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Abstract� An algorithm for computing the maximal controlled invari�
ant set and the least restrictive controller for discrete time systems is
proposed� We show how the algorithm can be encoded using quanti�
�er elimination� which leads to a semi�decidability result for de�nable
systems� For discrete time linear systems with all sets speci�ed by lin�
ear inequalities� a more e�cient implementation is proposed using linear
programming and Fourier elimination� If in addition the system is in
controllable canonical form� the input is scalar and unbounded� the dis�
turbance is scalar and bounded and the initial set is a rectangle� then
the problem is decidable�

� Introduction

The design of controllers is one of the most active research topics in the area
of hybrid systems� Problems that have been addressed include hierarchical con�
trol ��� ��	� distributed control ��
	� and optimal control using dynamic program�
ming techniques ��� �� �� �	 or extensions of the maximum principle ���	� A
substantial research e�ort has also been directed towards solving control prob�
lems with reachability speci�cations� that is designing controllers that guarantee
that the state of the system will remain in a �good� part of the state space� Such
control problems turn out to be very important in applications� and are closely
related to the computation of the reachable states of a hybrid system and to the
concept of controlled invariance� The proposed solutions extend game theory
methods for purely discrete ��� �	 and purely continuous �� ��	 systems to
certain classes of hybrid systems� timed automata ���� ��	� rectangular hybrid
automata �
	 and more general hybrid automata ���� �	�

All of these techniques are concerned with hybrid systems whose continuous
state evolves in continuous time� according to di�erential equations or di�erential
inclusions� Unlike conventional continuous dynamical systems� little attention
has been devoted to systems where the continuous state evolves in discrete time�
according to di�erence equations� Besides being interesting in its own right�
this class of hybrid systems can be used to approximate hybrid systems with
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di�erential equations� Indeed� most of the techniques that have been proposed
for reachability computations for general continuous dynamics involve some form
of discretization of the continuous space �
� �� �	� followed by a reachability
computation on the resulting discrete time system�

In Sect� � we formulate the problem of controller synthesis for discrete time
systems under reachability speci�cations� introduce the concepts of maximal
controlled invariant set and least restrictive controller� propose an algorithm for
computing them� and show how the algorithm can be implemented using quanti�
�er elimination� This immediately leads to a semi�decidability result for discrete
time systems whose continuous dynamics can be encoded in a decidable theory
of the reals� In Sect� �� we implement the proposed algorithm for discrete time
linear systems with all the sets de�ned by linear inequalities� The implemen�
tation is based on a more e�cient method for performing quanti�er elimina�
tion in the theory of linear constraints using linear programming and Fourier
elimination� We also show that the problem is decidable when the single�input
single�disturbance discrete time linear system is in controllable canonical form�
the input is unbounded� and the safe set is a rectangle� Finally� in Sect� �� we
illustrate the proposed method with some examples� For the proofs we refer the
reader to ��	�

� Discrete Time Systems and Safety Speci�cations

��� Basic De�nitions

Let Y be a countable collection of variables and let Y denote its set of valuations�
that is the set of all possible assignments of these variables� We refer to variables
whose set of valuations is countable as discrete and to variables whose set of
valuations is a subset of a Euclidean space Rn as continuous� For a set Y we use
Yc to denote the complement of Y� Y to denote the set of all subsets of Y� Y�

to denote the set of all �nite sequences of elements of Y� and Y� to denote the
set of all in�nite sequences� Since the dynamical systems we will consider will
be time invariant we will use y � fy�i	gNi�� to denote sequences� We use � to
denote conjunction� � to denote disjunction� � to denote negation� � to denote
the universal quanti�er� and � to denote the existential quanti�er�

De�nition � �Discrete Time System �DTS��� A discrete time system is a
collection H � �X�V� Init� f� consisting of a �nite collection of state variables�
X� a �nite collection of input variables� V � a set of initial states� Init � X� and
a reset relation� f � X�V� X�

De�nition � �Execution of DTS�� A sequence � � �x� v� � �X�V��	 �X�
V�� is said to be an execution of the discrete time system H if x��	 � Init� and
for all k 
 �� x�k� �	 � f�x�k	� v�k	��

To ensure that every �nite execution can be extended to an in�nite execution we
assume that f�x� v� �� � for all �x� v� � X�V� We call such a DTS non�blocking��

� The condition is only su�cient� Although it can be re�ned to be necessary as well� we
will not pursue this direction since the emphasis of this paper is controller synthesis�



We denote the set of all executions of H starting at x� � X as EH�x��� and
the set of all executions of H by EH � Clearly� EH �

S
x��Init

EH�x���
Our goal here is to design controllers for DTS� We assume that the input

variables are partitioned into two classes� V � U 	 D� where U are control
variables� and D are disturbance variables� In this context a controller can be
de�ned as a feedback map�

De�nition � �Controller�� A controller� C� is a map C � X� � U� A con�
troller is called non�blocking if C�x� �� � for all x � X�� A controller is called
memoryless if for all x� x� � X� ending at the same state we have C�x� � C�x���

The interpretation is that� given the evolution of the plant state up to now� the
controller determines the set of allowable controls for the next transition� With
this interpretation in mind� we de�ne the set of closed loop causal executions as

EHC
� f�x� u� d� � EH j �k 
 �� u�k	 � C�xk�g�

where xk denotes the subsequence of x consisting of its �rst k elements� Notice
that a memoryless controller can be characterized by a map g � X � U� and
its set of closed loop causal executions is simply

EHg
� f�x� u� d� � EH j �k 
 �� u�k	 � g�x�k	�g�

Our goal is to use controllers to steer the executions of the plant� so that they
satisfy certain desirable properties� In this paper we will restrict our attention
to a class of properties known as safety properties� Given a set F � X� we would
like to �nd a non�blocking controller that ensures that the state stays in F for
ever� We will say that a controller C solves the problem �H��F �� if and only if
C is non�blocking and for all �x� u� d� � EHC

� x�k	 � F for all k 
 �� If such a
controller exists we say that the problem �H��F � can be solved�

Even though safety properties are not the only properties of interest�� they
turn out to be very useful in applications� Many important problems� such as
absence of collisions in transportation systems� mutual exclusion in distributed
algorithms� etc�� can be naturally encoded as safety properties� Fortunately� it
can be shown that for this class of properties one can� without loss of generality�
restrict attention to memoryless controllers�

Proposition �� The problem �H��F � can be solved if and only if it can be
solved by a memoryless controller�

Motivated by Proposition �� we restrict our attention to memoryless con�
trollers from now on�

��� Controlled Invariant Sets and Least Restrictive Controllers

The concept of controlled invariance turns out to be fundamental for the design
of controllers for safety speci�cations ���	� Roughly speaking� a set of states�

� Other important properties are liveness properties 	ensuring that the state eventually
reaches a certain set� visits a set in�nitely often� etc��� stability� optimality� etc�



W � is called controlled invariant if there exists a controller that ensures that all
executions starting somewhere in W remain in W for ever� More formally�

De�nition � �Controlled invariant set�� A set W � X is called a controlled
invariant set of H if there exists a non�blocking controller that solves the problem
�H���W �� where H� � �X�V�W� f� �the same as H� but with Init� � W ��

We say that the controller that solves the problem �H ���W � renders the set W
invariant� Also� given a set F � X� a set W � F is called a maximal controlled
invariant subset of F � if it is controlled invariant and it is not a proper subset of
any other controlled invariant subset of F � The following lemma establishes the
uniqueness of the maximal controlled invariant set�

Lemma �� The problem �H��F � can be solved if and only if there exists a
unique maximal controlled invariant set� �W � with Init � �W � F �

A useful and intuitive characterization of the concept of controlled invariance
can be given in terms of the operator Pre � X � X de�ned by

Pre�W � � fx �W j �u �U �d �D� f�x� u� d��W c � �g �

The following properties of the operator Pre are easy to establish and will be
useful in the subsequent discussion�

Proposition �� The operator Pre has the following properties�

�� Pre is contracting� that is for all W � X� Pre�W � � W �
	� Pre is monotone� that is for all W�W � � X with W � W �� Pre�W � �

Pre�W ��� and�

� A set W � X is controlled invariant if and only if it is a �xed point of Pre�

that is if and only if Pre�W � �W �

Many memoryless controllers may be able to solve a particular problem�
Controllers that impose less restrictions on the inputs they allow are in a sense
better than controllers that impose more restrictions� For example� controllers
that impose fewer restrictions allow more freedom if additional safety speci�ca�
tions are imposed� or if one is asked to optimize the performance of the �safe�
closed loop system with respect to other objectives� To quantify this intuitive
notion we introduce a partial order on the space of memoryless controllers� We
write g� � g� if for all x � X� g��x� � g��x��

De�nition � �Least restrictive controller�� A memoryless controller g �
X� U that solves the problem �H�F � is called least restrictive if it is maximal
among the controllers that solve �H��F � in the partial order de�ned by ��

Lemma �� A controller that renders a set W invariant exists if and only if a
unique least restrictive controller that renders W invariant exists�

Notice that the least restrictive controller that renders a set W invariant must�
by de�nition� allow �g�x� � U for all x �� W � Summarizing Lemmas � and  we
have the following�



Theorem �� The problem �H��F � can be solved if and only if there exists�

�� a unique maximal controlled invariant set �W with Init � �W � F � and
	� a unique least restrictive controller� �g� that renders �W invariant�

Motivated by Theorem � we state the controlled invariance problem more
formally�

Problem � �Controlled Invariance Problem �CIP�� Given a DTS and a
set F � X compute the maximal controlled invariant subset of F � �W � the least
restrictive controller� �g� that renders �W invariant� and test whether Init � �W �

��� Computation of 	W and 	g

We �rst present a conceptual algorithm for solving the CIP for general DTS�
Even though there is no straightforward way of implementing this algorithm in
the general case� in subsequent sections we show how this can be done for special
classes of DTS�

Algorithm � �Controlled Invariance Algorithm�

initialization�W � � F � W�� � X� l � �
while W l�� � �W l�c �� � do

W l�� � Pre�W l�
l � l � �

end while

set �W �
T
l��W

l

set �g�x� �

�n
u �U j �d �D� f�x� u� d� � � �W �c � �

o
x � �W

U x �� �W

Theorem �� �W is the maximal controlled invariant subset of F and �g is the
least restrictive controller that renders �W invariant�

To implement the controlled invariance algorithm one needs to be able to
��� encode sets of states� perform intersection and complementation� and test
for emptiness� �� compute the Pre of a set� and ��� guarantee that a �xed point
is reached after a �nite number of iterations� For classes of DTS for which � and
 are satis�ed we say that the CIP is semi�decidable� if all three conditions are
satis�ed we say that the CIP is decidable� As an example� consider �nite state
machines �FSM�� that is the class of DTS for which X� U and D are �nite� In
this case� one can encode sets of states� perform intersection� complementation�
test for emptiness and compute Pre by enumeration �or other more e�cient
representations�� Moreover� by the monotonicity of W l and the fact that X is
�nite� the algorithm is guaranteed to terminate in a �nite number of steps�
Therefore� the CIP is decidable for �nite state machines�

In subsequent sections we show how the computation can be performed for
DTS with state and input taking values on a Euclidean space and transition
relations given by certain classes of functions of the state and input�



��� CIP for De�nable Discrete Time Systems

In this section we consider the case where all the sets involved in the CIP can be
expressed by means of a logic formula that belongs to the language of a certain
logic theory� For example� we denote by Lin�R� the theory of linear constraints
and by OF�R� the theory of polynomial constraints�

For some theories� it is possible to determine the sentences that belong to the
theory� The Tarski�Seidenberg decision procedure provides a way of doing this for
OF�R�� It can be shown that OF�R� is decidable �� �	� in other words� there
exists a computational procedure that after a �nite number of steps determines
whether an R�sentence belongs to OF�R� or not� The decision procedure is based
on quanti�er elimination� an algorithm that converts a formula ��x�� � � � � xn� to
an equivalent quanti�er free formula� Notice that this provides a method for
testing emptiness� A set Y � f�x�� � � � � xn� j��x�� � � � � xn�g is empty if and only
if the sentence �x� � � ��xn j ��x�� � � � � xn� is equivalent to false�

To relate this to the problem at hand� we restrict our attention to CIP which
are �de�nable� in an appropriate theory�

De�nition 
 �De�nable CIP�� A CIP� �H��F �� is de�nable in a theory if
X � Rn� U � Rnu� D � Rnd and the sets U� D� Init� f�x� u� d� for all x � X�
u �U and d � D� and F are de�nable in the theory�

If �H��F � and W l are de�nable in OF�R�� then

�l�x� � �u �d �x� j �x�W l	� �u�U	� ��d ��D�� �x� ��f�x� u� d��� �x��W l�	 ���

is a �rst order formula in the corresponding language� Therefore� each step of
the controlled invariance algorithm involves eliminating the quanti�ers in ��� to
obtain a quanti�er free formula de�ning W l��� The fact that OF�R� is decidable
immediately leads to the following�

Theorem �� The class of CIP de�nable in OF�R� is semi�decidable�

Moreover� if �H��F � is de�nable in OF�R� and W is a controlled invariant set
also de�nable in OF�R�� then the set f�x� u� j �d � D �x� � f�x� u� d�� x� �
Wg describing the least restrictive controller that renders W invariant is also
de�nable in OF�R�� Furthermore� quanti�er elimination can be performed in
this formula� to obtain an explicit expression for the least restrictive controller�
Finally� the question W � Initc � � can be decided� Therefore� if the algorithm
happens to terminate in a �nite number of steps� the CIP can be completely
solved�

Although di�erent methods have been proposed for performing quanti�er
elimination in OF�R� ��� � �	� and the process can be automated using sym�
bolic tools ��	� the quanti�er elimination procedure is in general hard� both in
theory and in practice� since the solvability may be doubly exponential ���	� For
the theory Lin�R�� a somewhat more e�cient implementation can be derived
using techniques from linear algebra and linear programming� The next section
shows how quanti�er elimination in the theory Lin�R� can be performed more
e�ciently for the formula ��� used in the controlled invariance algorithm�



� CIP for Discrete Time Linear Systems

A linear CIP �LCIP� consists of

� a Linear DTS �LDTS�� i�e� a DTS with X � Rn� U � fu � Rnu jEu � �g �
Rnu� D � fd � Rnd jGd � �g � Rnd� Init � fx � X j Jx � �g and a reset
relation given by f�x� u� d� � fAx�Bu�Cdg� where A � Qn�n� B � Qn�nu�
C � Qn�nd� E � Qmu�nu� G � Qmd�nd � � � Qmu� � � Qmd� J � Qn�mi

and � � Qmi with mu� md and mi being the number of constraints on the
control� disturbance and initial conditions� respectively� and�

� a set F � fx � Rn jMx � �g where M � Qm�n� � � Qm and m is the
number of constraints on the state�

Notice that LDTS are non�blocking and deterministic� in the sense that for every
state x and every input �u� d� there exists a unique next state� Since the sets
F � U and D are all convex polygons� and the dynamics f are given by a linear
map� the LCIP is de�nable in the theory Lin�R�� and therefore� according to the
discussion in Sect� ��� it is semi�decidable� We assume that the sets F and U
can be either bounded or unbounded� but D is bounded��

For the LCIP it turns out that� after the l�th iteration� the set W l can be
described by ml linear constraints as fx � Rn jM lx � �lg� that is�W l remains a
convex polygon� Obviously� m� � m� M� � M and �� � �� Letting �Al � M lA�
�Bl � M lB and �Cl � M lC� ��� becomes

�l�x� � �M lx � �l 	���u j�Eu � �����d j�Gd 	 ���� �Alx� �Blu� �Cld � �l��	�

Thus� in each step of the algorithm� we need to be able to eliminate variables
u and d from the inner formulae� intersect the new constraints with the old ones
and check if the new set is empty� Notice that not all of the new constraints
generated by quanti�er elimination may be necessary to de�ne the set W l���
Also� some of the old constraints may become redundant after adding the new
ones� Hence we need to check the redundancy of the constraints when doing the
intersection�

��� Quanti�er Elimination

We �rst perform quanti�er elimination on d over the formula

�l�x� u� � �d j �Gd 	 �� � � �Alx� �Blu� �Cld � �l� �

Let �aTi �
�bTi and �cTi be the i�th row of �Al� �Bl and �Cl� respectively� Then� parsing

�l leads to

�l�x� u� � �d j
ml�
i��

�Gd 	 �� � ��cTi d � �li � �aTi x� �bTi u��

Consider 
 � Rml�nd � Rml

de�ned by 
i� �Cl� � max
d�Gd��

��cTi d� for i � �� � � � �ml�

� The theoretical discussion can be extended to unbounded D sets� but the computa�
tional implementation is somewhat more involved�



Proposition �� �l�x� u� is equivalent to �l�x� u� � �Alx� �Blu � �l � 
� �Cl��

Therefore� the elimination of the � quanti�er can be done by solving a �nite
collection of linear programming problems� Since we have assumed that D is
bounded� such an optimization problem is guaranteed to have a solution� and
hence 
��� is well de�ned� Since 
��� is applied to each row of �Cl� in the sequel
we will use 
i� �C

l� and 
��cTi � interchangeably� Notice that� strictly speaking� 
���
is not part Lin�R�� but we use it as a shorthand for the constant obtained by
solving the linear programs�

Next� we perform quanti�er elimination on u over the formula

�l�x� � �u j �Eu � �� � � �Alx� �Blu � �l � 
� �Cl��� ��

We will discuss two methods to eliminate u� The �rst is known as Fourier Elimi�
nation ���	� and the second� attributed to Cernikov ��	� is an application of Farkas
Lemma on duality ��	�

For the �rst method� assume we want to eliminate u� �rst� Let ei be the i�th

unit vector in Rml�mu �

Hl �

�
�Bl

E

�
and �l�x� �

�
�l � 
� �Cl�� �Alx

�

�
�

Thus �l�x� is equivalent to �u j Hlu � �l�x�� Also de�ne P l �
�
p jHl

p� 	 �
�
�

Ql �
�
q jH l

q�  �
�
and Rl �

�
r jHl

r� � �
�
� where Hl

ij refers to the i� j element

of the matrix Hl� Then �l�x� is equivalent to

�u j
�
p�P l

�
q�Ql

�
� �

Hl
q�

��lq�x��
mX
j��

Hl
qjuj� � u� �

�

Hl
p�

��lp�x��
mX
j��

Hl
pjuj�

�
	

�
�
r�Rl

�
�� � ��lr�x��

mX
j��

Hl
rjuj�

�
	�

Hence� after the elimination of u� we obtain

�u j
�
p�P l

�
q�Ql�Rl



Hl
p� �H

l
q�

���eTq

�eTp

�
A� �Alx

�

�
�


Hl
p� �H

l
q�

���eTq

�eTp

�
A��l � 
� �Cl�

�

�

�


Hl
p� �H

l
q�

��
Pm

j��H
l
qjujPm

j��H
l
pjuj

�
A� ���

Therefore� the elimination of the � quanti�er is performed by taking nonnegative
linear combinations of all pairs of constraints so as to cancel the quanti�ed
variable� Note that if all the coe�cients of the quanti�ed variable are positive
�negative�� then �l is true� and we need not to eliminate the remaining variables�
Otherwise� after u� has been eliminated� we apply the same procedure to the



constraints in ���� so as to eliminate u�� � � � � unu� Since the procedure is based
on nonnegative row operations� it is clear that

�l�x� � �l
�

�Alx

�

�
� �l

�
�l � 
� �Cl�

�

�
� � �M lx � ��l� � �� � �l��� � ���

where �l � ��l� �
l
�	 � Q

�ml��ml�mu	 is a matrix with nonnegative entries such
that �lHl � �� �ml is the number of new constraints obtained through quanti�er

elimination� �M l � �l�
�Al � Q �ml�n and ��l � �l���

l � 
� �Cl�� � Q �ml

� Notice that if
the condition �l�� 
 � is violated� then �W � �� Otherwise� we just need to add
the new constraints �M lx � ��l to the original set W l�

Although Fourier Elimination is attractive because of its simplicity� it is quite
ine�cient� In general� it generates many new constraints in the intermediate
steps� and in the worst case the method is exponential� This di�culty can be
partially remedied since many of the inequalities are likely to be redundant ��	�

An alternative method ��	 computes the rows of �l directly as the extreme

points of the set f�l � Rm�mu j �l
T
H l � � � �l 
 � �

P
�li � �g� where

the last constraint is added to ensure that the set is a polytope� Although the
extreme points method is better than Fourier elimination� because it eliminates
the costly intermediate steps� the computation of the extreme points is still costly
and also generates a lot of redundant constraints� A more e�cient method ���	
uses a generalized linear programming formulation and an on�line convex hull
construction to obtain an incremental inner approximation of the set de�ned
by �l� The method considerably reduces the number of constraints de�ning the
resulting set�

��� Intersection� Emptiness and Redundancy

Provided that �l�� 
 �� the quanti�er elimination procedure presented above

computes the set of states �W l � fx j �M lx � ��lg that can be forced by u to tran�
sition into W l� To obtain W l��� such a set must be intersected with W l� Since
both sets are convex� the intersection can be carried out by simply appending
�M l and ��l to M l and �l � respectively� However� this method of performing the
intersection is likely to lead to a description of the set which is larger than nec�
essary since many of the constraints may be redundant� Algorithm  is aimed
at checking the emptiness of the intersection and then eliminate redundant con�

straints� In the algorithm� �	 denotes an empty matrix� � � �� � � ���T � Q �ml�ml

�

and m�
i
T and ��i are the i�th rows ofM �

� �

�
�M l

M l

�
and ��� �

�
��l

�l

�
� respectively�

Initially�M � � M �
� and �� � ����

The idea behind the algorithm is thatW l� �W l �� � if and only if �xjM �x � ���
which is equivalent to saying that minft jM �x � �� � �tg � �� Afterwards� if

the problem maxfm�
i
T
x jM �x � ��g is feasible� and the constraint m�

i
T
x � ��i

is not redundant� then the optimal value of the problem is ��i� Moreover� if the

non�redundant constraint m�
i
T
x � ��i is removed from the optimization problem�

then the new optimal value m� satis�es m� 	 ��i�



Algorithm � �Emptiness and Redundancy Algorithm�

initializationM � � M �
�� �

� � ���� M
l�� � �	� �l�� � �	�

m� � minft jM �x � �� � �tg
if m� 	 � or �l�� �
 � then

�W � �� terminate controlled invariance algorithm
else

for i � � to �ml �ml do

remove m�
i
T from M � and ��i from ��

m� � maxfm�
i
T
x jM �x � ��g

if m� 	 ��i then

add m�
i
T
to M l�� and M ��

add ��i to �
l�� and ��

end if
end for

end if
if M l�� � M l and �l�� � �l then

�W � W l� terminate controlled invariance algorithm
end if

The controlled invariance algorithm terminates if the redundancy algorithm
concludes that either �l�� �
 � orW l� �W l � � �in which case �W � ��� or if all the
new constraints are redundant �in which case W l � W l�� � �W �
� Otherwise�
upon termination of the redundancy algorithm� the process is repeated forW l���
An obvious optimization of the code involves terminating both algorithms if after
all new constraints in �M lx � ��l have been tested� M l�� and �l�� are still empty�
Notice that for all l the set W l is a convex polygon as claimed� Summarizing�

Theorem �� The LCIP is semi�decidable�

In the next section we study situations where the algorithm is guaranteed to
terminate in a �nite number of steps� In Sect� �� we will provide and example
which actually converges after an in�nite number of iterations�

��� Decidable Special Cases

We �rst summarize some of the observations made so far about situations where
the algorithm terminates in a �nite number of steps�

Proposition �� For an LCIP with U � Rnu� if either one of the columns of
MB is componentwise positive �negative�� or if rank�MB� � minfm�ng� the
algorithm terminates in a �nite number of steps�

� Note that any redundant constraint in the original description of F will be elimi�
nated the �rst time the redundancy algorithm is invoked by the controlled invariance
algorithm�



Next� we limit our attention to the case F � ���� ��	 � � � �� ��n� �n	 � Rn

with �i � �i and ��i� �i	 � R� i� � � � �n� u � R� and d � �d�� d�	 � R� To remind
ourselves of the fact that u and d are scalar� we use b and c instead of B and C�
We also assume that �A� b� is in controllable canonical form� that is

x�k� �	 �

�
BBBBB

� � � � � � � �
� � � � � � � �
���

� � �
���

� �
an� an� � � � ann

�
CCCCCA x�k	 �

�
BBBBB

�
�
���
�
�

�
CCCCCAu�k	 �

�
BBBBB

c�
c�
���

cn��
cn

�
CCCCCA d�k	� ���

In this case ���x� is equivalent to

�u j
n�
j��

��j � xj � �j� �
n�
j��

��j�� � 
��cj��� � xj � �j�� � 
�cj���� �

�
�n � nX

j��

anjxj � 
��cn� � u � �n �
nX
j��

anjxj � 
�cn�

�
A � ���

From the last expression� it is clear that given x� � ���� ��	� xj exists if and only
if ��j � max��j � �j�� � 
��cj���� � min��j � �j�� � 
�cj���� � ��j � j �  � � �n�
and u exists if and only if �n � 
��cn� � �n � 
�cn�� It is straightforward to
see that in the l�th iteration �� � l � n� W l is de�ned by�

W l � ����� �
�
� 	� � � �� ��ll��� �

l
l��	� ��ll��� �

l
l��	� � � �� ��ln� �

l
n	�

where �lj � max��l��j � �l��j��� 
�cj����� and �lj � min��l��j � �l��j�� � 
�cj����� for

 � l � � � j � n� with ��j � �j and ��j � �j � for � � j � n�
This means that after n iterations� the maximal controlled invariant set re�

mains unchanged� and the least restrictive controller is given by the last con�
straint in ���� but with �n and �n replaced by �n��n and �n��n � respectively� This
result can be summarized as follows�

Lemma �� Given system ��� with F � ���� ��	�� � ����n� �n	 � R
n� U � Rand

D � �d�� d�	 � R� the solution to the CIP� obtained after at most n iterations of
the algorithm� is given by�

�W �

�n
x j
Vn

j�� �
j��
j � xj � �

j��
j

o
if
Vn

j��



�
j��
j � �

j��
j

�
�
�
jcnj �

�n��n ��n��n

d��d�

�
� otherwise

�g�x� �

�n
u j �n��n � 
��cn� � u�

Pn

j�� anjxj � �n��n � 
�cn�
o

if x � �W

U otherwise

Theorem �� For systems of the form ��� with F � ���� ��	�� � ����n� �n	 � R
n�

U � R and D � �d�� d�	 � R� the LCIP is decidable�



The conditions of Theorem � for decidability are somewhat demanding� If� for
example� u is bounded� that is�U � �u�� u�	 � R� then the new constraints added
to x during each iteration may change the bounds on x to a non�rectangular
polyhedron� In this case� the CIP is no longer decidable� and the system falls
into the more general class of systems described at the beginning of the section�
We conjecture that the LCIP is decidable in a much more general setting� using a
completely di�erent algorithm that exploits the stabilizability of the pairs �A�B�
and �A�C� and the observability of the pair �A�M ��

� Experimental Results

The algorithm proposed in Sect� � was implemented in MATLAB� Here� we
present two examples that were solved using this implementation� The �rst ex�
ample is also worked out analytically to complete the semi�decidability result�

Example �� The LDTS is de�ned by U � R�D � ���� �	�

A �

�
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�
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�
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�
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���
���
���

�
CCA �

It is straightforward to see that the only new constraint added in the l�th iter�
ation is ��ml	x � �l� where ml � ��� � �l��� and �l � ��� � ����l�� � ���
Therefore after an in�nite number of iterations� �W and �g�x� converge to

�W �

�
x j

�
M

� �

�
x �

�
�

���

��

�g�x� �

���
��
�
u �U j u 
 max��
� x� �


x�
� ������ x���

��
� � x� � x��

u � min��
� x� � x����� x� � x��g if x � �W

U else

Example 	� The LDTS is de�ned by
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Using MATLAB� this example converges in two iterations� Information about
the intermediate calculations of each iteration is shown in Table ��



Table �� Results of Example �

Iteration � �
Number of LP problems for quanti�er elimination on d � ��
Number of constraints on 	x�u� before elimination of u �� ��
Number of new constraints on x after elimination of u ��� ���
Number of new non�redundant constraints on x � �
Total number of constraints on x after iteration �� ��

� Conclusions and Future Work

We showed that the problem of computing the maximal controlled invariant
set and the least restrictive controller for discrete time systems is well posed
and proposed a general algorithm for carrying out the computation� We then
specialized the algorithm to discrete time linear systems with convex polygonal
constraints� and showed how it can be implemented using linear programming
and Fourier elimination� The decidability of the problem was also analyzed� and
some simple� but interesting cases were found to be decidable�

We are currently working on su�cient conditions under which the problem is
decidable� So far� it seems that the decidability property is not only dependent
on the system itself� but also on the initial set� as shown by Example �� Another
topic of further research� is the application of these algorithm to discrete time
hybrid systems� where some states and inputs take values in �nite sets� while
others in subsets of a Euclidean space� It is easy to show how this class of systems
is a special case of the more general class of DTS� Therefore� all the conclusions
of Sect�  directly extend to them� Unfortunately the implementation of the
controlled invariance algorithm is more complicated� even in the case where the
continuous state evolves according to a linear di�erence equation�
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