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Abstract. An algorithm for computing the maximal controlled invari-
ant set and the least restrictive controller for discrete time systems is
proposed. We show how the algorithm can be encoded using quanti-
fier elimination, which leads to a semi-decidability result for definable
systems. For discrete time linear systems with all sets specified by lin-
ear inequalities, a more efficient implementation is proposed using linear
programming and Fourier elimination. If in addition the system is in
controllable canonical form, the input is scalar and unbounded, the dis-
turbance is scalar and bounded and the initial set is a rectangle, then
the problem is decidable.

1 Introduction

The design of controllers is one of the most active research topics in the area
of hybrid systems. Problems that have been addressed include hierarchical con-
trol [5, 19], distributed control [18], and optimal control using dynamic program-
ming techniques [3, 4, 20, 23] or extensions of the maximum principle [11]. A
substantial research effort has also been directed towards solving control prob-
lems with reachability specifications, that is designing controllers that guarantee
that the state of the system will remain in a “good” part of the state space. Such
control problems turn out to be very important in applications, and are closely
related to the computation of the reachable states of a hybrid system and to the
concept of controlled invariance. The proposed solutions extend game theory
methods for purely discrete [21, 25] and purely continuous [2, 15] systems to
certain classes of hybrid systems: timed automata [13, 17], rectangular hybrid
automata [28] and more general hybrid automata [16, 26].

All of these techniques are concerned with hybrid systems whose continuous
state evolves in continuous time, according to differential equations or differential
inclusions. Unlike conventional continuous dynamical systems, little attention
has been devoted to systems where the continuous state evolves in discrete time,
according to difference equations. Besides being interesting in its own right,
this class of hybrid systems can be used to approximate hybrid systems with
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differential equations. Indeed, most of the techniques that have been proposed
for reachability computations for general continuous dynamics involve some form
of discretization of the continuous space [8, 12, 26], followed by a reachability
computation on the resulting discrete time system.

In Sect. 2, we formulate the problem of controller synthesis for discrete time
systems under reachability specifications, introduce the concepts of maximal
controlled invariant set and least restrictive controller, propose an algorithm for
computing them, and show how the algorithm can be implemented using quanti-
fier elimination. This immediately leads to a semi-decidability result for discrete
time systems whose continuous dynamics can be encoded in a decidable theory
of the reals. In Sect. 3, we implement the proposed algorithm for discrete time
linear systems with all the sets defined by linear inequalities. The implemen-
tation is based on a more efficient method for performing quantifier elimina-
tion in the theory of linear constraints using linear programming and Fourier
elimination. We also show that the problem is decidable when the single-input
single-disturbance discrete time linear system is in controllable canonical form,
the input is unbounded, and the safe set is a rectangle. Finally, in Sect. 4, we
illustrate the proposed method with some examples. For the proofs we refer the
reader to [27].

2 Discrete Time Systems and Safety Specifications

2.1 Basic Definitions

Let Y be a countable collection of variables and let Y denote its set of valuations,
that is the set of all possible assignments of these variables. We refer to variables
whose set of valuations is countable as discrete and to variables whose set of
valuations is a subset of a Euclidean space R™ as continuous. For a set Y we use
Y*° to denote the complement of Y, 2¥ to denote the set of all subsets of Y, Y*
to denote the set of all finite sequences of elements of Y, and Y* to denote the
set of all infinite sequences. Since the dynamical systems we will consider will
be time invariant we will use y = {y[{]}?_, to denote sequences. We use A to
denote conjunction, V to denote disjunction, — to denote negation, V to denote
the universal quantifier, and 3 to denote the existential quantifier.

Definition 1 (Discrete Time System (DTS)). A discrele time system is a
collection H = (X, V,Init, f) consisting of a finite collection of state variables,
X, a finite collection of iput variables, V, a set of wnitial states, Init C X, and
a reset relation, f: X x V — 2%,

Definition 2 (Execution of DTS). A sequence x = (z,v) € (X x V)*U (X x
V¥ is said to be an execution of the discrete time system H if x[0] € Init, and
for all k >0, x[k + 1] € f(x[k],v[k]).

To ensure that every finite execution can be extended to an infinite execution we
assume that f(z,v) # 0 for all (z,v) € X x V. We call such a DTS non-blocking.!

! The condition is only sufficient. Although it can be refined to be necessary as well, we
will not pursue this direction since the emphasis of this paper is controller synthesis.



We denote the set of all executions of H starting at xp € X as Ex(xp), and
the set of all executions of H by £g. Clearly, £y = UquInit Em (o).

Our goal here is to design controllers for DTS. We assume that the input
variables are partitioned into two classes, V' = U U D, where U are control
variables, and D are disturbance variables. In this context a controller can be
defined as a feedback map.

Definition 3 (Controller). A controller, C, is a map C : X* — 2Y. A con-
troller is called non-blocking if C(z) # 0 for all x € X*. A controller is called
memoryless if for all x, 2" € X* ending at the same state we have C(z) = C(z').

The interpretation is that, given the evolution of the plant state up to now, the
controller determines the set of allowable controls for the next transition. With
this interpretation in mind, we define the set of closed loop causal erecutions as

Ene = {(2,u,d) € Ex |k > 0,u[k] € C(zd)},

where zj denotes the subsequence of z consisting of its first &£ elements. Notice
that a memoryless controller can be characterized by a map ¢ : X — 2V, and
its set of closed loop causal executions is simply

Er, = {(x,u,d) € &g | Yk > 0, ulk] € g(x[k])}.

Our goal is to use controllers to steer the executions of the plant, so that they
satisfy certain desirable properties. In this paper we will restrict our attention
to a class of properties known as safety properties: Given a set F' C X, we would
like to find a non-blocking controller that ensures that the state stays in F' for
ever. We will say that a controller C' solves the problem (H,OF), if and only if
C'is non-blocking and for all (z,u,d) € Ex,, x[k] € F for all k > 0. If such a
controller exists we say that the problem (H,OF) can be solved.

Even though safety properties are not the only properties of interest?, they
turn out to be very useful in applications. Many important problems, such as
absence of collisions in transportation systems, mutual exclusion in distributed
algorithms, etc., can be naturally encoded as safety properties. Fortunately, it
can be shown that for this class of properties one can, without loss of generality,
restrict attention to memoryless controllers.

Proposition 1. The problem (H,0OF) can be solved if and only if it can be
solved by a memoryless controller.

Motivated by Proposition 1, we restrict our attention to memoryless con-
trollers from now on.

2.2 Controlled Invariant Sets and Least Restrictive Controllers

The concept of controlled invariance turns out to be fundamental for the design
of controllers for safety specifications [16]. Roughly speaking, a set of states,

2 Other important properties are liveness properties (ensuring that the state eventually
reaches a certain set, visits a set infinitely often, etc.), stability, optimality, etc.



W, 1s called controlled invariant if there exists a controller that ensures that all
executions starting somewhere in W remain in W for ever. More formally:

Definition 4 (Controlled invariant set). A set W C X is called a controlled
wmvartant set of H if there exists a non-blocking controller that solves the problem

(H',0W), where H = (X, V,W, f) (the same as H, but with Init' =W ).

We say that the controller that solves the problem (H',OW) renders the set W
wmnvariant. Also, given a set F' C X, aset W C F is called a mazimal controlled
wmvariant subset of I, if it is controlled invariant and it is not a proper subset of
any other controlled invariant subset of F'. The following lemma establishes the
uniqueness of the maximal controlled invariant set.

Lemma 1. The problem (H,0OF) can be solved if and only if there emists a
unique mazimal controlled invariant set, W, with Init CW C F.

A useful and intuitive characterization of the concept of controlled invariance
can be given in terms of the operator Pre : 2% — 2% defined by

PreW)={s e W |JueUVdeD, f(z,u,d)NnW°=10}.

The following properties of the operator Pre are easy to establish and will be
useful in the subsequent discussion.

Proposition 2. The operator Pre has the following properties:

1. Pre is contracting, that is for all W C X, Pre(W) C W;

2. Pre is monotone, that is for all W,/W' C X with W C W', Pre(W) C
Pre(W'); and,

3. A set W C X 1s controlled invariant if and only if it is a fized point of Pre,
that is if and only if Pre(W) = W.

Many memoryless controllers may be able to solve a particular problem.
Controllers that impose less restrictions on the inputs they allow are in a sense
better than controllers that impose more restrictions. For example, controllers
that impose fewer restrictions allow more freedom if additional safety specifica-
tions are imposed, or if one is asked to optimize the performance of the (safe)
closed loop system with respect to other objectives. To quantify this intuitive
notion we introduce a partial order on the space of memoryless controllers. We
write g1 < go if for all € X, g1(x) C g2(x).

Definition 5 (Least restrictive controller). A memoryless controller g :
X — 2Y that solves the problem (H, F) is called least restrictive if it is marimal
among the controllers that solve (H,OF) in the partial order defined by <.

Lemma 2. A controller that renders a set W invariant exists if and only if a
unique least restrictive controller that renders W invariant exists.

Notice that the least restrictive controller that renders a set W invariant must,
by definition, allow g(x) = U for all # ¢ W. Summarizing Lemmas 1 and 2 we
have the following:



Theorem 1. The problem (H,OF) can be solved if and only if there exists:

1. a unique mazimal controlled invariant set W with Init C W CF,and
2. a umique least restrictive controller, g, that renders W invariant.

Motivated by Theorem 1 we state the controlled invariance problem more
formally.

Problem 1 (Controlled Invariance Problem (CIP)) Given a DTS and a
set I C X compute the mazimal controlled invariant subset of ', W, the least
restrictive controller, g, that renders W invariant, and test whether Init C W.

2.3 Computation of W and §

We first present a conceptual algorithm for solving the CIP for general DTS.
Even though there is no straightforward way of implementing this algorithm in
the general case, in subsequent sections we show how this can be done for special
classes of DTS.

Algorithm 1 (Controlled Invariance Algorithm)

initialization: Wl = F W= =X, 1 =0
while W=t 0 (W!)¢ £ do

Wil = Pre(W')

l=14+1
end while

setW:ﬂlZOWl
setgu):{{UEUIVdED, floud) (W) =0} zew
U g W

Theorem 2. W is the mazimal controlled invariant subset of F and § is the
least restrictive controller that renders W invariant.

To implement the controlled invariance algorithm one needs to be able to
(1) encode sets of states, perform intersection and complementation, and test
for emptiness, (2) compute the Pre of a set, and (3) guarantee that a fixed point
is reached after a finite number of iterations. For classes of DTS for which 1 and
2 are satisfied we say that the CIP is semi-decidable; if all three conditions are
satisfied we say that the CIP is decidable. As an example, consider finite state
machines (FSM), that is the class of DTS for which X, U and D are finite. In
this case, one can encode sets of states, perform intersection, complementation,
test for emptiness and compute Pre by enumeration (or other more efficient
representations). Moreover, by the monotonicity of W' and the fact that X is
finite, the algorithm is guaranteed to terminate in a finite number of steps.
Therefore, the CIP is decidable for finite state machines.

In subsequent sections we show how the computation can be performed for
DTS with state and input taking values on a Fuclidean space and transition
relations given by certain classes of functions of the state and input.



2.4 CIP for Definable Discrete Time Systems

In this section we consider the case where all the sets involved in the CIP can be
expressed by means of a logic formula that belongs to the language of a certain
logic theory. For example, we denote by Lin(IR) the theory of linear constraints
and by OF(IR) the theory of polynomial constraints.

For some theories, it is possible to determine the sentences that belong to the
theory. The Tarski-Seidenberg decision procedure provides a way of doing this for
OF(R). It can be shown that OF(IR) is decidable [22, 24], in other words, there
exists a computational procedure that after a finite number of steps determines
whether an R-sentence belongs to OF(R) or not. The decision procedure is based
on quantifier elimination, an algorithm that converts a formula ¢(zy, ..., 2,) to
an equivalent quantifier free formula. Notice that this provides a method for
testing emptiness. A set Y = {(21,...,2,) | ¢(®1,... ,2,)} is empty if and only
if the sentence a1 ... 3wy, | (21, ..., 2,) is equivalent to false.

To relate this to the problem at hand, we restrict our attention to CIP which
are “definable” in an appropriate theory.

Definition 6 (Definable CIP). A CIP, (H,OF), is definable in a theory if
X =R" UCR"™, DCR"™ and the sets U, D, Init, f(z,u,d) for all x € X,
u €U and d € D, and F are definable in the theory.

If (H,OF) and W' are definable in OF(R), then
YHx) = IuVd Ve | [x€W'] A [WeU]A [(dgD) V (2’ f(x,u,d)) V (' eWH] (1)

is a first order formula in the corresponding language. Therefore, each step of
the controlled invariance algorithm involves eliminating the quantifiers in (1) to
obtain a quantifier free formula defining W'*+!. The fact that OF (IR) is decidable
immediately leads to the following:

Theorem 3. The class of CIP definable in OF(R) is semi-decidable.

Moreover, if (H,OF) is definable in OF(R) and W is a controlled invariant set
also definable in OF(IR), then the set {(x,u) |Vd € D V&' € f(z,u,d), 2’ €
W} describing the least restrictive controller that renders W invariant is also
definable in OF(R). Furthermore, quantifier elimination can be performed in
this formula, to obtain an explicit expression for the least restrictive controller.
Finally, the question W N1Init® = () can be decided. Therefore, if the algorithm
happens to terminate in a finite number of steps, the CIP can be completely
solved.

Although different methods have been proposed for performing quantifier
elimination in OF(R) [1, 22, 24], and the process can be automated using sym-
bolic tools [9], the quantifier elimination procedure is in general hard, both in
theory and in practice, since the solvability may be doubly exponential [14]. For
the theory Lin(IR), a somewhat more efficient implementation can be derived
using techniques from linear algebra and linear programming. The next section
shows how quantifier elimination in the theory Lin(R) can be performed more
efficiently for the formula (1) used in the controlled invariance algorithm.



3 CIP for Discrete Time Linear Systems

A linear CIP (LCIP) consists of

— a Linear DTS (LDTS),i.e. a DTS with X = R? U={u e R | Fu < n} C
R D ={deR™|Gd <~} CR"™ Init = {o € X|Jzx < 0} and a reset
relation given by f(z,u,d) = {Az+ Bu+Cd}, where A € Q"*", B € Qn*™x
C c annd’ Ec Qmuxnu’ G c dexnd’ 7 c Qm”, 5 c de’ J e anm,
and § € Q™+ with m,, mg and m; being the number of constraints on the
control, disturbance and initial conditions, respectively; and,

aset F = {xeR"| Mae<p} where M € Q™*" 3 € Q™ and m is the
number of constraints on the state.

Notice that LDTS are non-blocking and deterministic, in the sense that for every
state # and every input (u,d) there exists a unique next state. Since the sets
F, U and D are all convex polygons, and the dynamics f are given by a linear
map, the LCIP is definable in the theory Lin(IR), and therefore, according to the
discussion in Sect. 2.4, it is semi-decidable. We assume that the sets F' and U
can be either bounded or unbounded, but D is bounded?.

For the LCIP it turns out that, after the [-th iteration, the set W' can be
described by m! linear constraints as {z € R" | M'z < #'}, that is, W' remains a
convex polygon. Obviously, m? = m, M = M and ° = 3. Letting Al = M'A,
B! = M'B and C' = M'C, (1) becomes

(@) = IM'e < BIABu[(Bu < ) AV |(Gd > 5)V (A'e + Blu+ C'd < §))].

Thus, in each step of the algorithm, we need to be able to eliminate variables
u and d from the inner formulae, intersect the new constraints with the old ones
and check if the new set is empty. Notice that not all of the new constraints
generated by quantifier elimination may be necessary to define the set Wit!.
Also, some of the old constraints may become redundant after adding the new
ones. Hence we need to check the redundancy of the constraints when doing the
intersection.

3.1 Quantifier Elimination

We first perform quantifier elimination on d over the formula
¢ (z,u) =Vd | (Gd>v) vV (Alz + Blu+C'd < g .
Let al, I;ZT and ¢! be the i-th row of Al, B! and C’l, respectively. Then, parsing
¢! leads to m
¢'(w,u) = ¥d | N\(Gd> )V (el d< gl —al e — bl ).
i=1

Consider 6 : R™ "¢ 5 R™ defined by 6i(él) = max (¢f'd) fori=1,...,ml.
d:Gd<~y

® The theoretical discussion can be extended to unbounded D sets, but the computa-
tional implementation is somewhat more involved.



Proposition 3. ¢!'(z,u) is equivalent to ¢'(z,u) = Ale + Blu< g — 5(6”).

Therefore, the elimination of the ¥V quantifier can be done by solving a finite
collection of linear programming problems. Since we have assumed that D is
bounded, such an optimization problem is guaranteed to have a solution, and
hence §(-) is well defined. Since §(-) is applied to each row of C!, in the sequel
we will use 5i(él) and §(¢]) interchangeably. Notice that, strictly speaking, d(-)
is not part Lin(R), but we use it as a shorthand for the constant obtained by
solving the linear programs.

Next, we perform quantifier elimination on u over the formula

¢'(2) = 3u| (Bu <) A (Ae + Blu < 51 = 6(C")). (2)

We will discuss two methods to eliminate u. The first is known as Fourier Elimi-
nation [10], and the second, attributed to Cernikov [6], is an application of Farkas
Lemma on duality [7].

For the first method, assume we want to eliminate u; first. Let e; be the i-th
unit vector in le‘l'm“,

I _ Bl 1 _ ﬁl—é(él)—All‘
H_<E) and €($)—< . :
Thus ¢'(z) is equivalent to Ju | H'u < ¢'(z). Also define P! = {p | Hzl,l > 0},
Q ={q|Hl <0} and R = {r| H}, = 0}, where Hfj refers to the i, j element
of the matrix H'. Then ¢!(z) is equivalent to

1 “ 1 -
Bl NN | Fr€le) = D0 Hywg) Swn < (& (0) = 3 Hyyw)
qu j=2 le j=2

pEP! qeQ!

AN (€f«($)—ZHijuj)

Hence, after the elimination of u; we obtain

AT AT
“a Alz “q gl—§ !
wiN - A | ) () < G| (77 3€)
pePlgeQlUR! €p €
. . Z;nIZ H(l]]u]
- (le _qu) m , : (3)
ijz Hyu;

Therefore, the elimination of the 3 quantifier is performed by taking nonnegative
linear combinations of all pairs of constraints so as to cancel the quantified
variable. Note that if all the coefficients of the quantified variable are positive
(negative), then ¢! is true, and we need not to eliminate the remaining variables.
Otherwise, after u; has been eliminated, we apply the same procedure to the



constraints in (3), so as to eliminate wus, ..., uy,. Since the procedure is based
on nonnegative row operations, it is clear that

§(x) = A (Aé) <A (ﬁ’ —6((?’))

, (M'z <F)YAO< An),  (4)

where Al = [A AL € QM x(m'+m.) i a matrix with nonnegative entries such
that A'H' = 0, /! is the number of new constraints obtained through quantifier
elimination, M' = AL A" € Q'*" and g = AL (8 —§(C")) € Q™' Notice that if
the condition ALy > 0 is violated, then W = §. Otherwise, we just need to add
the new constraints M’z < Bl to the original set W'.

Although Fourier Eliminationis attractive because of its simplicity, it is quite
inefficient. In general, it generates many new constraints in the intermediate
steps, and in the worst case the method is exponential. This difficulty can be
partially remedied since many of the inequalities are likely to be redundant [7].

An alternative method [6] computes the rows of Al directly as the extreme
points of the set {X € R™+mu | NTHE = 0 AN > 0 A A = 1}, where
the last constraint is added to ensure that the set is a polytope. Although the
extreme points method is better than Fourier elimination, because it eliminates
the costly intermediate steps, the computation of the extreme points 1s still costly
and also generates a lot of redundant constraints. A more efficient method [14]
uses a generalized linear programming formulation and an on-line convex hull
construction to obtain an incremental inner approximation of the set defined
by ¢'. The method considerably reduces the number of constraints defining the
resulting set.

3.2 Intersection, Emptiness and Redundancy

Provided that ALn > 0, the quantifier elimination procedure presented above
computes the set of states W' = {z | M'x < B} that can be forced by u to tran-
sition into W'. To obtain W'*! such a set must be intersected with W'. Since
both sets are convex, the intersection can be carried out by simply appending
M*" and B to M' and ', respectively. However, this method of performing the
intersection is likely to lead to a description of the set which is larger than nec-
essary since many of the constraints may be redundant. Algorithm 2 is aimed
at checking the emptiness of the intersection and then eliminate redundant con-

straints. In the algorithm, [] denotes an empty matrix, 1 = (1...1)7 € le‘l'ml,
! 3l
and mgT and G/ are the i-th rows of M| = (%l) and 3 = (gl ), respectively.

Initially, M’ = M} and 5 = §j.

The idea behind the algorithm is that W!NW* # @ if and only if 3| M’z < ',
which is equivalent to saying that min{t | M’z < ' + 1t} < 0. Afterwards, if
the problem max{mng | M’a < B’} is feasible, and the constraint mng < g
is not redundant, then the optimal value of the problem is 8. Moreover, if the

non-redundant constraint mng < B! is removed from the optimization problem,
then the new optimal value m* satisfies m* > j..



Algorithm 2 (Emptiness and Redundancy Algorithm)

initialization M’ = M}, 3’ = g, M't1 =], g'*t! =[].
m* = min{t | M’z < 5 + 1}
if m* > 0 or ALy # 0 then
W = 0, terminate controlled invariance algorithm
else
for i =1 to m! + m! do
remove mgT from M’ and 3! from 3’
m* = max{mng | Mz < p'}
if m* > 5/ then
add mgT to M'*T and M/,
add B! to 't and 3
end if
end for
end if
if M+t = M! and gt = 3 then
W = W', terminate controlled invariance algorithm

end if

The controlled invariance algorithm terminates if the redundancy algorithm
concludes that either ALy 2 0 or W' NW! =0 (in which case W= ), or if all the
new constraints are redundant (in which case W' = Wi+l = W)4. Otherwise,
upon termination of the redundancy algorithm, the process is repeated for Wi+,
An obvious optimization of the code involves terminating both algorithms if after
all new constraints in M'z < Bl have been tested, M**t! and #'t! are still empty.

Notice that for all [ the set W' is a convex polygon as claimed. Summarizing:
Theorem 4. The LCIP s semi-decidable.

In the next section we study situations where the algorithm is guaranteed to
terminate in a finite number of steps. In Sect. 4, we will provide and example
which actually converges after an infinite number of iterations.

3.3 Decidable Special Cases

We first summarize some of the observations made so far about situations where
the algorithm terminates in a finite number of steps.

Proposition 4. For an LCIP with U = R™  if either one of the columns of
M B is componentwise positive (negative), or if rank(M B) = min{m,n}, the
algorithm terminates in a finite number of steps.

* Note that any redundant constraint in the original description of I’ will be elimi-
nated the first time the redundancy algorithm is invoked by the controlled invariance
algorithm.



Next, we limit our attention to the case F' = [oy, /1] X ... X [an, Bn] C R”
with a; < B and [e;, ] CR,i=1...n, u € R,and d € [dy, d2] C R. To remind
ourselves of the fact that v and d are scalar, we use b and ¢ instead of B and C'.
We also assume that (A, b) is in controllable canonical form, that is

0 100 - 0 0 c1
0 010 - 0 0 ca
elk+1] = e[kl + | o | ulk] + k). (5)
0 1 0 Cn—1
Apl An2 Apn 1 Cn

In this case ¢! (x) is equivalent to

Fu| A (o <oy < B5) A

j=1 J

(j—1 = 08(=cjm1) Swj < Fjo1 = (cj-1)) A
2

n

n n

an—Zanjxj—é(—cn)§u§ﬁn—2anjxj—5(cn) . (6)

j=1 j=1

From the last expression, it is clear that given x1 € [an, £1], ; exists if and only
if a} = max(oj, oj_1 — d(—¢j—1)) < min(F;, Bi—1 — d(¢j—1)) = ﬁ]l, j=2...n,
and u exists if and only if o, — §(—c¢p) < B — 6(cn). Tt is straightforward to
see that in the [-th iteration (0 <[ < n) W' is defined by:

wt = [O‘?aﬁ?] XX [a;+1a6ll+1] X [a§+2a6ll+2] XX [alnﬁﬁil]’

where aé = max(aé_l, aé:ll —d(ej-1)), and ﬁ; = min(ﬁ‘;_l, ;__11 —d(ej-1)), for
2§l+1§j§n,witha2:aj andﬁ?:ﬁj,forlgjgn.

This means that after n iterations, the maximal controlled invariant set re-
mains unchanged, and the least restrictive controller is given by the last con-
straint in (6), but with o, and 3, replaced by a”~! and 87!, respectively. This

result can be summarized as follows:

Lemma 3. Given system (5) with F' = [oq, f1] % .. . X [ap, Bn] CR™, U =R and
D = [di,ds] C R, the solution to the CIP, obtained after at most n iterations of
the algorithm, is given by:

. . . . ) n—1__n-1
W {{l‘ | Njoied™ <oy < ﬁj‘l} if Njog (el <pimt) A (Icnl sﬁdffj)

] otherwise

U otherwise

i(e) = {{U lap=t = 8(—cp) Su+ Y0y anju; < AR — (5(cn)} ifzeWw

Theorem 5. For systems of the form (5) with F' = [ay, 1] X. .. X [an, Bn] C R,
U=R and D = [d1,ds] CRR, the LCIP is decidable.



The conditions of Theorem 5 for decidability are somewhat demanding. If, for
example, u is bounded, that is, U = [uy, us] C R, then the new constraints added
to « during each iteration may change the bounds on z to a non-rectangular
polyhedron. In this case, the CIP is no longer decidable, and the system falls
into the more general class of systems described at the beginning of the section.
We conjecture that the LCIP is decidable in a much more general setting, using a
completely different algorithm that exploits the stabilizability of the pairs (A, B)
and (A, C) and the observability of the pair (A4, M).

4 Experimental Results

The algorithm proposed in Sect. 3 was implemented in MATLAB. Here, we
present two examples that were solved using this implementation. The first ex-
ample is also worked out analytically to complete the semi-decidability result.

Ezample 1. The LDTS is defined by U=R D = [-1,1],

11 100
01 0 1 ~1-3 ~50
A—<11)’B—<1)’C—<1)’M— po1 | adB=1 g0
-3 1 ~50

It is straightforward to see that the only new constraint added in the [-th iter-
ation is [0 my]z < 3, where my; = —10 - 3!71, and g = =210 — 265(371 — 1).
Therefore after an infinite number of iterations, W and g(z) converge to

w={al (™)< ()}

{uEU|uZmax(18—x1— %,—100—1‘1,—5’2—5—1‘1 — x9)
g(x) = u < min(98 — ¥y — 22, =52 — x1 + 222) } if 2 € W

U else

Ezrample 2. The LDTS is defined by

s 2 1 321 ) [ion
A= 1 —4 -1 ,B: 4 1 ’C: 217 ’E: = !
-5-3-1 1-1 121 0! o
0—1 1000
31 0 100 110 1
1 3 0 100 -1 0 0 1
1-1 0 100 0 1 0 1
M=1L_y_4 o[ %=|1wo|“=| 0=1 of 7=,
1 0 1 100 00 1 1
0 0-1 100 0 0-1 1

Using MATLAB, this example converges in two iterations. Information about
the intermediate calculations of each iteration is shown in Table 1.



Table 1. Results of Example 2

[teration 1 2

Number of LP problems for quantifier elimination on d 6 10
Number of constraints on (z,u) before elimination of u 10 14
Number of new constraints on z after elimination of u 281 614
Number of new non-redundant constraints on z 4 0

Total number of constraints on z after iteration 10 10

5 Conclusions and Future Work

We showed that the problem of computing the maximal controlled invariant
set and the least restrictive controller for discrete time systems is well posed
and proposed a general algorithm for carrying out the computation. We then
specialized the algorithm to discrete time linear systems with convex polygonal
constraints, and showed how it can be implemented using linear programming
and Fourier elimination. The decidability of the problem was also analyzed, and
some simple, but interesting cases were found to be decidable.

We are currently working on sufficient conditions under which the problem is
decidable. So far, it seems that the decidability property is not only dependent
on the system itself, but also on the initial set, as shown by Example 1. Another
topic of further research, i1s the application of these algorithm to discrete time
hybrid systems, where some states and inputs take values in finite sets, while
others in subsets of a Euclidean space. It is easy to show how this class of systems
is a special case of the more general class of DTS. Therefore, all the conclusions
of Sect. 2 directly extend to them. Unfortunately the implementation of the
controlled invariance algorithm is more complicated, even in the case where the
continuous state evolves according to a linear difference equation.
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