
Estimation of Alpha Mattes
for Multiple Image Layers

Dheeraj Singaraju, Member, IEEE, and René Vidal, Member, IEEE

Abstract—Image matting deals with the estimation of the alpha matte at each pixel, i.e., the contribution of the foreground and

background objects to the composition of the image at that pixel. Existing methods for image matting are typically limited to estimating

the alpha mattes for two image layers only. However, in several applications one is interested in editing images with multiple objects. In

this work, we consider the problem of estimating the alpha mattes of multiple (n � 2) image layers. We show that this problem can be

decomposed into n simpler subproblems of alpha matte estimation for two image layers. Moreover, we show that, by construction, the

estimated alpha mattes at each pixel are constrained to sum up to 1 across the multiple image layers. A key feature of our framework is

that the alpha mattes can be estimated in closed form. We further show that, due to the nature of spatial regularization used in the

estimation, the final estimated alpha mattes are not constrained to take values in ½0; 1�. Hence, we study the optimization problem of

estimating the alpha mattes for multiple image layers subject to the fact that the alpha mattes are nonnegative and sum up to 1 at each

pixel. We present experiments to show that our proposed method can be used to extract mattes of multiple image layers.

Index Terms—Image matting, alpha matte, multiple layers, matting Laplacian, superposition principle.

Ç

1 INTRODUCTION

EXISTING literature in image matting assumes that a
given composite image can be treated as the

composition of two image layers: foreground and back-
ground. In particular, the intensity Ii of the ith pixel in a
composite image is written as the convex combination of
a foreground intensity Fi and a background intensity Bi:

Ii ¼ �iFi þ ð1� �iÞBi; ð1Þ

where �i 2 ½0; 1� is referred to as the pixel’s partial opacity

value or alpha matte. For a color image, we have Ii 2 IR3
þ.

Thus, (1) gives us three equations in seven unknowns:

�i 2 ½0; 1�, Fi 2 IR3
þ and Bi 2 IR3

þ at each pixel. Therefore, the

matting problem is ill posed since the number of unknowns

is more than the number of independent equations. To this

effect, matting algorithms require some user interaction that

specifies the object of interest and the background, thereby

enforcing some constraints in the image and making the

problem well posed. As illustrated in Fig. 1, such interaction

is typically provided in the form of a trimap by marking

different regions in the image as 1) foreground; � ¼ 1

(shown in white), 2) background; � ¼ 0 (shown in black),

and 3) unknown; � 2 ½0; 1� (shown in gray). The goal of

matting algorithms is to estimate the alpha mattes of the

pixels in the unknown region. Given the alpha mattes, one

can estimate the foreground and background layers of the

image and subsequently use them for various image editing
tasks such as background modification. Fig. 1 gives an
example of image matting where the user is interested in
extracting the mattes of a dandelion in an image.

Incipient methods in [1], [2] use the trimap to learn color
models for the object and the background and subsequently
estimate the mattes in the unknown region as per (1). In this
case, the pixels are processed independently and the
estimated mattes are not spatially regularized. Methods in
[3], [4] solve such issues by using local propagation
techniques to estimate the mattes. A common criticism of
these methods is that they fail on images with complex
intensity variations due to the naive appearance models
that are used.

Motivated by these drawbacks, subsequent research in
image matting witnessed a number of algorithms in [5], [6],
[7], [8], [9], [10] which employed tools traditionally used for
image segmentation. In these algorithms, the user typically
provides a sparse trimap by marking only a few pixels in the
image. This trimap is then used to find a binary segmenta-
tion of the image. Since one expects most fractional alpha
mattes to occur at the objects’ boundaries, the segmentation
boundary is slightly dilated to generate a tighter trimap that
contains fewer unmarked pixels in comparison to the
original trimap. The mattes are then estimated using this
tight trimap and can subsequently be refined by alternating
between reestimation of the trimap and the alpha mattes.
The performance of such strategies is governed by the
techniques used for alpha matte estimation in each
iteration. Most algorithms use techniques such as [11],
[12] to estimate the mattes with the tight trimap.

Recent work in image matting has seen a surge of research
toward developing algorithms that exploit various features
specific to the matting problem [11], [12], [13], [14], [15], [16].
It was shown in [11] that if one assumes that the intensities of
the foreground and background layers vary linearly in small
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image patches, then the alpha mattes could be estimated in
closed form. It was later demonstrated that the performance
of local propagation-based methods in [11] could be
improved by additionally learning global color models [12],
[16] or by building more compact local color models for the
image [17]. Recent work has also focused on enforcing
sparsity of the alpha mattes [14], [15]. For a more detailed
review, we refer the reader to Wang and Cohen [18].

All of the methods discussed so far assume that the user
wants to edit either the background or a single object in the
image. Hence, they estimate alpha mattes for two layers
only. However, a user may be interested in editing multiple
regions in an image as shown in Fig. 2. In this example, the
user might be interested in separately editing three different
layers, namely, the two dolls and the background. In order
to allow for such editing, we need to be able to reconstruct
each of the layers of interest. An important step in this
reconstruction is the estimation of partial opacity values
f�ki g

n
k¼1 at each pixel i such that its intensity Ii can be

expressed as a convex linear combination of the intensities
fFk

i g
n
k¼1 of n image layers:

Ii ¼
Xn
k¼1

�ki F
k
i where 8i; k; �ki � 0 and 8i;

Xn
k¼1

�ki ¼ 1: ð2Þ

Note that in order to solve the n-layer matting problem
(n � 2), one may use existing algorithms in [11] to estimate
the mattes for each layer by treating it as foreground and
treating the remaining layers as background. However, this
strategy raises two concerns. The estimated mattes might
not satisfy the constraints discussed in (2), i.e., 1) the mattes
take values between 0 and 1, and 2) the mattes sum up to 1
at each pixel. Moreover, most methods use the Matting
Laplacian proposed in [11] for spatial regularization of the
alpha mattes. This Laplacian matrix was derived under the
assumption that the image has two layers only. However, as
shown in the image crop presented in Fig. 2b, there might
be regions that contain n � 2 layers. We notice in this
example that there are regions which contain three different
layers, i.e., the background, the pink hair, as well as the
green hair. It is unclear if the Matting Laplacian may be
applicable to such regions. Hence, in this work, we build
upon our previous work in [19] and present a framework
for estimating the mattes for multiple image layers such that
the constraints in (2) are satisfied.

We note that the most relevant work to our proposed
framework is the Spectral Matting algorithm [14]. This
algorithm uses eigenvectors of the Matting Laplacian to

compute multiple matting components that are then
combined as per the user’s interaction to give the alpha
mattes. We show that this algorithm considers a restricted
subset of all possible linear combinations of the eigenvec-
tors of the Matting Laplacian, while our framework admits
a larger set of solutions.

Although we have motivated the need for a framework
for alpha matte estimation for multiple layers, our pre-
sented analysis can also be applied to problems other than
alpha matting. In [20], Bleyer et al. consider the alpha
mattes of n � 2 layers while solving the stereo problem. In
[21], Hsu et al. solve the problem of light mixture estimation
for the case of multiple light sources by using models
similar to those derived for alpha matting. One may then
generalize [21], which deals with two light sources only, to
the case of multiple light sources. Such an analysis may also
be used for studying motion blur since in [22], Shan et al.
model the blurred image as a composite of shifted versions
of the unblurred image.

Paper contributions: We analyze the conditions on local
image patches, under which the alpha mattes of multiple
image layers can be estimated in closed form. Levin et al.
[11] discussed the case of two layers only, while Levin et al.
[14] later explored a very small family of appearance
models for the case of multiple layers. In this work, we
describe more general conditions on the appearance models
for multiple layers and show that under certain conditions,
there exists an affine function for each image patch that
relates a pixel’s RGB intensities and its alpha mattes. Hence,
we show that the Matting Laplacian can be used to
regularize the mattes for multiple layers.

We then consider the problem of estimating the mattes
for multiple image layers, subject to the constraint that the
estimated mattes at each pixel sum up to 1 across all of
the layers. Since this constraint couples the mattes for the
different layers, the proposed optimization problem might
be computationally expensive. However, we show that the
problem of estimating the mattes of n � 2 image layers can
be decoupled into n simpler subproblems. Each subproblem
estimates the mattes for a layer k by solving a two-layer
matting problem where the layer k is treated as foreground
and the remaining layers are treated as background.
Specifically, we first present an equivalent electrical network
construction that unifies the optimization methods adopted
by [11] and [12] for estimating the mattes of n ¼ 2 layers. We
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Fig. 2. An example where the user is interested in editing several different
regions of an image (shown in (a)) of two trolls against the background. In
this case, the user may be separately editing three different layers in the
image, i.e., the two dolls and the background. In (b), we present an image
crop (which has been highlighted by the yellow rectangle in (a)), with
regions where all three layers overlap. Notice that there are regions in the
center of this crop where we can see the pink hair and the green hair, as
well as the background. (a) Given image. (b) Image crop.

Fig. 1. In this typical example of image matting, the goal is to recover the
alpha mattes (b) of the dandelion in the image (a). The user labels some
representative pixels for the object (in white) and the background
(black). This interaction can be represented by a trimap (shown in (d))
where the three regions indicate white (� ¼ 1), black (� ¼ 0), and gray
(� ¼ unknown). (a) Image of a dandelion. (b) Desired alpha mattes.
(c) Pixels labeled by the user. (d) Generated trimap.



generalize this formulation to estimate the mattes for
multiple layers and use the superposition principle from
electrical network theory to show that the constraint that
the mattes sum up to 1 across the different image layers is
naturally satisfied and need not be explicitly enforced.

We further show that the alpha mattes estimated by the
above framework are not naturally constrained to take
values in ½0; 1�. If the matte at a pixel does not lie in ½0; 1�, its
interpretation as a partial opacity breaks down. Hence, one
may postprocess the estimated mattes by clipping their
values to lie in ½0; 1� to resolve this issue. Alternatively, in
this work we consider the optimization problem of
estimating the mattes subject to the constraints that the
mattes at each pixel: 1) take values in ½0; 1�, and 2) sum up to
1 across the different image layers. In this case, we show
that the problem of estimating the mattes of n � 2 image
layers cannot be decoupled into n � 2 subproblems of
estimating the mattes for two image layers since we need to
explicitly enforce the constraint that the mattes sum up to 1
across the different image layers. This constraint is satisfied
naturally only when n ¼ 2 and not otherwise.

Finally, we present a qualitative as well as quantitative
evaluation of our proposed framework. We show that the
mattes estimated by our framework for n ¼ 2 layers
are similar to those given by [11]. We present a qualitative
analysis of estimating the alpha mattes for n > 2 image
layers using our proposed framework as well as the Spectral
Matting algorithm [14]. We show that we are able to extract
the alpha mattes for multiple layers with low levels of user
interaction.

2 NOTATION

In this paper, we pose the problem of estimating the mattes
as an optimization problem defined on a weighted graph
that represents a given composite image. For this purpose,
we now introduce notation that will be used in the rest of
this paper.

A weighted graph G consists of a pair G ¼ ðV; EÞ with
nodes i 2 V and undirected edges eeeeij 2 E. The nodes on
the graph typically correspond to pixels in the image. An
edge that spans two vertices i and j is denoted by eeeeij. The
neighborhood of a node i is given by all the nodes j that
share an edge with i and is denoted by N i. Each edge is
assigned a value wwwwij that is referred to as its weight. Since
the edges are undirected, we have wwwwij ¼ wwwwji. These edge
weights are used to define the degree di of a node i as
di ¼

P
j2N i

wwwwij. One can use these terms to construct a
Laplacian matrix L for the graph as L ¼ D�W , where D ¼
diagðd1; d2; . . . ; djVjÞ and W is a jVj � jVj matrix whose ði; jÞ
entry is given by the edge weight wwwwij. By construction, the
Laplacian matrix has the constant vector of 1s in its null
space, i.e., L1 ¼ 0.

Recall that the alpha matting problem is underconstrained
and we require the user to mark representative nodes for the
different image layers. These marked nodes enforce con-
straints on the mattes and are subsequently used to predict
the mattes of the remaining unmarked nodes. The setM� V
contains the locations of the nodes marked by the user and the
set U � V contains the locations of the unmarked nodes. By
construction,M\U ¼ ; andM[U ¼ V. We further split the

setM that contains the locations of all of the marked nodes

into the setsM1;M2; . . . ;Mn, whereMk contains the marked

nodes representative of the kth layer. By construction, we

have [nk¼1Mk ¼M and 81 � k1 < k2 � n,Mk1
\Mk2

¼ ;.
We denote the intensities of the kth image layer at pixel

i 2 V as F k
i . The matte at the pixel i with respect to the

kth layer is denoted as �ki . The mattes of all pixels in the

image for a particular layer can be stacked into a vector as

����k ¼ ½����kU
>

����kM
>�> 2 ½0; 1�jVj, where ����kU and ����kM correspond

to the mattes of the unmarked and marked pixels,

respectively.

3 LOCAL MODELS FOR ALPHA MATTES FOR

MULTIPLE LAYERS

Omer and Werman [23] empirically showed that the

distribution of colors in natural images is locally linear in

RGB space. Inspired by this work, Levin et al. [11] assume

that for a small patch Wi around a pixel i in the query

composite image, the intensities of the corresponding

foreground and background layers can be treated as lying

on lines in RGB space. Under this assumption, they showed

that there exists an affine function vi ¼ ðaRi ; aGi ; aBi ; biÞ
characteristic to the patch Wi such that the alpha matte �j
of each pixel j 2 Wi can be written as

�j ¼ aRi IRj þ aGi IGj þ aBi IBj þ bi; ð3Þ

where IRj , IGj , and IBj refer to the RGB values of pixel j. This

relationship is essential for constructing the Matting

Laplacian that helps provide a closed form solution to

alpha matting.
We now show that under certain conditions, the alpha

mattes of each pixel in the patch can be written as affine

functions of the RGB values, even in the case of multiple

image layers. Specifically, Theorem 1 states the conditions

under which the alpha mattes of the pixels j in a windowWi

around a pixel i can be expressed in terms of the affine

functions.

Theorem 1. Denote the number of image layers present in a

windowWi around a pixel i as ni. Define F k
i 2 IR4�jWij as the

matrix whose columns contain the intensities of the kth image

layer as

F k
i ¼

� � � Fk
j � � �

� � � 1 � � �

� �
;

where j 2 Wi. Similarly, define I i 2 IR4�jWij as the matrix

whose columns contain the composite image intensities as

I i ¼
� � � Ij � � �
� � � 1 � � �

� �
;

where j 2 Wi. Let the dimensions of the kth image layer and the

composite image patch inWi be defined as dki ¼ rankðF k
i Þ and

dci ¼ rankðI iÞ, respectively. If
Pni

k¼1 d
k
i ¼ dci � 4, then the

alpha mattes of each pixel in the window can be written as affine

functions of its RGB intensities, as 8k ¼ 1; . . . ; ni, 8j 2
Wi : �kj ¼ aRi;kIRj þ aGi;kIGj þ aBi;kIBj þ bi;k, for some ðaRi;k; aGi;k;
aBi;k; bi;kÞ 2 IR4.
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Proof. We will prove the statement only for dci ¼ 4. The

proof for the remaining cases can be sketched in a similar

manner. Note first that the color line model used by [11]

for the case of two image layers (i.e., ni ¼ 2 and

ðd1
i ; d

2
i Þ ¼ ð2; 2Þ) is a particular case of the hypothesis,

for which we already know from [11] that the mattes can

be written as affine functions of the RGB intensities. We

now enumerate the additional cases in which such

relationships can be obtained.

1. A color plane and a color point: In this case, the
image patch Wi is composed of two layers. The
intensities of one image layer are constant and
hence constitute a point in RGB space. The
intensities of the other image layer lie on a color
plane in RGB space. Without loss of generality,
assume that the intensities of the second layer
lie on a plane. In this case, we have ni ¼ 2 and
ðd1
i ; d

2
i Þ ¼ ð1; 3Þ. The intensities of these layers

can be parameterized as 8j 2 Wi, F
1
j ¼ C1, and

F 2
j ¼ �j1C2 þ �j2C3 þ ð1� �j1 � �j2ÞC4 for some
�j1; �j2 2 IR. Hence, the composite image inten-
sities can be expressed as

8j 2 Wi : Ij

¼ �jC1 þ ð1� �jÞð�j1C2 þ �j2C3

þ ð1� �j1 � �j2ÞC4Þ

¼ ½C1 � C4 C2 � C4 C3 � C4 �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
H2

�j

ð1� �jÞ�j1
ð1� �jÞ�j2

2
64

3
75

þ C4:

ð4Þ

Note that H2 is invertible because, otherwise, the

color point corresponding to the first layer lies on

the color plane corresponding to the second layer.

This is a degenerate case because one cannot

estimate the alpha mattes uniquely in such a

situation. We ignore such degenerate cases. Now,

since H2 is invertible, we can rewrite (4) as (5) and

conclude from the first row of the matrix equation,

that the alpha matte of each pixel can be expressed

as an affine function of the RGB intensities

8j 2 Wi :
�j

ð1� �jÞ�j1
ð1� �jÞ�j2

2
4

3
5 ¼ H�1

2 Ij �H�1
2 C4: ð5Þ

2. Two color points and a single color line: In this case,
the image patch is composed of three layers,
where the intensities of two image layers are
constant and the intensities of the third image
layer lie in a color line in RGB space. Without loss
of generality, assume that the intensities of the
third layer lie on a line, i.e., ni ¼ 3 and ðd1

i ; d
2
i ;

d3
i Þ ¼ ð1; 1; 2Þ. The layers’ intensities can be para-

meterized as 8j 2 Wi, F 1
j ¼ C1, F 2

j ¼ C2, and
F 3
j ¼ �jC3 þ ð1� �jÞC4, where �j 2 IR. The com-

posite intensities can then be expressed as

8j 2 Wi : Ij

¼ �1
jC1 þ �2

jC2 þ ð1� �1
j � �2

j Þð�jC3 þ ð1� �jÞC4Þ

¼ ½C1 � C4 C2 � C4 C3 � C4�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
H3

�1
j

�2
j

�jð1� �1
j � �2

j Þ

2
664

3
775

þ C4:

ð6Þ

We note that H3 is invertible for nondegenerate
configurations of the image layers. Hence, we can
rewrite (6) as (7) and conclude from the top two
rows of the matrix equation that the alpha mattes
of each pixel can be expressed as affine functions
of the RGB intensities:

8j 2 Wi :

�1
j

�2
j

�jð1� �1
j � �2

j Þ

2
64

3
75 ¼ H�1

3 Ij �H�1
3 C4: ð7Þ

3. Four color points: In this final case, the image patch

is composed of four layers, each of which has

constant intensities. Notice that ni ¼ 4 and

ðd1
i ; d

2
i ; d

3
i ; d

4
i Þ ¼ ð1; 1; 1; 1Þ. The intensities of the

kth layer can hence be parameterized as 8j 2 Wi,

Fk
j ¼ Ck, k ¼ 1; 2; 3, or 4. The composite image

intensities are then given as

8j 2 Wi : Ij

¼ �1
jC1 þ �2

jC2 þ �3
jC3 þ

�
1� �1

j � �2
j � �3

j

�
C4

¼ ½C1 � C4 C2 � C4 C3 � C4 �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
H4

�1
j

�2
j

�3
j

2
664

3
775þ C4:

ð8Þ

As before, we can rewrite (8) as (9) and conclude
that the alpha mattes of each pixel can be expressed
as affine functions of the RGB intensities:

8j 2 Wi :

�1
j

�2
j

�3
j

2
64

3
75 ¼ H�1

4 Ij �H�1
4 C4: ð9Þ

tu
Remark 1. Since the intensity of each composite pixel is the

convex combination of the intensities of the pixels in the
constituent image layers, in general, we have

Pni
k¼1 d

k
i � dci .

Notice that if
Pni

k¼1 d
k
i > dci , we cannot uniquely recover the

mattes because the systems of equations analogous to (4),
(6), and (8), would have fewer equations than the number
of unknowns. Hence, Theorem 1 assumes the equalityPni

k¼1 d
k
i ¼ dci to recover the mattes uniquely, without the

knowledge of any additional constraints on the alpha
mattes. Since the dimensions dki are nonnegative, the
constraint

Pni
k¼1 d

k
i ¼ dci implies that ni � dci , which can

be at most 4. These are not strong assumptions since the
scenario 4 �

Pni
k¼1 d

k
i > dci typically corresponds to degen-

erate mattes that form a zero measure set. For example, if
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the composite patch consists of two layers (ni ¼ 2), where
each layer has a constant color (d1

i ¼ d2
i ¼ 1) and each pixel

in the patch has the same matte, then the composite patch
also has constant color (dci ¼ 1).

Theorem 1 gives conditions under which the alpha
mattes for multiple layers can be recovered in closed form.
These conditions are more general than those in [14].
Specifically, the only cases considered in [14] are ni ¼ 1
and ðni; d1

i ; d
2
i ; d

3
i Þ ¼ ð3; 1; 1; 1Þ, plus the color line model in

[11]. Theorem 1 shows that one can estimate the alpha
mattes in closed form for a much larger family of appearance
models which includes the models in [11], [14], [17] as
particular cases.

Notice also that we proved Theorem 1 under the
assumption that the space spanned by the RGB colors of
the patch Wi is equal to 4. The dimension of this patch can
be less than 4 under some conditions [17]. For example, the
dimension of a composite image patch can be 3 if the image
layers are such that ni ¼ 3 and ðd1

i ; d
2
i ; d

3
i Þ ¼ ð1; 1; 1Þ. How-

ever, this can be treated as a degenerate case of ni ¼ 3 and
ðd1
i ; d

2
i ; d

3
i Þ ¼ ð1; 1; 2Þ. Hence, for the rest of this paper, we

assume that dci ¼ 4 for each image patch, without any loss of
generality.

4 SPATIAL REGULARIZATION OF THE ALPHA

MATTES

We now show that under the conditions given by Theorem 1,
we can aggregate the information from the local patches in
the image to construct a spatial regularizer for the mattes in
the entire image. We show that this regularizer is the same as
the Matting Laplacian proposed in [11].

Recall from Theorem 1 that under certain conditions,
there exist affine functions vi ¼ ðaRi ; aGi ; aBi ; biÞ characteristic
to the patchWi around each pixel i 2 V, such that the alpha
matte �j of each pixel j 2 Wi can be written as

�j ¼ aRi IRj þ aGi IGj þ aBi IBj þ bi; ð10Þ

where IRj , IGj , and IBj refer to the RGB values of pixel j. The
problem of estimating the mattes ���� in the image can
consequently be posed as one of finding the minimizer of

Jð����; vÞ ¼
X
i2V

"X
j2Wi

�
�j � aRi IRj � aGi IGj � aBi IBj � bi

�2

#
;

ð11Þ

where v ¼ fvigi2V . Essentially, this corresponds to minimiz-
ing the residual of the affine model vi defined in (3) for
every small patchWi. Along the lines of Levin et al. [11], we
propose using a modification of the cost function Jð����; vÞ by
introducing an additional regularization term as

J�ð����; vÞ ¼ Jð����; vÞ þ �
X
i2V

�
aRi

2 þ aGi
2 þ aBi

2�
: ð12Þ

The regularization term introduces a bias toward the
constant valued affine function ðaRi ; aGi ; aBi ; biÞ ¼ ð0; 0; 0; cÞ,
c 2 ½0; 1� for each patch Wi, or in other words, introduces a
bias toward locally constant alpha mattes. The motivation
for this is twofold. First, the user provided trimap labels

very few pixels and not all of the pixels have integer valued
mattes, i.e., � ¼ 0 or 1. Hence, for many pixels in the image,
an � of 0 or 1 is desired, independent of the appearance
model. Second, real images often have textured patches that
do not satisfy the color line model, but nonetheless may
have uniform mattes across the patch. The mattes of such
patches can be explained by an affine function of the form
v ¼ ð0; 0; 0; cÞ, c 2 ½0; 1�. This function allows for certain
complex cases beyond the color models discussed in
Theorem 1.

Now, note that the constructed cost function J�ð����; vÞ
depends on two unknown quantities: the alpha mattes ����
and the affine functions v. However, this can be reduced to
a cost function that depends solely on the alpha mattes. For
the sake of simplicity, let us define matrices Gi 2 IRðjWijþ3Þ�4

and ��i 2 IRjWijþ3. The first jWij rows of Gi are given by
½IRj IGj IBj 1�, j 2 Wi, and the last three rows are given by
½
ffiffi
ð

p
�ÞIIII3 0�, where we use IIIIn to denote an identity matrix of

size n� n. The first jWij entries of ��i are given by
�j; j 2 Wi, and the last three entries are equal to 0. Given
this notation, J�ð����; vÞ can be rewritten as

J�ð����; vÞ ¼
X
i2V
kGivi � ��ik2: ð13Þ

We can estimate the affine function vi for each patch Wi as

vi ¼ arg minvkGiv� ��ik2 ¼ ðG>i GiÞ�1G>i ��i: ð14Þ

Therefore, using the expression for vi from (14), we see that
the cost function J�ð����; vÞ can be reduced to a cost function
dependent on the alpha mattes only as

J�ð����Þ ¼
X
i2V

�
��>i ðIIII jWijþ3 � GiðG>i GiÞ�1G>i Þ��i

	
¼ ����>L����:

ð15Þ

Here, L is a jVj � jVj Laplacian matrix that is referred to
as the Matting Laplacian, whose entries capture the local
statistics of the intensity variations in a small window
around each pixel [11]. It was shown in [11] that L can be
constructed from the edge weights wwwwij defined as

wwwwij ¼
X

lji;j2Wl

1

jWlj
1þ ðIi � �lÞ> �l þ

�

jW lj
IIII3


 ��1

ðIj � �lÞ
 !

;

ð16Þ

where �i 2 IR3 and �i 2 IR3�3 denote the mean and the
covariance of the intensities of the pixels inWi, respectively.
Note that these weights can be positive or negative. In
practice, each window is chosen to be of size 3� 3 and
accounts for local spatial regularization of the alpha mattes
of the pixels in that window. Since these windows overlap,
the Matting Laplacian acts as an effective global spatial
regularizer that is obtained by aggregating local spatial
regularization.

5 CLOSED-FORM SOLUTION TO ALPHA MATTE

ESTIMATION FOR MULTIPLE LAYERS

In this section, we present a general graph-theoretic
optimization framework for estimating the mattes in closed
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form. The edge weights of the constructed graph are obtained
from the Matting Laplacian. We show that this framework
generalizes existing algorithms such as Levin et al. [11] and
Wang and Cohen [12]. We also describe an equivalent
electrical network construction whose physics exhibit the
same optimization scheme as in these methods. In this
process, we provide a unifying framework for studying these
algorithms and understanding the fine differences between
them. Subsequently, we show how this framework can be
easily extended for the closed form estimation of the mattes
for multiple image layers.

5.1 Closed-Form Solution for Alpha Matte
Estimation for Two Layers

We first address the simpler problem of estimating the
alpha mattes for two layers. Recall that the user marks some
pixels that are representative of the object and the back-
ground. The matting problem thus involves solving an
optimization problem subject to the constraints enforced by
these marked pixels. To this effect, we define a vector mmmm 2
IRjMj such that an entry of mmmm is set to 1 or 0 depending on
whether it corresponds to the object or background,
respectively. Also, for some � > 0, we define a matrix
� ¼ �IIII jMj. The mattes in the image are then estimated as

���� ¼ argmin
����

X
eeeeij2E

wwwwijð�i � �jÞ2 þ
X
i2M

�ð�i �mmmmiÞ2
2
4

3
5

¼ argmin
����
½����>L����þ ð����M �mmmmÞ>�ð����M �mmmmÞ�

¼ argmin
����

�
����>U ����>M mmmm>

	 LU B> 0

B LM þ � ��

0 �� �

2
64

3
75 ����U

����M

mmmm

2
64

3
75;

where L ¼ LU B>

B LM

� �
:

ð17Þ

Since the expression in (12) is nonnegative, this implies
that L is positive semidefinite. As a consequence, we note
that LU is positive semidefinite in general. However, if
the user marks enough pixels in the image, then LU is
positive definite and invertible. Unless specified otherwise,
we assume that LU is positive definite from now on. This
makes the cost function in (17) convex, and therefore, the
optimization problem has a unique solution. In this case,
the unique solution to (17) can be linearly estimated in
closed form as

��M ¼ ½Aþ ���1�mmmm and

����U ¼ �L�1
U B>����M ¼ �L�1

U B>½Aþ ���1�mmmm;
ð18Þ

where A ¼ LM �BL�1
U B>. The algorithm of Levin et al. [11]

employs the above optimization by choosing a large finite
valued �, while the algorithm of Wang and Cohen [12]
works in the limiting case by choosing � ¼ 1. We note that
Wang and Cohen [12] employ a modification of the cost
function in (17) since additional unary terms are generated
by sampling potential foreground and background hypoth-
esis from the trimap. However, this does not have any effect
on the following analysis.

5.2 Alpha Matte Estimation via Energy Minimization
in Electrical Networks

It is interesting to note that there exists an equivalent

electrical network that solves the optimization problem in

(17). One can construct a network as in Fig. 3, such that each

node in the graph associated with the image is equivalent to

a node on the network. The edge weights correspond to the

conductance values of resistors connected between neigh-

boring nodes, i.e., 1
Rij
¼ wwwwij. Since the edge weights wwwwij are

not all positive, one can argue that this system might not be

physically realizable. However, the network is constrained

to dissipate positive energy due to the positive semidefi-

niteness of the Laplacian. Therefore, it suffices to treat the

image as a real resistive load that dissipates energy. The

marked nodes are connected to the network ground and

unit voltage sources by resistive impedances of value 1
� . The

nodes marked as background are connected to the ground

and the nodes marked as object are connected to the unit

voltage sources. Hence, we have mmmmi ¼ 1V ði 2 M1Þ at the

voltage sources and mmmmi ¼ 0V ði 2M2Þ at the ground, where

all measurements are with respect to the network’s ground.
From network theory, we know that the potentials xxxx at

the nodes in the network minimize the energy dissipated by

the network. Therefore, they can be estimated as

xxxx ¼ argmin
����

X
eeeeij2E

1

Rij
ðxi � xjÞ2 þ

X
i2M

�ðxi �miÞ2
2
4

3
5: ð19Þ

This is the same expression as in (17). Therefore, if one

were to construct the equivalent network and measure the

potentials at the nodes, they would give us the required

mattes.
We now show that the fraction (�) of work done by the

electrical sources that are used to drive the load is

maximized as �!1. The work done to drive the load is

given as

Eload ¼ xxxx>Lxxxx ¼ xxxx>ULUxxxxU þ 2xxxx>UB
>xxxxM þ xxxx>MLMxxxxM

¼ xxxx>M
�
LM �BL�1

U B>
	
xxxxM�

using xxxxU ¼ �L�1
U B>xxxxM fromð18Þ

�
¼ mmmm>�½Aþ ���1A½Aþ ���1�mmmm

(using xxxxM ¼ ½Aþ ���1�mmmm fromð18Þ);

ð20Þ

where A was previously defined as LM �BL�1
U B>. Simi-

larly, we can write down the work done by the electrical

sources as the sum of the work done to drive the load and

the work done by the voltage sources to power the marked

nodes. Specifically, this work can be expressed as
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Etotal ¼ xxxx>Lxxxxþ ðxxxxM �mmmmÞ>�ðxxxxM �mmmmÞ
¼ xxxx>Lxxxxþmmmm>ð½Aþ ���1�� IÞ>�ð½Aþ ���1�� I�Þmmmm

(using ð18Þ
�

¼ mmmm>�
h
��1 � ½Aþ ���1

i
�mmmm�

substituting the expression for xxxx>L xxxx from ð18Þ):
ð21Þ

Note that since L is positive semidefinite and the
constructed graph is connected, the matrix A is also positive
definite. Now, consider the singular value decomposition of
the matrix A ¼ U�AU

>, where U ¼ ½u1 . . .ujMj� and �A ¼
diagð�1; . . . ; �jMjÞ, �1 � �2 � � � � � �jMj > 0. Given this ex-
pression, we can write Aþ � ¼ U ½�A þ ��U>. We can then
evaluate � as

� ¼ Eload

Etotal
¼ mmmm

>�½Aþ ���1A½Aþ ���1�mmmm

mmmm>�
h
��1 � ½Aþ ���1

i
�mmmm

¼
 XjMj

i¼1

�iðu>i mmmmÞ
2

ð�i� þ 1Þ2

!, XjMj
i¼1

�iðu>i mmmmÞ
2

ð�i� þ 1Þ

!
:

ð22Þ

Since � > 0 and, 8i ¼ 1; . . . ; jMj, �i > 0, we have that
1þ �i

� > 1. Given this observation, it can be verified that
8� 2 ð0;1Þ, � < 1, and lim�!1� ¼ 1. The fractional energy
delivered to the load is therefore maximized by setting
� ¼ 1. This limiting case corresponds to setting the values
of impedances between the sources and the load to zero. In
terms of the image, this forces the mattes at the labeled
pixels to be 1 for the foreground and 0 for the background.

The algorithm in [12] corresponds to the limiting case of
� ¼ 1. The algorithm in [11] solves the optimization
problem in (17) by setting � to be a large finite valued
number. Since there is always a finite potential drop across
the resistors connecting the voltage source and the grounds
to the image, we note that the mattes (potentials) at the
marked pixels are close to the desired values but not equal.
In this paper, we shall always set � ¼ 1. In practice, we can
set � to be a large finite valued number as in [11] and still
recover high-quality mattes. However, we still prefer the
choice � ¼ 1, as this avoids redundant reestimation of
mattes at the marked pixels.

5.3 Estimation of Alpha Mattes for Multiple Layers

In this section, we show how to solve the matting problem for
n � 2 image layers by using generalizations of the methods
discussed previously. We propose to estimate the alpha
mattes for multiple layers by solving the following problem:�

����kU
n
k¼1
¼

argmin
f��k

U
gnk¼1

Xn
k¼1

�
����kU
>
LU����

k
U þ 2����kU

>
B>����kM þ ����kM

>
LM����

k
M

	
;

s:t:
Xn
k¼1

����kU ¼ 1;

ð23Þ

where the mattes at the marked pixels are hardcoded as
�ki ¼ 1 if i 2 Mk and �ki ¼ 0 if i 2M nMk. This corre-
sponds to minimizing the sum of the cost functions
associated with the spatial regularization of the alpha

mattes for each image layer, subject to the constraint that
the mattes at each pixel sum up to 1. Now, notice that the
joint estimation of the njUj alpha mattes for all the layers in
a single step can become computationally intractable as the
number of layers increases. In what follows, we show how
this issue can be resolved by optimally decomposing the
problem in (23) into n simpler problems of alpha matte
estimation for two layers using (17).

Since LU is positive definite, the cost function in (23) is
convex. Hence, (23) involves minimizing a convex function
subject to linear constraints and is guaranteed to have a
unique solution. This solution must satisfy the Karusch-
Kuhn-Tucker (KKT) conditions [24]. To write these condi-
tions, we consider the Lagrangian for the problem in (23)
that is given as

L
��
����kU
n
k¼1

;�
�
¼

1

2

Xn
k¼1

�
����kU
>
LU����

k
U þ 2����kU

>
B>����kM

	
þ �>

Xn
k¼1

����kU � 1

" #
;
ð24Þ

where the vector � 2 IRjUj contains the Lagrange multipliers
for the constraints that the mattes sum up to 1 at each pixel.
We have dropped the terms ����kM

>
LM����

k
M since they are

constant valued and do not affect the final solution. Now,
given this formulation, the KKT conditions guarantee the
existence of a solution ðf����kUg

n
k¼1;�Þ (where f����kUg

n
k¼1 is

the solution to the original problem (23)) that satisfies the
system of equations

8k 2 f1; . . . ; ng; LU����kU þB>����kM þ � ¼ 0: ð25Þ

Notice that (25) requires the solution to a huge system of
equations where the alpha mattes for all the layers are
estimated in one step by inverting an njUj � njUj matrix.
This is due to the fact that the multiplier � corresponding to
the constraint that the mattes sum up to 1 at each pixel,
when nonzero, prevents us from decoupling the system of
equations in (25) into n simpler systems corresponding to
alpha matte estimation for each individual layer. However,
Theorem 2 states an important result that allows such
decoupling. Specifically, we prove that � ¼ 0 since the
constraint that the alpha mattes sum up to 1 at each pixel is
naturally satisfied.

Theorem 2. The alpha mattes estimated for n � 2 layers by
solving (23) are naturally constrained to satisfy the property
that the alpha mattes at each pixel sum up to 1.

Proof. In order to prove the statement, we assume that the
mattes sum up to 1 at each unmarked pixel and show
that upon substitution of this assumption in (25), it
results in � ¼ 0. This is equivalent to proving that the
constraint

Pn
k¼1 ����

k ¼ 1 is automatically satisfied without
explicitly enforcing it. Assume that

Pn
k¼1 ����

k
U ¼ 1. Also,

we have by construction,
Pn

k¼1 ����
k
M ¼ 1. Now, summing

up the KKT conditions in (25) across all the image layers
gives us

Xn
k¼1

�
LU����

k
U þB>����kM þ �

	
¼ LU1þB>1þ n� ¼ 0: ð26Þ

Recall that the vector of 1s lies in the null space of L, and
hence, LU1þB>1 ¼ 0. Hence, we conclude from (26)
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that � ¼ 0. This implies that the solution automatically
satisfies the constraint that the mattes sum up to 1 at each
unmarked pixel. tu
This result follows intuitively from the well-known

Superposition Theorem in electrical network theory [25].
Now, notice that the alpha mattes for each image layer can
be obtained by solving (25) after substituting � ¼ 0 as

8k 2 f1; . . . ; ng; LU����kU þB>����kM ¼ 0: ð27Þ

Therefore, the computationally intensive problem of
alpha matte estimation for n � 2 image layers that requires
the solution to (25) can now be optimally decoupled into
more tractable n � 2 subproblems of alpha matte estimation
for two layers that require the solution to (27). Specifically,
recall that ����kM is defined as �ki ¼ 1 if pixel k is marked for
layer k (i.e., i 2 Mk) and �ki ¼ 0 if pixel k is marked for one
of the remaining layers (i.e., i 2 M nMk). Hence, the
system of equations in (27) precisely corresponds to
estimating the alpha mattes for the kth image layer by solving a
problem of alpha matte estimation for two layers using (17),
where the kth layer is treated as the foreground and the remaining
layers are treated as the background. This strategy for alpha
matte estimation for multiple layers is summarized in
Algorithm 1.

Algorithm 1 (Image matting for n � 2 image layers with

summation constraints)

1: Given an image, construct the Matting Laplacian L for the

image as described in Section 4.

2: For each image layer k 2 f1; . . . ; ng, fix the mattes at the

marked representative pixels as �ki ¼ 1 if i 2 Mk and �ki ¼ 0

if i 2 M nMk.

3: Estimate the alpha mattes for the unmarked pixels for
each of the n image layers as

8k ¼ 1; . . . ; n : ����kU ¼ �L�1
U B>����kM . (28)

Note that one may also choose finite valued � to enforce
the user’s constraints rather than hardcoding the mattes at
the marked pixels. Even in this case, the estimation of
mattes for n � 2 layers may be optimally decoupled into
n problems of alpha matte estimation for two layers.

5.3.1 Comparison with Spectral Matting [14]

Notice that if we were to estimate the mattes by minimizing
the function �ð����Þ ¼

Pn
k¼1ð����kÞ

>L����k without any constraints
on the mattes or any user interaction, the family of solutions
is given by the null space of the matrix L. Hence,
Algorithm 1 may be viewed as estimating the vector of
mattes as a linear combination of the eigenvectors of the
Matting Laplacian L such that the resultant vector
minimizes �ð����Þ and the entries of the marked pixels in
this vector are equal to 0 or 1, as per the user’s interaction.

Levin et al. [14] also estimate the alpha mattes as linear
combinations of the eigenvectors of L. Essentially, Levin
et al. [14] compute a certain number of eigenvectors feeeeigKi¼1

which are linearly combined to create a new set of vectors
feeeeisg

K
i¼1 that are more sparse, i.e., the vectors feeeeisg

K
i¼1 have

fewer number of entries with fractional values in compar-
ison to feeeeigKi¼1. The motivation for this is that there are only
a few pixels in the image which have fractional mattes.

Then, given the user’s interaction, the algorithm makes a
binary decision yi ¼ 0 or 1, for assigning each vector eeeeis to
the background or the foreground, such that the vector ���� ¼PK

i¼1 yieeee
i
s minimizes �ð����Þ. Now, notice that even if the

vector of ground truth alpha mattes is indeed a null vector
of the Matting Laplacian, there is no guarantee that it can be
written as

PK
i¼1 yieeee

i
s, using binary valued yi. This implies

that the estimated mattes are sensitive to the quality of the
vectors feeeeisg

K
i¼1, which cannot be controlled explicitly since

these vectors are estimated in an unsupervised manner.
Since the set feeeeisg

K
i¼1 is obtained by a linear combination

of the vectors in feeeeigKi¼1 and the variables yi are binary
valued, we conclude that Levin et al. [14] estimate the
mattes using a restricted subset of all possible linear
combinations of the eigenvectors feeeeigKi¼1. However, if the
variables yi were allowed to be real valued rather than
binary valued, then we see that the vector ���� ¼

PK
i¼1 yieeee

i

that minimizes �ð����Þ subject to the constraints that its
entries are consistent with the user’s interaction is exactly
the solution that is given by Algorithm 1. Since Algorithm 1
does not restrict the linear combinations of the eigenvectors,
it is not subject to the issues discussed above for [14].
However, as shown in [14] for the case n ¼ 2, the mattes
produced by Algorithm 1 might require more interaction to
ensure that the estimated mattes are more sparse.

Finally, we note that for Spectral Matting, one may
precompute the eigenvectors of L and use them to
efficiently compute different sets of mattes for different
user interactions. We see that Algorithm 1 can also take
advantage of such precomputations by using the method of
Grady and Sinop [26].

6 CONSTRAINED ALPHA MATTE ESTIMATION FOR

MULTIPLE IMAGE LAYERS

In the previous section, we discussed the problem of
estimating the alpha mattes without enforcing the con-
straint that they take values between 0 and 1. Wang and
Cohen [12] used a standard result which states that the
mattes can be interpreted as probabilities in the random
walks framework [7] and are hence naturally constrained to
lie between 0 and 1. This result is true when the associated
Laplacian matrix has negative off-diagonal entries, i.e., the
corresponding graph G has positive edge weights. How-
ever, this does not necessarily apply to the Matting
Laplacian since it has positive as well as negative off-
diagonal entries. Fig. 4 gives an example where the system
has a positive semidefinite Laplacian, but the obtained
potentials (mattes) do not all lie in ½0; 1�.

Algorithms in [11] and [12] resolve this issue by solving
(23) and clipping the estimated alpha mattes such that they
take values in ½0; 1�. This scheme might give visually
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pleasing results, but might also alter the optimality of the
postprocessed mattes. Moreover, the clipped mattes at each
pixel might no longer sum up to 1 across all the layers.
Hence, we propose to estimate the alpha mattes by
explicitly enforcing the constraint that they take values
between 0 and 1 as

f����kUg
n
k¼1 ¼

argmin
f��k

U
gnk¼1

Xn
k¼1

�
����kU
>
LU����

k
U þ 2����kU

>
B>����kM þ ����kM

>
LM����

k
M

	
;

such that ðaÞ 0 �
�
����kU
n
k¼1
� 1 and ðbÞ

Xn
k¼1

����kU ¼ 1:

ð29Þ

We have hardcoded the mattes at the marked pixels to
avoid redundant computation. Theorem 3 states an im-
portant result as to why we may want to explicitly enforce a
constraint in (29), i.e., the constraints on the values of the
estimated mattes.

Theorem 3. The mattes obtained by clipping the solution of (23)
are not the solution to (29).

Proof. For simplicity, we consider the problem of solving
(29) for n ¼ 2 layers. We show later in Theorem 4 that the
mattes estimated by solving (29) for n ¼ 2 are naturally
constrained to sum up to 1. Hence, we do not consider
constraint (b) in (29) for the following proof.

Now, notice that due to the constraints on the

values of the alpha mattes, the set of feasible solutions

for ����1
U and ����2

U is given by ½0; 1�2jUj, which is compact

and convex. Also, the cost function in (29) is a convex

and continuous function of the mattes. Hence, (29) is

guaranteed to have a unique minimizer. The KKT
conditions guarantee the existence of jUj � jUj diagonal

matrices with nonpositive entries f�k
mg

k¼1;2
m¼0;1 such that

the solution ð����1
U; ����

2
UÞ satisfies

8k ¼ 1; 2 : ðaÞ LU����kU þB>����kM þ �k
0 � �k

1 ¼ 0;

ðbÞ �k
0����

k
U ¼ 0 and ðcÞ�k

1

�
1� ����kU

�
¼ 0:

ð30Þ

In what follows, we denote the ði; iÞ diagonal entry of
f�k

mg
k¼1;2
m¼0;1 as �kmi � 0. Notice that if the matte �ki at the

ith unmarked pixel with respect to the kth image layer
lies between 0 and 1, then the KKT conditions state that
the associated Lagrange multipliers �k0i and �k1i are equal
to zero. Consequently, the ith row of the first equation in
(30) gives us the result that

�ki ¼
P

j2N i
wwwwij�

k
jP

j2N i
wwwwij

:

This implies that �ki can be expressed as the weighted
average of the mattes of the neighboring pixels. But, when
�ki ¼ 0 or �ki ¼ 1, we see from (30) that �ki is not the
weighted average of the mattes at the neighboring pixels
and this is accounted for by the Lagrange multipliers �k0i
and �k1i. Recall from earlier that the methods in [11] and
[12] clip the estimated mattes to take values between 0
and 1. This step is equivalent to introducing Lagrange
multipliers. However, after this clipping, one also needs
to readjust the mattes at the unmarked pixels that lie in

the neighborhoods of the pixels whose mattes are

clipped. Specifically, they need to be adjusted so that

they still satisfy the KKT conditions. This step is

neglected in [11] and [12]. This is precisely why the

clipped solution of (23) is not equal to the solution of

(29). tu
From Theorem 3, we see that we need to estimate the

mattes as per Algorithm 2 to enforce that the estimated

alpha mattes satisfy the required constraints.

Algorithm 2 (Image matting for n � 2 image layers with

positivity + summation constraints)

1: Given an image, construct the Matting Laplacian L for the

image as described in Section 4.
2: For each image layer j 2 f1; . . . ; ng, fix the mattes at the

seeds as ����ki ¼ 1 if i 2 Mj and ����ki ¼ 0 if i 2 M nMj.

3: Estimate the alpha mattes f����kUg
n
j¼1 for the n image layers

as the solution to (29).

Unfortunately, as argued earlier, the related optimization

can be computationally cumbersome, in practice. Hence,

we again propose to decompose the problem of alpha matte

estimation for n layers into n problems of alpha matte

estimation for two layers. Specifically, we propose to

estimate the mattes at the unmarked nodes for each of the

n layers by solving the following problem:

8k ¼ 1; . . . ; n:����kU ¼

argmin
f��k

U
g

�
����kU
>
LU����

k
U þ 2����kU

>
B>����kM þ ����kM

>
LM����

k
M

	
;

s:t: 0 � ����kU � 1:

ð31Þ

We have essentially relaxed the constraint that the alpha

mattes sum up to 1 at each pixel. As shown in the previous

section, it is precisely this relaxation that allows us to

decouple the original problem of alpha matte estimation for

multiple layers into simpler subproblems dealing with two

image layers only. However, in the previous section, we

saw that this constraint was satisfied automatically when

there were no constraints on the values of the alpha mattes.

In the case where we enforce the mattes to take values in

½0; 1�, Theorem 4 states that the sum of the alpha mattes at

each pixel is naturally constrained to be 1 only when n ¼ 2

and not otherwise.

Theorem 4. The alpha mattes obtained as the solution to (29) are

naturally constrained to sum up to 1 at each pixel when n ¼ 2,

but not when n > 2.

Proof. The KKT conditions for (29) guarantee the existence

of diagonal matrices f�k
0g

n
k¼1 and f�k

1g
n
k¼1 and a vector �

such that the solution f����kUg
n
k¼1 satisfies

81 � k � n; LU����kU þB>����kM þ �k
0 � �k

1 þ � ¼ 0; and

81 � k � n;�k
0����

k
u ¼ 0;�k

i ð1� ����kUÞ ¼ 0:
ð32Þ

� acts as a Lagrange multiplier for the constraint that
the mattes sum up to 1. We now assume that the mattes
sum up to 1 at each pixel and inspect the value of �. If
� ¼ 0, it means that the estimated mattes are naturally
constrained to sum up to 1 at each pixel. Assuming that
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the mattes sum up to 1, we sum up the first expression in
(32) across all the image layers to conclude that

Xn
k¼1

�k
0 �

Xn
k¼1

�k
1 þ n� ¼ 0: ð33Þ

This relationship is derived using the fact that
LU1þB>1 ¼ 0. We now inspect the mattes at a pixel
i 2 U and analyze all the possible solutions. First,
consider the case when the mattes f�ki g

n0

k¼1 of the first
n0 < n� 1 image layers are identically equal to 0 and the
remaining mattes f�ki g

n
k¼n0þ1 take values in ð0; 1Þ. We can

always consider such reordering of the image layers
without any loss of generality. We see that the variables
f�k1ig

n
k¼1 and f�k0ig

n
k¼n0þ1 are equal to zero. Substituting

these values in (33) gives 	i þ
Pn0

k¼1 �
k
0i ¼ 0. Therefore, 	i

is nonnegative and is equal to zero if and only if the
variables f�k0ig

n0

k¼1 are identically equal to zero. Since these
variables are not constrained to be zero valued, we see
that 	i is not equal to zero. It is due to such cases that the
mattes are not constrained to sum up to 1 when n > 2.

However, this case cannot arise when n ¼ 2. In fact,
for n ¼ 2, we see that the alpha mattes for both layers
take values in either ð0; 1Þ or in f0; 1g. In the first case, we
see that �1

0i ¼ �2
0i ¼ �1

1i ¼ �1
1i ¼ 0. For the second case,

assume without loss of generality that �1
i ¼ 0 and �2

i ¼ 1.
We then have �1

1i ¼ �2
0i ¼ 0. Moreover, we notice that

setting �1
0i ¼ �2

1i satisfies the KKT conditions. Hence, we
can conclude that 	i ¼ 0 in both cases. Consequently, the
mattes are naturally constrained to sum up to 1 at each
pixel for n ¼ 2. tu

In this case, we see that the problem of estimating the
alpha mattes for multiple layers may not be optimally
decomposed into simpler subproblems as in the previous
section. This is due to the fact that the positivity constraints
of the alpha mattes require the explicit enforcement of the
constraint that the alpha mattes sum up to 1 at each pixel.
Moreover, even when the alpha matte estimation can be
decoupled in the case of n ¼ 2, we have shown that clipping
the solution given by Algorithm 1 does not correspond to
the solution of Algorithm 2.

7 EXPERIMENTS

In this section, we evaluate the algorithms presented in this
paper. We first show that the mattes estimated by
Algorithm 1 as the solution to (17) with � ¼ 1 are
qualitatively similar to the results obtained in [11] by
solving (17) with a large finite valued �. We then present a
quantitative comparison of Algorithms 1 and 2 for the
problem of estimating alpha mattes for n ¼ 2 layers. Finally,
we present a qualitative comparison of our proposed
algorithms and the Spectral Matting algorithm in [14] for
estimating the mattes for n > 2 image layers.

7.1 Estimation of Alpha Mattes for n ¼ 2 Image
Layers

In Fig. 5, we qualitatively compare the alpha mattes
obtained using Algorithm 1 with the alpha mattes estimated
by Levin et al. [11]. The first column indicates the user
interaction overlaid on the image for which the mattes are

to be estimated. The pixels labeled as the object (� ¼ 1) are
marked in white and the pixels labeled as the background
(� ¼ 0) are marked in black. Note that we use the exact
same scribbles as in [11]. The second column displays the
alpha mattes estimated in [11] by minimizing (17) with a
large finite value for �. The third column displays the
mattes estimated by Algorithm 1, where we propose to
minimize (17) with � ¼ 1.

We see that the mattes obtained by Algorithm 1 are very
similar to the mattes estimated by Levin et al. [11]. Minor
differences arise due to differences in the value of � used by
our method and Levin et al. [11] for constructing the
Matting Laplacian as per (16). In particular, there is no
significant change in the quality of the estimated mattes by
hardcoding the mattes at the marked pixels.

We now compare Algorithm 1 with Algorithm 2. Note
that both of these methods estimate the alpha mattes as the
solution to (17) by setting � ¼ 1, but Algorithm 2 estimates
the solution subject to the additional constraint that the
estimated mattes take values between 0 and 1. Algorithm 1
has no such restriction and simply clips the values of the
estimated mattes to lie between 0 and 1. In order to compare
these two algorithms, we carry out a quantitative compar-
ison on the database used in [15], which contains 27 high-
quality images. Since the database provides the ground
truth alpha mattes, we can generate several trimaps for
estimating the alpha mattes. We start with the perfectly tight
trimap where all of the pixels which are pure foreground
(� ¼ 1) or pure background (� ¼ 0) are labeled and the
pixels with fractional � are unmarked. The algorithms are
then required to estimate the alpha mattes in the unmarked
regions. We inspect the performance of these algorithms for
wider dilated trimaps which are obtained by dilation of
the unmarked region in the aforementioned tight trimap.
We increase the dilation in steps of 2 pixels and compare the
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Fig. 5. Comparison of the alpha mattes estimated by [11] and

Algorithm 1. (a) Image + user interaction. (b) Result of [11]. (c) Result

of Algorithm 1.



performance up to a dilation of 20 pixels. Some representa-

tive examples of the trimaps used in our testing scenario are

given in Fig. 6.
The error between the estimated mattes � and the

ground truth �	 is quantitatively evaluated using three

error metrics discussed in [27], namely,

1. SAD—The sum of absolute differences, which is
given as

P
i �i � �	i
�� ��.

2. MSE—The mean squared error, which is given as
1
jUj
P

ið�i � �	i Þ
2.

3. Gradient error—The gradient error, which is defined

as
P

iðr�i �r�	i Þ
2, where r�i and r�	i are the

normalized gradients of the alpha mattes at pixel i.

These gradients are computed by convolving the

mattes with first-order Gaussian derivative filters

with variance � ¼ 1:4.

The results of this test are shown in Fig. 7. A common trend
is present across the different error metrics. Algorithm 2
performs marginally better than Algorithm 1 when the
trimap is tight and this is true for all of the error metrics.
However, as we dilate the trimap, the quality of the mattes
estimated by Algorithm 2 degrades faster than Algorithm 1.
When the unknown region in the perfect trimap is dilated by
6 pixels, Algorithm 2 performs worse than Algorithm 1 across
all three metrics. This disparity in performance persists as the
dilation is increased. Also, we noted in our experiments that
for the alpha mattes computed by Algorithm 1 with the tight
trimaps, the mean percentage of unmarked pixels for which

we had to clip the alpha mattes is 7.61 percent. This
percentage increases to 26.1 percent when we use the trimaps
dilated by 20 pixels.

In general, the user is expected to label very few pixels
which would correspond to a highly dilated version of the
tight trimap. We note that algorithms in [9], [10], [15] first
segment the image using these few labeled pixels and use
them to create a trimap for alpha matte estimation. Even in
such cases, it is unclear as to how tight the trimap would be.
Hence, we would prefer to use Algorithm 1 over Algorithm 2,
in practice. Recall that the former also provides the attractive
property that the problem of alpha matte estimation for
multiple layers can be decomposed into simpler subproblems
of alpha matte estimation for two layers.

7.2 Estimation of Alpha Mattes for n � 2 Image
Layers

We first present a simple test on a synthetically generated
image to provide a proof of concept that under the
conditions specified in Theorem 1, the mattes for multiple
layers may be estimated in closed form. In Fig. 8, we present
a toy example where the image contains four layers. Each
layer is constant in color and the layers are shown in the first
column. The ground truth mattes used for the composition
are shown in the second column. In the third column, we
show the user interaction, where the labeled pixels are
superimposed on the composite image in white. The mattes
estimated using Algorithm 1 are shown in the last column.
We see that the estimated mattes are qualitatively similar to
the ground truth. Notice that due to the nature of the alpha
mattes, different regions might have as less as one image
layer and as many as all four image layers. Algorithm 1 is
able to extract the correct alpha mattes even in the regions
where the dimensionality of the composite image intensities
is less than 4 by treating them as degenerate cases of a four-
dimensional composite image patch.

In Figs. 9, 10, 11, 12, 13, 14, and 15, we present examples
of estimating alpha mattes for multiple image layers in
natural images. We compare four sets of alpha mattes for
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Fig. 6. Typical examples of the scenarios used for the quantitative
comparison of Algorithms 1 and 2. The units of dilation mentioned in
brackets denote the number of pixels by which the trimap is dilated. In
trimaps (c)-(e), we have superimposed the ground truth ����M on the
labeled regions and displayed the true image for the unmarked regions
where ����U is to be estimated. (a) Composite image. (b) Ground truth
matte. (c) Tight trimap. (d) Dilated trimap (10). (e) Dilated trimap (20).

Fig. 7. Quantitative comparison of Algorithms 1 and 2 on a database of

27 high-quality images. Algorithm 1 estimates the alpha mattes without
any constraints on their values and subsequently clips them to take

values between 0 and 1. Algorithm 2 estimates the alpha mattes with the
constraint that they take values between 0 and 1. A pdf file with the

zoomed version of these plots can be found at http://www.cis.jhu. edu/
~dheeraj/downloads/PAMI09-supp.pdf. (a) Gradient error. (b) Mean

square error. (c) Sum of absolute differences.

Fig. 8. Toy example for estimation of alpha mattes for multiple image
layers using Algorithm 1. (a) Image layer. (b) Ground truth ����k. (c) Labels
for layer. (d) Estimated ����k.



each image. The first set corresponds to the mattes

estimated using Algorithm 1 which are then clipped to

take values between 0 and 1. The second set corresponds to

the mattes obtained using a modification of Algorithm 2.

Specifically, for computational ease, we relax the constraints

that the alpha mattes must sum up to 1 at each pixel and

estimate the mattes of each layer by solving (31). The third set

corresponds to alpha mattes estimated by the Spectral

Matting algorithm of Levin et al. [14], using the code available

at http://www.vision.huji.ac.il/SpectralMatting. Since the

1306 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 7, JULY 2011

Fig. 9. An example of estimating mattes for three layers from an image
of toy trolls. The first column shows the user interaction for each layer.
(a) Algorithm 1. (b) Algorithm 2. (c) Spectral Matting. (d) SM-enhance.

Fig. 10. This figure shows the alpha mattes for the image of the troll
dolls, which were computed using color models that are learned from the

user interaction in addition to using the Matting Laplacian for spatial

regularization.

Fig. 11. An example of estimating mattes for four layers from an image of

feathers, which can be found at http://www.confettico.co.uk/userimages/

feathers.jpg. The first column shows the user interaction for each layer.

(a) Algorithm 1. (b) Algorithm 2. (c) Spectral Matting. (d) SM-enhance.

Fig. 12. This figure shows the alpha mattes for the image of the feathers,

which were computed using color models that are learned from the user

interaction in addition to using the Matting Laplacian for spatial

regularization.



algorithm estimates alpha mattes for two layers given the
user’s interaction, we estimate the alpha matte for each layer
by treating the remaining layers as background. The fourth
set, which we denote as SM-enhance, corresponds to mattes
obtained by enhancing the third set of mattes by enforcing
sparsity.

We present the results as follows: In the first column of
each set of results, the pixels labeled for each layer are shown
in either white or black, depending on the visibility of the
labels. For each algorithm, we show the mattes estimated for
each layer and also the contribution of that image layer (i.e.,
�ki F

k
i ) to the composite image. The layers are reconstructed as

described in [11]. Due to lack of ground truth mattes forn > 2
layers, we qualitatively evaluate the results.

In our first example shown in Fig. 9, we consider the
problem of extracting alpha mattes for three different
layers from a crop of the image of troll dolls shown
previously in Fig. 2. The three different layers correspond
to the background, the pink hair of one doll, and the green
hair of the other doll. As mentioned earlier in Section 1,
there are several regions in the center of the image where

we have n > 2 image layers. Fig. 11 shows the alpha mattes
estimated using different algorithms and also the image
layers that are reconstructed using these estimated mattes.
We see that, qualitatively, Algorithms 1 and 2 perform
better than Spectral Matting. Spectral Matting truncates the
alpha mattes for the pink hair and overestimates the alpha
mattes for the green hair since the algorithm is trying to
make the alpha mattes as discrete valued as possible. In
contrast, Algorithms 1 and 2 are able to capture the mattes
for the pink hair very well. They, however, do have some
errors in the layer for the green hair. Specifically, they do
let some portions of the background and the pink hair
bleed into the layer for the green hair.

Notice that, in the center of the composite image, there are
several regions where the background is visible through the
hair. In such cases, the mattes for the green hair and the pink
hair must be close to zero. However, there are several places
where the mattes for the green hair are erroneously estimated
as nonzero by Algorithms 1 and 2. This is primarily due to the
tendency of the Matting Laplacian to produce smooth
solutions [17]. As described in the proof of Theorem 3, this
smoothing happens because the matte at each pixel is the
weighted average of the mattes at this neighboring pixels.
However, we also notice that the estimated mattes do capture
the structure of the hair. Hence, we could have hoped to get
the correct mattes if the user marked some background pixels
in this region where the mattes have been oversmoothed.
Unfortunately, this would require additional and very
accurate interaction. This issue can be resolved by adapting
[12] to the case of multiple layers.

As proposed in [12], we use the marked pixels for each
layer to learn candidate colors for that layer. In most cases of
our experiments, we estimated just one color model Fk

pred for
each layer k by taking the average of the RGB values of the
pixels marked for that layer. This is a valid approximation for
the layers such as the green hair or the pink hair of the trolls.
In the cases of layers that cannot be described using just one
color model, such as the background, we apply k-means to
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Fig. 15. An example of estimating mattes for three layers from an
image of a burning book. The first column shows the user interaction
for each layer. (a) Algorithm 1. (b) Algorithm 2. (c) Spectral Matting.
(d) SM-enhance.

Fig. 13. The first column shows a zoom-in of a crop of the image of the
feathers for which we are estimating mattes. The other columns show
zoomed in versions of the reconstructed layers that are shown in the
third row of Fig. 12. Notice that all of the layers overlap at the center of
the image. We are able to extract the different layers accurately in most
places. There is, however, some bleeding across the layers due to
errors in the estimated mattes. (a) Composite image. (b) Background.
(c) Blue feathers. (d) Yellow feathers. (e) Pink feathers.

Fig. 14. An example of estimating mattes for three layers from an image
of a peacock. The first column shows the user interaction for each layer,
superimposed in white or black to ensure visibility. (a) Algorithm 1.
(b) Algorithm 2. (c) Spectral Matting. (d) SM-enhance.



the RGB values of the marked pixels for each layer to learn
several candidate color models for that layer. These learned
color models can be used to predict the alpha mattes for each
of the unmarked pixels by using the equations described in
Section 3. The alpha mattes estimated for each pixel using this
procedure are shown in the first row of Fig. 10. Notice that
since these alpha mattes are estimated at every pixel without
any spatial regularization, the estimated solution is quite
noisy. We can, however, use these candidate alpha mattes
along with the spatial regularization provided by the Matting
Laplacian to estimate a smoother solution for the alpha
mattes. In particular, we can estimate the alpha mattes by
minimizing the energy

Eð����Þ ¼
Xn
k¼1

�
����kU
>
LU����

k
U þ 2����kU

>
B>����kM

þ
�
����kU � ����kU�pred

�>
�
�
����kU � ����kU�pred

�	
;

ð34Þ

where ����kU�pred are the alpha mattes predicted for the
kth layer and � 2 IRjUj�jUj is a diagonal matrix whose ði; iÞ
term is the confidence value for the predicted mattes for the
ith unmarked pixel. This value is estimated as �ði; iÞ ¼
�e�102�res, where res ¼ kIi �

Pn
k¼1 �

k
i�predF

k
predk

2. This strat-
egy of estimating the alpha mattes is equivalent to general-
izing Algorithm 1, where we now also utilize the value of
the mattes predicted for each unmarked pixel. We can
derive an equivalent generalization for Algorithm 2 in this
manner. However, it is unclear as to how such additional
information provided by the candidate alpha mattes
predicted from the color models learned from the marked
pixels may be used for the Spectral Matting algorithm.

The set of mattes for the image of the trolls which are
estimated by minimizing the energy defined in (34) is
shown in the second row of Fig. 10. The layers that are
reconstructed using these mattes are shown in the third
row. Notice that in comparison to Fig. 9, the quality of the
estimated mattes shown in Fig. 10 has improved in several
regions. This can be appreciated from the better reconstruc-
tion of the background layer toward the center of the image.

In our second example presented in Fig. 11, we consider
a crop of an image of feathers that contains four different
layers, i.e., pink, orange, and blue feathers, and the black
background. It can be seen that there are several image
patches that contain n > 2 image layers. We notice from the
results in Fig. 11 that Algorithms 1 and 2 perform on par
with Spectral Matting. The only difference is in the alpha
mattes at the junction of the blue feathers and the orange
feather. Specifically, we notice at the intersection of the blue
feather on the top and the orange feather, the Spectral
Matting algorithm assigns discrete valued alpha mattes to a
larger number of pixels than there should be. Also, at the
intersection with the other blue feather, we see that Spectral
Matting blurs out the fine details at the top of the blue
feather. This is not so in the case of the alpha mattes
estimated by Algorithms 1 and 2. All of the algorithms do,
however, err in estimating the alpha mattes for the pink
feather present between the blue and the orange feather.
This is primarily because there is no user interaction
provided for this feather, and hence, it gets assigned to
the blue and the orange feathers’ layers.

This can be resolved by using the candidate alpha mattes
that are predicted by using the color models learned from

the marked pixels. These predicted mattes are shown in the
first row of Fig. 12. The mattes estimated by using these
candidate mattes as well as spatial regularization, i.e., by
minimizing the energy in (34), are shown in the second row
of Fig. 12. The layers reconstructed using these mattes are
shown in the third row and we can see that the mattes
have improved, in general. There are some errors, though,
in the mattes estimated for the background and the orange
feather. We further zoom into the layers in Fig. 13. Notice
that there are regions where all four layers are present and
that we are able to extract the layers accurately to a large
extent in such regions. There are some errors in the orange
feather’s layer, where we see bleeding of the blue and the
pink feather layers.

In Fig. 14, we present an example of extracting three
image layers from an image of a peacock. We see that the
mattes estimated by Spectral Matting are much sharper
than the mattes estimated by our proposed methods. There
are portions between the feathers of the peacock where the
mattes estimated by our proposed methods bleed across the
different layers. In particular, we see that there is unwanted
blending of the grass and the trees layers in the recon-
structed layers. These errors are not present in the results of
Spectral Matting. On the other hand, notice that the mattes
for the peacock layer that are estimated by Spectral Matting
seem to be integer valued near the feathers, where we
would expect them to be fractional.

In Fig. 15, we present an example of extracting three layers
from an image of a burning book. Our method estimates
erroneous fractional mattes for the region to the left of the
book. Specifically, we expect the alpha mattes for the book
layer to be 0 in these regions. Such errors are not present in the
Spectral Matting results. Also notice that there are several
portions of the fire where we expect fractional alpha mattes,
e.g., the flames on the book. While our proposed algorithms
estimate fractional alpha mattes, Spectral Matting estimates
integer valued alpha mattes in most places. These errors can
be appreciated by looking at the reconstructed layers.

In conclusion, we see that Algorithms 1 and 2 can be
used to extract the alpha mattes for multiple image layers.
Although there is a difference in the quantitative evaluation
of their performances for the two-layer case, they do not
differ much in terms of the presented qualitative results.
Since Algorithm 1 imposes the least constraints in the
optimization problem, it makes an attractive choice for
practical use. In most of our results, the mattes produced by
the Spectral Matting algorithm are qualitatively worse than
our proposed algorithms. In our evaluation, we used
70-100 eigenvectors, as suggested in the Spectral Matting
code. A higher number of eigenvectors might help improve
the performance, but would come at the expense of
additional computational cost. Moreover, as discussed at
the end of Section 5.3, there is no guarantee that the vectors
feeeeisg

K
i¼1 might produce the desired alpha mattes.

8 CONCLUSIONS

We have proposed a solution to the problem of estimating
mattes for n � 2 image layers. We generalized the color line
model of Levin et al. [11] for the case of n ¼ 2 image layers
and derived various conditions under which we can recover
the mattes for n � 2 layers, in closed form. We discussed a
strategy that allows us to decouple the problem of alpha
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matte estimation for n � 2 layers into n simpler subpro-
blems of alpha matte estimation for two layers such that the
constraint that the mattes at each pixel sum up to 1 across
the different layers is naturally satisfied. Since the mattes
estimated by this method are not constrained to lie between
0 and 1, we also studied the optimization problem of
estimating the mattes subject to this additional constraint.

ACKNOWLEDGMENTS

This work was supported by Johns Hopkins University
startup funds and US Office of Naval Research Grant YIP
N00014-09-1-0839. The authors would like to thank
Dr. Carsten Rother and Dr. Christoph Rhemann for providing
the data set used in [17] and also Dr. Anat Levin for making
the images and code of [11] and [14] publicly available. They
would also like to thank Stuart Chandler for providing the
image of the feathers used in Figs. 11, 12, and 13.

REFERENCES

[1] A. Berman, A. Dadourian, and P. Vlahos, “Method for Removing
from an Image the Background Surrounding a Selected Object,”
US Patent 6,134,346, Oct. 2000.

[2] M.A. Ruzon and C. Tomasi, “Alpha Estimation in Natural
Images,” Proc. IEEE Conf. Computer Vision and Pattern Recognition,
pp. 1018-1025, 2000.

[3] Y.-Y. Chuang, B. Curless, D. Salesin, and R. Szeliski, “A Bayesian
Approach to Digital Matting,” Proc. IEEE Conf. Computer Vision
and Pattern Recognition, vol. 2, pp. 264-271, 2001.

[4] J. Sun, J. Jia, C.-K. Tang, and H.-Y. Shum, “Poisson Matting,” ACM
Trans. Graphics, vol. 23, no. 3, pp. 315-321, 2004.

[5] C. Rother, V. Kolmogorov, and A. Blake, “‘GrabCut’: Interactive
Foreground Extraction Using Iterated Graph Cuts,” ACM Trans.
Graphics, vol. 23, no. 3, pp. 309-314, 2004.

[6] J. Wang and M. Cohen, “An Iterative Optimization Approach for
Unified Image Segmentation and Matting,” Proc. IEEE Int’l Conf.
Computer Vision, pp. 936-943, 2005.

[7] L. Grady, T. Schiwietz, S. Aharon, and R. Westermann, “Random
Walks for Interactive Alpha-Matting,” Proc. Int’l Conf. Visualiza-
tion, Imaging and Image Processing, pp. 423-429, Sept. 2005.

[8] Y. Guan, W. Chen, X. Liang, Z. Ding, and Q. Peng, “Easy Matting:
A Stroke Based Approach for Continuous Image Matting,” Proc.
Eurographics ’06 Conf., vol. 25, no. 3, pp. 567-576, 2006.

[9] X. Bai and G. Sapiro, “A Geodesic Framework for Fast Interactive
Image and Video Segmentation and Matting,” Proc. IEEE Int’l
Conf. Computer Vision, 2007.

[10] Y. Zheng, C. Kambhamettu, J. Yu, T. Bauer, and K. Steiner,
“Fuzzymatte: A Computationally Efficient Scheme for Interactive
Matting,” Proc. IEEE Conf. Computer Vision and Pattern Recognition,
2008.

[11] A. Levin, D. Lischinski, and Y. Weiss, “A Closed Form Solution to
Natural Image Matting,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 30, no. 2, pp. 228-242, Feb. 2008.

[12] J. Wang and M. Cohen, “Optimized Color Sampling for Robust
Matting,” Proc. IEEE Conf. Computer Vision and Pattern Recognition,
2007.

[13] J. Wang and M. Cohen, “Simultaneous Matting and Composit-
ing,” Proc. IEEE Conf. Computer Vision and Pattern Recognition,
2007.

[14] A. Levin, A. Rav-Acha, and D. Lischinski, “Spectral Matting,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 30, no. 10,
pp. 1699-1712, Oct. 2008.

[15] C. Rhemann, C. Rother, A. Rav-Acha, and T. Sharp, “High
Resolution Matting via Interactive Trimap Segmentation,” Proc.
IEEE Conf. Computer Vision and Pattern Recognition, 2008.

[16] C. Rhemann, C. Rother, and M. Gelautz, “Improving Color
Modeling for Alpha Matting,” Proc. British Machine Vision Conf.,
2008.

[17] D. Singaraju, C. Rother, and C. Rhemann, “New Appearance
Models for Natural Image Matting,” Proc. IEEE Conf. Computer
Vision and Pattern Recognition, pp. 659-666, 2009.

[18] J. Wang and M. Cohen, “Image and Video Matting: A Survey,”
Foundations and Trends in Computer Graphics and Vision, vol. 3,
no. 2, pp. 97-175, 2007.

[19] D. Singaraju and R. Vidal, “Interactive Image Matting for Multiple
Layers,” Proc. IEEE Conf. Computer Vision and Pattern Recognition,
2008.

[20] M. Bleyer, M. Gelautz, C. Rother, and C. Rhemann, “A Stereo
Approach that Handles the Matting Problem via Image Warping,”
Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 501-
508, 2009.

[21] E. Hsu, T. Mertens, S. Paris, S. Avidan, and F. Durand, “Light
Mixture Estimation for Spatially Varying White Balance,” ACM
Trans. Graphics, vol. 27, no. 3, 2008.

[22] Q. Shan, W. Xiong, and J. Jia, “Rotational Motion Deblurring of a
Rigid Object from a Single Image,” Proc. IEEE Int’l Conf. Computer
Vision, pp. 1-8, 2007.

[23] I. Omer and M. Werman, “Color Lines: Image Specific Color
Representation,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, vol. 2, pp. 946-953, 2004.

[24] H.W. Kuhn and A.W. Tucker, “Nonlinear Programming,” Proc.
Second Berkeley Symp., pp. 481-492, 1951.

[25] P. Doyle and L. Snell, Random Walks and Electric Networks, no. 22.
The Math. Soc. of Am., 1984.

[26] L. Grady and A. Sinop, “Fast Approximate Random Walker
Segmentation Using Eigenvector Precomputation,” Proc. IEEE
Conf. Computer Vision and Pattern Recognition, pp. 1-8, 2008.

[27] C. Rhemann, C. Rother, J. Wang, M. Gelautz, P. Kohli, and P. Rott,
“A Perceptually Motivated Online Benchmark for Image Mat-
ting,” Proc. IEEE Conf. Computer Vision and Pattern Recognition,
pp. 1826-1833, 2009.

Dheeraj Singaraju received the BTech degree
in electrical engineering from the Indian Institute
of Technology, Bombay, in 2004, and the MSE
and PhD degrees in electrical and computer
engineering from The Johns Hopkins University
in 2007 and 2010, respectively. His research
interests include computer vision and machine
learning. He is a member of the IEEE.
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