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Abstract

We consider the problem of distributed leader-follower formation control for
nonholonomic mobile robots equipped with paracatadioptric cameras. Our ap-
proach is to translate the formation control problem from the configuration space
into a separate visual servoing task for each follower. First, we present an algorithm
for infinitesimal multi-body motion segmentation from multiple paracatadioptric
views. We derive a rank constraint on the optical flows across many frames, from
which one can estimate the position of each leader in the paracatadioptric image
plane of the follower. Then, we study the relative leader-follower kinematics in
the catadioptric image plane and design a tracking controller for each follower us-
ing feedback linearization techniques. Finally, we present experimental results on
multi-body motion segmentation of a real image sequence and simulation results
on vision-based formation control.

1 Introduction

Formation control of unmanned ground and aerial vehicles is gaining significant impor-
tance in the control and robotics communities thanks to recent advances in communica-
tion and computer vision. Examples of formation control are ubiquitous in nature and
in man-made devices, from bird flight and fish swimming to air traffic control, satellite
clustering, automatic highways, and mobile robotics.

Previous work in formation control assumed that communication among the robots
is available and concentrated on the study of the stability and feasibility of formations.
Swaroop et.al [23] proposed the notion of string stability for line formations. They showed
that, although the pair-wise leader-follower system can be stable, the overall formation
can become unstable due to propagation of errors through the string. The authors
showed that a string formation is stabilizable when each follower has access to the leader’s
state. Pant et.al [16] generalized this notion to formations in a planar mesh, through
the concept of mesh stability. Tannner [25] concentrated on formations in acyclic graphs
and showed that the structure of the interconnections and the amount of information can
affect the input-to-state stability of the formation. Fax et.al [8] analyzed the stability of
formations in arbitrary graphs and proposed a Nyquist-like stability criteria that can be
derived from the spectral properties of the graph Laplacians. Tabuada et.al [24] studied
the conditions under which a desired formation is feasible, i.e. whether it is possible

∗This research is supported by ONR grant N00014-00-1-0621.



to design a trajectory that both maintains the formation and satisfies the kinematic
constraints of the agents. They showed that in order for a formation to be feasible,
certain differential-geometric conditions need to be satisfied.

In the absence of communication, the formation control problem becomes quite chal-
lenging from a sensing viewpoint, since one is faced with the problem of simultaneously
estimating the motion of multiple moving objects. Previous work [7] avoids this difficulty
by painting each leader of a different color and then using color tracking to identify them.
Here we consider the case in which the detection of the leaders is based solely on their
motion information on the image plane.

At present (see [13]), there are many perspective and orthographic structure from
motion algorithms for analyzing a static scene, i.e. a scene in which the camera is
moving and the world is static or viceversa. The study of dynamic scenes, i.e. scenes in
which both the camera and multiple objects move independently, is much more recent
and only partially understood. The main difficulty relies on the need of simultaneous
motion estimation (rotation and translation of the target relative to the camera) and
motion segmentation (determination of the pixels in the image that belong to each moving
target). Previous work includes the case of points moving linearly with constant speed [12,
20] or in a conic section [1], multiple moving objects seen by an orthographic camera [5,
14], or motion segmentation from two perspective views [27]. For central panoramic
cameras [2], there exist two-view motion estimation algorithms both in the discrete [22,
10, 4] and in the differential case [11, 26]. More recently, multi-frame algorithms were
proposed both in the discrete [21] and in the differential case [18]. To the best of our
knowledge, there is no work on the analysis of dynamic scenes seen by a central panoramic
camera.

1.1 Contributions of this work

We consider the problem of distributed leader-follower formation control for nonholo-
nomic mobile robots equipped with paracatadioptric cameras. Our work differs from
previous work on vision-based formation control for mobile robots, such as [6], in that
our control laws are defined in the paracatadioptric image plane. Our approach is to
translate the formation control problem from the configuration space into a separate vi-
sual servoing control task for each follower. In Section 2, we develop an algorithm for
infinitesimal multi-body motion segmentation from multiple paracatadioptric views. We
derive a rank constraint on the paracatadioptric optical flows across many frames, from
which one can estimate the position of each leader in the image plane of the follower.
In Section 3 we derive the leader-follower dynamical equations in the paracatadioptric
image plane using a nonholonomic kinematic model for the motion of the robots and
use feedback linearization techniques to design a tracking controller for each follower. In
Section 4 we present experimental results on multi-body motion segmentation of a real
image sequence. We also present simulation results validating our vision-based formation
control scheme.



2 Paracatadioptric Motion Segmentation

2.1 Paracatadioptric projection model

A paracatadioptric camera [9] projects a 3D point q = (X,Y, Z)T onto the image plane
by first projecting q onto the surface Z = 1

2
(X2 +Y 2−1) which represents a paraboloidal

mirror of focal length 1/2 with focus at the origin; and then orthographically projecting
the back-projection ray b onto the plane Z = 0 (see Figure 1). The composition of these
two projections gives:

[
x
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]
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√
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Figure 1: Showing the projection model for paracatadioptric cameras, and the back-
projection ray b associated with image point x.

2.2 Paracatadioptric optical flow

If the camera undergoes a linear velocity V ∈ R3 and an angular velocity Ω ∈ R3, then
the coordinates of q in the camera frame evolve as q̇ = Ω × q + V . The motion of the
camera induces a motion in the paracatadioptric image plane, which can be computed by
differentiating (1) with respect to time. We showed in [18] that the optical flow (ẋ, ẏ)T

induced by a paracatadioptric camera undergoing a motion (Ω, V ) is given by:
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where z , (x2 + y2 − 1)/2 and λ , −Z +
√
X2 + Y 2 + Z2.

If the camera is attached to a mobile robot moving on the ground plane with the
optical axis parallel to the Z axis, then the angular velocity is Ω = (0, 0,Ωz)

T and the
linear velocity is V = (Vx, Vy, 0)T . Thus the optical flow equation can be simplified as:
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2.3 Paracatadioptric Motion Segmentation

Let (xi, yi), i = 1, . . . , n, be a pixel in the zero-th frame, and imagine we are given
measurements of its optical flow (ẋij, ẏij) in frame j = 1, . . . ,m relative to the zero-th.
If the scene is static, then from (2) we get

[
ẋij ẏij

]
= SiM

T
j



where

Si =
[
xi −yi 1+zi−x2

i

(1+zi)λi

−xiyi
(1+zi)λi

1+zi−y2
i

(1+zi)λi

]
∈ R1×5, Mj =

[
0 Ωzj Vxj Vyj 0

Ωzj 0 0 Vxj Vyj

]
∈ R2×5.

Therefore the optical flow matrix W ∈ Rn×2m satisfies

W ,



ẋ11 ẏ11 · · · · · · ẋ1m ẏ1m
...

...
...

...
ẋn1 ẏn1 · · · · · · ẋnm ẏnm


 = SMT , (3)

where S = [ST1 ST2 · · ·STn ]T ∈ Rn×5 is the structure matrix and M = [MT
1 MT

2 · · ·MT
m]T ∈

R2m×5 is the motion matrix. We conclude that, for a static scene taken from a paracata-
dioptric camera moving on a plane, the collection of optical flows across many frames
lies on a 5-dimensional subspace of R2m.

For a dynamic scene with k independent motions, the optical flow matrix can be
decomposed as

W =
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. . .
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0 · · · Sk



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MT
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...
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
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where S ∈ Rn×5k and M ∈ R2m×5k. We showed in [19] that the block diagonal struc-
ture of W implies that its leading singular vector will have the same value for pixels
corresponding to the same motion. Furthermore, the eigenvector has a different value for
pixels corresponding to different motions. This gives an effective criterion for segmenting
the pixels of the current frame into a collection of k groups corresponding to the inde-
pendent motions. One of these groups corresponds to the motion of the camera, which
is generated by the static background. For a formation control scenario, this group can
always be identified as the largest one.

3 Omnidirectional Vision-Based Formation Control

In the previous section, we presented the equations of motion of a pixel in the paracata-
dioptric image plane and proposed an algorithm for segmenting the image into k groups
corresponding to independent motions. In doing so, we assumed that the camera and
the observed objects undergo arbitrary motions. In this section, we derive the equations
of motion in the particular case of a leader-follower configuration in the XY plane, with
the paracatadioptric camera mounted on-board the follower. We assume that the mount-
ing is such that the coordinate system of the on-board camera coincides with the robot
coordinate system, thus the camera’s optical center is located at (X,Y, Z) = 0 in the
follower frame. We then derive a tracking controller for each follower to maintain the
desired formation.

3.1 Relative leader-follower kinematics

Let us start with the simplest case of a single follower tracking a leader. Let (Rf(t), Tf(t)) ∈
SE(3) and (R`(t), T`(t)) ∈ SE(3) be the poses of the follower and that of the leader at
time t with respect to a fixed reference frame. Let q ∈ R3 be a point located on the



leader but written in the follower frame. The coordinates of q relative to the reference
frame are q`(t) = R`(t)q + T`(t) and the coordinates of q relative to the follower frame
are:

q`f (t) = RT
f (t)R`(t)q +RT

f (t)(T`(t)− Tf(t)). (5)

Differentiating (5) yields:

q̇`f = (ṘT
fR` +RT

f Ṙ`)q + ṘT
f (T` − Tf) +RT

f (Ṫ` − Ṫf). (6)

Combining (5) and (6) gives:

q̇`f = (ṘT
fRf +RT

f Ṙ`R
T
` Rf )q`f +RT

p (Ṫe − Ṫp − ṘeR
T
e (Te − Tp)). (7)

Let Ω̂ ∈ so(3) be the skew-symmetric matrix generating the cross product, i.e. Ω̂q = Ω×q
for all q ∈ R3. Since ṘRT ∈ so(3), R̂TΩ = RT Ω̂R and ṘTR = −RT ṘRTR [15], we may
define the angular velocities Ωf ,Ω` ∈ R3 by:

Ω̂` = Ṙ`R
T
` and Ω̂f = ṘfR

T
f . (8)

Combining (7) and (8) yields:

q̇`f = [RT
f (Ω` − Ωf)]× q`f +RT

f (Ṫ` − Ṫf − Ω̂`(T` − Tf)) , Ω̂`fq`f + V`f , (9)

where Ω`f and V`f , defined by the equation above, are the angular and translational
velocities of the leader relative to the follower.

3.2 Nonholonomic mobile robot dynamics

We consider a nonholonomic kinematic model for the dynamics of the ground robots.
The dynamics of the i-th robot are given by:

Ẋi = vi cos θi, Ẏi = vi sin θi, θ̇i = ωi (10)

where the state (Xi, Yi, θi) ∈ SE(2), and the inputs vi and ωi are the linear and angular
velocities, respectively. Letting Ti = (Xi, Yi, 0)T ∈ R3, e3 = (0, 0, 1)T ∈ R3, Ri =
exp(ê3θi) ∈ SO(3), Ωi = (0, 0, ωi)

T ∈ R3 and replacing in (9) we obtain:
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
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0
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
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where F`f , F`f (T`, Tf , θ`, θf , v`, ω`) ∈ R2 is given by:

[
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sin(θ` − θf)

]
v` −
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] [
−(Y` − Yf)
X` −Xf

]
ω`.



3.3 Paracatadioptric leader-follower dynamics

Replacing the expressions for Ω`f and V`f in (2), we obtain the following equations for
the motion of a pixel in the paracatadioptric plane:
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ẏ
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x
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]
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Since z = (x2 + y2 − 1)/2 and λ = 2Z/(x2 + y2 − 1) = Z/z, if we assume a ground
plane constraint, i.e. if we assume that Z = Zground < 0 is known, then we can write the
equations of motion of a pixel as the drift-free control system:

[
ẋ
ẏ

]
= H(x, y)uf +G(x, y)d`f (12)

where uf = (vf , ωf) ∈ R2 is the control action for the follower and d`f = (F`f , ω`) ∈ R3

can be thought of as an external input that depends on the state and control action of
the leader and the state of the follower.

3.4 Omnidirectional visual servoing

We now design a control law for the follower to keep a desired distance rd and an angle αd
from the leader. Although the desired formation is usually specified in the configuration
space, under the ground plane assumption such a formation can always be converted
into a desired formation in image space. Hence we assume that we are given a desired
pixel location (xd, yd) for the leader in the image plane of the follower, where (xd, yd) =
(rd cos(αd), rd sin(αd)).

We now apply feedback linearization to the control system (12) with output (x, y).
We observe that the system has a well defined vector relative degree1 of (1, 1) for all
pixels (x, y) such that H(x, y) is of rank 2, i.e. whenever x 6= 0 and x2 + y2 6= 1. We
assume that x 6= 0 and x2 + y2 6= 1 from now on2. In this case, the relative degree of
the system is 1 + 1 = 2 thus the zero dynamics of the system are trivially exponentially
minimum phase. Therefore the control law

uf = −H(x, y)−1

(
G(x, y) d`f +

[
k1(x− xd)
k2(y − yd)

])
(13)

results in a locally exponentially stable system around (xd, yd) whenever k1 > 0 and
k2 > 0.

In order to achieve exact inversion and tracking using the control law (13), it is
necessary to measure the effect of the unknown external input G`fd`f ∈ R2. Although
this term is a function of the state and control of the leader and the state of the follower,
we emphasize here that it is not necessary to measure any of these quantities. Instead, we
only need to estimate the two-dimensional vector G`fd`f . Furthermore, such a vector can
be easily estimated using the image measurements provided by the motion segmentation
techniques developed in Section 2.3 as we show below.

1See [17] page 408 for the definition of relative degree.
2The degenerate configuration x = 0 is due to the nonholonomy of the follower’s dynamics, while the

degenerate configuration x2 + y2 = 1 corresponds to the projection of the horizon, hence it is due to the
paracatadioptric camera model.



Let (xw, yw) and (ẋw, ẏw) be the position and optical flow of a pixel that corresponds
to a static 3D point in the world. From (12), the velocities of the follower causing that
optical flow are given by3:

uf = H(xw, yw)−1

[
ẋw
ẏw

]
. (14)

Notice that in the presence of noise one may improve the estimation of uf in (14) by
using more than one pixel and solving the equations in a least squares sense.

Now let (x`, y`) and (ẋ`, ẏ`) be the position and optical flow of a pixel that corresponds
to a 3D point on the leader. From (12) we have:

G(x`, y`)d`f =

[
ẋ`
ẏ`

]
−H(x`, y`)H(xw, yw)−1

[
ẋw
ẏw

]
. (15)

4 Experimental Results

We tested the proposed motion segmentation algorithm in a real image sequence. Fig-
ure 2(a) shows one out of 200 frames taken by a paracatadioptric camera observing two
moving robots. The optical flow was computed using Black’s algorithm [3]. Figure 2(b)
shows the results of applying the segmentation algorithm described in Section 2.3. The
image sequence is correctly segmented into two independent motions.

(a) (b)

Figure 2: An example of motion segmentation based on paracatadioptric optical flow.
(a) One frame of the sequence with optical flow superimposed. (b) Segmentation results.
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Figure 3: A V-Formation configuration.

3Notice that since the point in 3D space is static, i.e. (vl, ωl) = (0, 0), the second term in (12) is zero.
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Figure 4: Simulation results for a V-Formation. For t ∈ [0, 10] the followers flip positions
from the initial configuration to the desired one. For t > 10 the followers maintain their
formation into a full circle and then into a line.



We also tested the proposed formation control algorithm on the V-Formation config-
uration shown in Figure 3. The control parameters were chosen as k1 = 2.5, k2 = 1.76.
Figure 4 shows simulation results for a desired configuration (rd, αd) = (1/

√
2, π/6) for

Follower1 (green) and (rd, αd) = (1/
√

2,−π/6) for Follower2 (blue). For t ∈ [0, 10], the
followers move from the initial configuration to the desired one by flipping sides with
respect to the leader, which moves at constant velocities v` = 0.5 and w` = 0. For
t ∈ [10, 88], the leader changes its angular velocity to w` = 0.1, thus starting a circular
motion. The followers maintain the formation by moving on circles of different radii
depending on the side of the leader on which they are located. For t ∈ [10, 88] the leader
changes its angular velocity back to w` = 0, thus moving in a straight line. The followers
maintain the formation by moving in a straight line as well. It is important to mention
that, while the followers maintain formation with the leader, they cannot achieve zero
error. This is due to the nonholonomic nature of the robots. Consider for example a
leader-follower configuration with the leader moving in a circle. Then the follower cannot
follow the leader at a desired distance with a desired angle of zero degrees, because the
tangents to the circle at two different points are not the same.

5 Conclusions
We have presented a framework for distributed formation control of nonholonomic mobile
robots equipped with paracatadioptric cameras. We presented an algorithm for infinitesi-
mal multi-body motion segmentation from multiple paracatadioptric views that provides
an estimate of the current position of each leader in the image plane of the follower. We
solved the formation control problem by designing a distributed control law that follows
a desired formation specified in the paracatadioptric image plane. We presented experi-
mental results for motion segmentation and simulation results for formation control.
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