but is biased in the presence of noise.

Figure 1: Berkeley UAV test-bed with on-board vision
system: Yamaha R-50 helicopter with pan/tilt
camera and computer box hovering above a
landing platform.

The nonlinear optimization algorithm requires ade-
quate initialization because of the many local minima,
but is less sensitive to noise. Thus, to solve the mo-
tion estimation problem, we used the solution of the
linear algorithm to initialize the nonlinear algorithm.
Additionally, in [11] we introduced the design and im-
plementation of a real-time vision system that esti-
mates the motion of a rotor-craft UAV relative to a
known landing target. The vision system on board the
UAV (see Figure 1) uses customized vision algorithms
and off-the-shelf hardware to perform in real-time: im-
age processing, segmentation, feature point extraction,



camera control, as well as both linear and nonlinear
optimization algorithms for motion estimation.

In this paper, we extend the results of [11] with the
following contributions:

• Multiple view motion estimation: We
present an algorithm for estimating the motion
of the UAV from multiple views of a landing tar-
get. The algorithm provides more robust motion
estimates than the previously used two-view al-
gorithms because it incorporates all algebraically
independent constraints among multiple views.

• Vision based control: We have placed the vi-
sion sensor in the control loop of a hierarchical
flight management system [13] and performed
fully autonomous vision-based landing.

Our work is differentiated from other recent works
in structure and motion estimation from multiple im-
age sequences in the following significant respect: The
multiple views in our work come from a single camera
undergoing an unknown motion, as compared to works
such as [2, 7] where multiple cameras placed at known
relative configurations are used to synchronously cap-
ture images of the scene.

2 Motion Estimation

In this section, we extend the existing 2-view algo-
rithms to the case of multiple views. A new funda-
mental tool needed is the so-called rank condition pro-
posed in [5, 6] and we here show how to apply such a
condition to the planar case.

2.1 Multiple Views of Planar Features
An image x(t) = [x(t), y(t), z(t)]T ∈ IR3 (in homo-
geneous coordinates) of a point p, with homogeneous
coordinates X = [X, Y, Z, 1]T ∈ IR4 relative to a fixed
world coordinate frame, taken by a moving camera
satisfies the following relationship

λ(t)x(t) = A(t)Pg(t)X, (1)

where λ(t) ∈ IR+ is the (unknown) depth of the point p
relative to the camera frame, A(t) ∈ SL(3) is the cam-
era calibration matrix (at time t), P = [I, 0] ∈ IR3×4

is the constant projection matrix and g(t) ∈ SE(3) is
the coordinate transformation from the world frame to
the camera frame at time t.

We further assume that the feature point p lies on a
plane P. This plane can be described by an unknown

vector π = [π1, π2] ∈ IR4, where π1 ∈ IR3 is the unit
normal to P, and π2 ∈ IR is the distance from P to
the camera optical center. The coordinates X of any
point on this plane satisfy

πX = 0. (2)

In a realistic situation, we obtain “sampled” images
of x(t) at some time instances, say t1, t2, . . . , tm ∈ IR.
For simplicity we denote λi = λ(ti), xi = x(ti), Πi =
A(ti)Pg(ti). The matrix Πi ∈ IR3×4 relates the ith

image of the point p to its world coordinates X by

λixi = ΠiX i = 1, . . . , m. (3)

Without loss of generality, we may assume that the
first camera frame is chosen to be the reference frame.
This gives the projection matrices

Π1 = [I, 0], Π2 = [R2, T2], . . . Πm = [Rm, Tm] ∈ IR3×4,

where the columns of Ri ∈ IR3×3 are the first three
columns of Πi and Ti ∈ IR3 is the fourth column of
Πi, i = 2, . . . , m. Thus, from (3) we have λixi =
λ1Rix1 + Ti, which implies1:

0 = [x̂iRix1 x̂iTi]
[

λ1

1

]
, i = 2, . . . , m. (4)

Now, from (4) and (2) we have the condition
M [λ1, 1]T = 0, where the matrix

M
.=


x̂2R2x1 x̂2T2

...
...

x̂mRmx1 x̂mTm

π1x1 π2

 ∈ IR(3m−2)×2, (5)

called the multiple view matrix, satisfies rank(M) ≤ 1.

It is easy to see that the case rank(M) = 0 corresponds
to a degenerate configuration in which the camera cen-
ters lie on the plane P. So the only interesting case
is when rank(M) = 1. In this case the columns of M
are parallel, which implies that the images satisfy the
well-known bilinear (epipolar) constraints [3]:

xT
i T̂iRix1 = 0. (6)

Now, given vectors a1, . . . , an, b1, . . . , bn ∈ IR3, the ma-

trix

 a1 b1

...
...

an bn

 ∈ IR3n×2 is rank deficient if and only

if aib
T
j − bia

T
j = 0 for all i, j = 1, . . . , n. Applying this

1For a vector u ∈ IR3, û ∈ IR3×3 denotes the associated
skew-symmetric matrix such that ûw = u× w for all w ∈ IR3.



to the multiple view matrix M , we obtain the well-
known trilinear constraints [12]:

x̂i(TixT
1 RT

j −Rix1T
T
j )x̂j = 0 (7)

for all i, j = 2, . . . , m. In addition to those, we also
obtain extra constraints from minors of M that include
the last row, which are due to the planar condition:

x̂iTiπ
1x1 − x̂iRix1π

2 = 0, i = 2, . . . , m. (8)

If the plane P does not cross the camera center o1,
i.e. π2 6= 0, the constraints in (8) give the well-known
homography constraints for planar feature points:

x̂i

(
Ri − 1

π2
Tiπ

1

)
x1 = 0, i = 2, . . . , m (9)

between the 1st and the ith views. The matrix H =(
Ri − 1

π2 Tiπ
1
)

in the equation is the well-known ho-
mography matrix between the two views of a plane [4].

2.2 Multiple View Motion Estimation
The rank condition on M for coplanar points allows
us to utilize simultaneously all multilinear constraints
and homography among multiple images for recover-
ing 3-D motion and structure. Existing algorithms for
planar features usually exploit only the homography
which is only part of all the constraints among multi-
ple images and can only be used for pairwise views.

As described in [5], the problem of motion and struc-
ture reconstruction of a set of planar features from
multiple images can be solved with a slight modifica-
tion of the generic multiple view algorithm [6]. For
simplicity, we assume that the camera is perfectly cal-
ibrated, hence Πi = (Ri, Ti) ∈ SE(3) corresponds to
the actual Euclidean motion of the camera.

Suppose that m images xj
1, . . . ,x

j
m of n points pj , j =

1, . . . , n lying on a plane are given and we want to use
them to estimate the unknown projection matrices Πi

and parameters π of the plane P. Setting αj = 1/λj
1,

the rank condition on M can be written as:

αj


x̂j

2T2

...
x̂j

mTm

π2

 +


x̂j

2R2x
j
1

...
x̂j

mRmxj
1

π1xj
1

 = 0. (10)

The set of equations in (10) is equiva-
lent to finding vectors π ∈ IR4, ~Ri =
[r11, r12, r13, r21, r22, r23, r31, r32, r33]T ∈ IR9 and
~Ti = Ti ∈ IR3, i = 2, . . . , m, such that:

QπT =

 x1
1
T

α1

...
...

xn
1

T αn

 πT = 0, (11)

Pi

[
~Ti

~Ri

]
=

 α1x̂1
i x̂1

i ∗ x1
1
T

...
...

αnx̂n
i x̂n

i ∗ xn
1

T

 [
~Ti

~Ri

]
= 0 (12)

where A ∗B is the Kronecker product of A and B.

Given the first two images of (at least) four points
in general configuration, π ∈ IR4, T2 ∈ IR3 and
R2 ∈ SO(3) can be estimated using the standard
four point planar algorithm for two views [1]. In gen-
eral, there are two physically possible solutions for
(π, R2, T2) from the four point algorithm, with π2 and
T2 recovered up to the same scale.2 Given these two
solutions for (π, R2, T2), we can solve for α from the
equations in the first and last rows of (10). These
equations are αj x̂j

2T2 = −x̂j
2R2x

j
1 and αjπ2 = −π1xj

1,
whose least squares solution up to scale (the inverse of
the common scale of π2 and T2) for each j is given by:

αj = − (x̂j
2T2)T x̂j

2R2x
j
1 + π2π1xj

1

||x̂j
2T2||2 + (π2)2

. (13)

Since there are two possible values for (π, R2, T2) from
the four point planar algorithm, there are two possible
values for α. Given these two values for α, equations
(11) and (12) become linear, thus one can solve for
the rest of (Ri, Ti) and re-estimate π. Therefore, in
principle there are two possible solutions for (π, Ri, Ti)
provided that rank(Pi) = 11 and rank(Q) = 3. One
can show that this is indeed the case if at least 6 feature
points are in a general position in 3-D. However, since
here all points lie on the same plane, the maximum
rank of Pi becomes 8 instead, while the rank of Q is
always 3 for points in a general configuration on the
plane. It is straightforward to verify that the solution
[~Ti

T
, ~Ri

T
]T ∈ IR12 is in the four dimensional kernel of

Pi which is spanned by the columns of the following
matrix:

Ki
.
=



π2 0 0 0
0 π2 0 0
0 0 π2 0

π1T
03×1 03×1 r1 − Ti1

π2 π1T

03×1 π1T
03×1 r2 − Ti2

π2 π1T

03×1 03×1 π1T
r3 − Ti3

π2 π1T


∈ IR12×4,

(14)

where [rT
1 , rT

2 , rT
3 ]T .= ~Ri and [Ti1, Ti2, Ti3]T

.= ~Ti.
The last column yields exactly the homography ma-
trix Hi

.= (Ri − 1
π2 Tiπ

1) ∈ IR3×3 between the ith and
the 1st views. Therefore, given the two values for α,
one can find the homography Hi from the vector in
the null-space of Pi whose first three components are
zero. Given the two homographies Hi’s, one can ob-
tain two solutions (πi, Ri, Ti) from the four point al-
gorithm, where πi is the plane with respect to frame

2This scale can easily be fixed by choosing ‖T2‖ = 1.



1 estimated from frames 1 and i. Since π1
i = π1

2 , there
are only two solutions for the plane π and all relative
motions (Ri, Ti), i = 2, . . . , m, rather than the 2m−1

possible combinations. Furthermore, if m ≥ 3, one
can show that only one of these two solutions satis-
fies π1

i = π1
2 , i = 3, . . . , m. Therefore, we conclude

that there are two solutions for m = 2 and a unique
solution for m ≥ 3.

Finally, recall that π2
i and Ti are recovered up to the

same scale. However, in the multiple view case all
translation vectors and π2 should be recovered up to
one scale only. It is straightforward to see that the rel-
ative scale between Ti and T2 is π2

2/π2
i . Therefore, we

have the following linear algorithm for multiple view
motion and structure estimation from planar feature
points:

Algorithm 1 (Multiple View Planar Algorithm)
Given m images xj

1, . . . ,x
j
m of points pj, j = 1, . . . , n,

which lie in a plane in 3-D space, we can estimate the
motions (Ri, Ti) ∈ SE(3), i = 2, . . . , m, the plane π
and the inverse depth α as follows:

1. Initialization

(a) Set k=0 and find the two solutions for
(π2, R2, T2) using the four point algorithm
applied to the first two views.

(b) Compute the two solutions for αj
k from

(13). Normalize so that α1
k = 1.

2. Find the two solutions for the homography ma-
trix Hi, i = 2, . . . , m, from the vector in the ker-
nel of Pi whose first three components are zero.

3. Find the two solutions for (πi, Ri, T̃i) from Hi,
i = 2, . . . , m, using the four point algorithm.

4. If m ≥ 3, find the unique solution that satisfies
‖π1

i−π1
2‖ ≤ ε, i = 3, . . . , m, for some small ε > 0.

5. Let π = [π1, 1], where π1 is recovered from
SVD of all π1

i ∈ IR3 for i = 1, . . . , m. Let
Ti = T̃iπ

2
2/π2

i , i = 3, . . . , m.

6. Solve for α from (10) using linear least squares:

αj
k+1 = −

∑m
i=2(x̂

j
i Ti)T x̂j

i Rix
j
1 + π2π1xj

1∑m
i=2 ||x̂j

i Ti||2 + (π2)2
. (15)

Normalize so that α1
k+1 = 1.

7. If ||αk − αk+1|| < ε, for a pre-specified ε > 0,
then k = k + 1 and goto 2. Else stop.

The camera motion is then (Ri, Ti) ∈ SE(3) for i =
2, . . . , m, the plane is π, and the structure of the points
(with respect to the first camera frame) is given by the
converged depth scalar λj

1 = 1/αj , i = 1, . . . , n.

2.3 Multi-view Motion For Landing
Here we describe how we apply Algorithm 1 to the
landing problem. As described briefly in the follow-
ing section (and in detail in [11]), we have designed
a landing target to simplify the image processing and
feature extraction tasks. We set the first frame in Al-
gorithm 1 as the reference frame with the stored image
of the landing target with the UAV at a desired land-
ing configuration. For each captured image, we set
xj

m, j = 1, . . . , n, to be the feature points extracted
from the current view, and xj

m−i, i = 1, . . . , m − 2,
to be the feature points extracted from the previous
views. This setup has two very nice properties: (1)
(Rm, Tm) ∈ SE(3) is the relative Euclidean motion
from the desired landing configuration to the current
camera frame, (2) knowledge of the landing target ge-
ometry allows to uniquely recover Tm ∈ IR3, instead of
up to an arbitrary scale.

3 Vision System Test-bed

This section briefly describes our real-time vision sys-
tem [11]. Further, we describe our UAV test-bed [13]
and computer vision based supervisory controller used
in a hierarchical flight management system for au-
tonomous landing.

3.1 Vision System Software
Our vision system software consists of two main stages
of execution: feature extraction and motion estima-
tion. The function of the feature extraction is to ex-
tract and label, for each frame m, the images xj

m,
j = 1, . . . , n, of points on a landing target. We use
corner features on a specially designed target to sim-
plify the feature extraction stage [11]. Figure 2 shows
our designed landing target and feature extraction in
action.

Given the feature points xj
m, we have developed and

implemented different methodologies for estimating
the UAV’s motion relative to the landing target: The
two-view linear and two-view nonlinear algorithms de-
scribed in [11], and the multiple view linear algorithm
described in Section 2.

3.2 Vision System Hardware
Our real-time vision system consists of the following
off-the-shelf hardware components [11]:



Figure 2: Vision monitoring station

• Vision computer : Pentium 233MHz-based Lit-
tleBoard PC running Linux; responsible for vi-
sion algorithms and camera control.

• Camera: Sony EVI-D30 Pan/Tilt/Zoom camera
that can actively pan and tilt to keep the landing
target centered in the field of view.

• Framegrabber : Imagenation PXC200 for captur-
ing 320× 240 resolution images at 30Hz.

• Wireless Ethernet : IEEE 802.11b for monitoring
vision system from ground.

3.3 UAV Test-bed
Our custom-designed UAV test-bed is based on a
Yamaha R-50 industrial helicopter, on which we have
mounted the following [13]:

• Navigation Computer : Pentium 233MHz-based
LittleBoard PC running QNX real-time OS, re-
sponsible for sensor management and hard real-
time flight control.

• Inertial Measurement Unit : NovAtel MillenRT2
GPS and Boeing DQI-NP INS/GPS integration
system, with 2cm accuracy motion estimates.

The flight control system is capable of autonomous
hover, pirouette, and low-speed flight with fixed head-
ing. The interface to the flight control is a novel frame-
work called Vehicle Control Language (VCL) [13],
which specifies a sequence of flight-modes and desired
coordinates. VCL provides an abstraction between
a high-level supervisory controller and the hard real-
time vehicle stabilization and control layer.
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Figure 3: Comparing multiple view planar motion algo-
rithm estimates with inertial navigation sys-
tem measurements in a real flight test.

3.4 Vision in Control Loop
We designed a simple vision-based supervisory con-
troller which commands the UAV to hover above the
visually estimated location of the landing target. The
supervisory controller runs on the vision computer,
and sends control commands to the navigation com-
puter over a serial link at an update rate of 10Hz.
When the landing target is in camera view, the super-
visory controller sends the estimated (x, y) position of
the landing target as the desired set-point for the UAV
to hover.

4 Experimental Results

For the flight test, the UAV hovered autonomously
above a stationary landing pad with the vision system
running in real-time. The vision-based state estimates
were used by the supervisory controller to command
the UAV to hover above the landing target, making it
a truly closed-loop vision controlled flight experiment.
State estimates from the INS/GPS navigation system
were synchronously gathered for later comparison.

Figure 3 shows the results from a flight test, comparing
the output of the multiple view motion estimation al-
gorithm with the INS/GPS measurements of the UAV
navigation system (which are accurate to 2cm). Re-
call that at least 3 frames are necessary in the multiple
view algorithm to uniquely estimate the motion. We
observed that using more than 4 frames did not im-
prove the accuracy of the motion estimates, and only
increased computation time. Thus, we used a moving



of 3 frames plus the reference frame in the multiple
view algorithm for the experiments.
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Figure 4: Comparison of mean squared errors of vision
algorithm estimates during a real flight test.
The ‘linear 2-view’ and ‘nonlinear 2-view’ al-
gorithms are described in [11]. The ‘linear m-
view’ algorithm is described in Section 2.

Figure 4 shows a comparison of the the root mean
squared error of the estimated state for three different
vision-based state estimation algorithms: The “linear
2-view” and “nonlinear 2-view” algorithms which were
presented in [11], and the “linear m-view” algorithm
described in Section 2. The multiple view algorithm
slightly outperforms the nonlinear algorithm. Further,
the multiple view algorithm is globally robust, while
the nonlinear algorithm has many local minima and
is sensitive to initialization. The performance and ro-
bustness of the multiple view algorithm make it the
clear winner among the algorithms.

5 Conclusion

In this paper, we presented a novel multiple view mo-
tion estimation algorithm for autonomous landing of
an Unmanned Aerial Vehicle. The algorithm is based
on very recent results in multiple view geometry which
exploit the rank deficiency condition of the multiple
view matrix. We compared this algorithm with previ-
ous linear and non-linear two-view algorithms using an
actual flight test of our real-time vision system. Flight
test results show that the use of multiple images sig-
nificantly improves the robustness and the accuracy of
vision-based motion estimates, which are are accurate
to within 7cm in each axis of translation and 4o in each
axis of rotation.

Acknowledgment

We thank David Shim, Hoam Chung and Ron Tal for their
support in the performing the flight experiments. This
research was supported by ONR grant N00014-00-1-0621.

References

[1] O. Faugeras. Three-Dimensional Computer Vision.
The MIT Press, 1993.

[2] A. Hoover and B. Olsen. A real-time occupancy
map from multiple video streams. In Proceedings of IEEE
ICRA, pages 2261–2266, 1999.

[3] H.C. Longuet-Higgins. A computer algorithm for
reconstructing a scene from two projections. In Nature,
volume 293, pages 133–135, London, UK, 1981.

[4] H.C. Longuet-Higgins. The reconstruction of a plane
surface from two perspective projections. In Proc. of Royal
Society of London, volume 227 of B, pages 399–410, 1986.

[5] Y. Ma, J. Kosecka, and K. Huang. Rank deficiency
condition of the multiple view matrix for mixed point and
line features. In Proc. of fifth Asian Conference on Com-
puter Vision, January 2002.

[6] Y. Ma, R. Vidal, K. Huang, and S. Sastry. New rank
deficiency condition for multiple view geometry of point
features. Technical Report UILU-ENG 01-2208 (DC-200),
UIUC, May 2001.

[7] P.W. Rander, P.J. Narayanan, and T. Kanade. Re-
covery of dynamic scene structure from multiple image se-
quences. In Int’l Conf. on Multisensor Fusion and Integra-
tion for Intelligent Systems, pages 305–312, 1996.

[8] F.R. Schell and E.D. Dickmanns. Autonomous land-
ing of airplanes by dynamic machine vision. Machine Vi-
sion and Applications, 7:127–134, 1994.

[9] O. Shakernia, Y. Ma, T.J. Koo, J. Hespanha, and
S. Sastry. Vision guided landing of an unmanned air vehi-
cle. In Proceedings of IEEE CDC, pages 4143–4148, 1999.

[10] O. Shakernia, Y. Ma, T.J. Koo, and S. Sastry. Land-
ing an unmanned air vehicle: Vision based motion esti-
mation and nonlinear control. Asian Journal of Control,
1(3):128–145, September 1999.

[11] C.S. Sharp, O. Shakernia, and S. Sastry. A vision
system for landing an unmanned aerial vehicle. In Pro-
ceedings of IEEE ICRA, pages 1720–1727, May 2001.

[12] A. Shashua. Trilinearity in visual recognition by
alignment. In Proceedings of ECCV, pages 479–484, 1994.

[13] D.H. Shim, H.J. Kim, and S. Sastry. Hierarchical
control system synthesis for rotorcraft-based unmanned
aerial vehicles. In Proceedings of AIAA Conference on
Guidance, Navigation and Control, Denver, 2000.

[14] J. Weng, T.S. Huang, and N. Ahuja. Motion and
Structure from Image Sequences. Springer-Verlag, 1993.

[15] Z.F. Yang and W.H. Tsai. Using parallel line infor-
mation for vision-based landmark location estimation and
an application to automatic helicopter landing. Robotics
and Computer-Integrated Manufacturing, 14(4):297–306,
1998.


