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Abstract 
In this paper, we study the structure from motion prob- 

lem as a constrained nonlinear least squares problem which 
minimizes the so called reprojection error subject to all con- 
straints among multiple images. By converting this con- 
strained optimization problem to an unconstrained one, we 
obtain a multiview version of the normalized epipolar con- 
straint of two views. Such a multiview normalized epipolar 
constraint serves as a statistically optimal objective func- 
tion for motion (and structure) estimation. Since such a 
function is dejined naturally on a product of Stiefel man- 
ifolds, we show how to use geometric optimization tech- 
niques to minimize it. We present experimental results on 
real images to evaluate the proposed algorithm. 

1. Introduction 
In this paper, we revisit a classic problem in computer 

vision: Given a camera undergoing a rigid body motion and 
observing a cloud of points, recover camera motion and 
(Euclidean) scene structure from their correspondences 
among multiple images. 

The problem has been extensively studied in the litera- 
ture (see, for example, reviews of batch methods [ 131, re- 
cursive methods [8, 121, orthographic case [I41 and pro- 
jective reconstruction [ 161). Nevertheless, there are some 
important issues that have not yet been answered. 

First of all, we do not yet have a clear understand- 
ing of the relationship between multilinear constraints and 
the (statistical) optimality of motion and structure esti- 
mates. Although we have understood very well the geo- 
metric (or algebraic) relationship among multilinear con- 
straints 14, 7, 10, 151 (which will be briefly reviewed in 
Section 3), when it comes to using them for designing mo- 
tion or structure recovery algorithms, they are usually used 
as objectives, rather than constraints. Many researchers 
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believe that multilinear tensors should be recovered first 
and, from them, motion and structure could be further re- 
trieved [3]. Algebraically, this is true. Nevertheless, when 
a noise model is considered and the direct objective is to 
minimize certain statistics, such as the reprojection error, it 
becomes quite unclear how to incorporate these multilinear 
constraints into the objective. More specifically, we want to 
answer the questions: 

(i) Can we convert such a constrained optimiza- 
tion problem to an unconstrained one? If so, what 
weight should be assigned to each constraint? 

Secondly, in applications which require high accuracy. 
noise sensitivity becomes the primary concern [ l ,  6 ,9 ,  171. 
Although a specific sensitivity study is needed for every al- 
gorithm, it is still possible to study the intrinsic sensitivity 
inherent in the initial problem. From statistics, we know 
that the Hessian of the aposteriori likelihood function, eval- 
uated at the maximum, closely approximates the covariance 
matrix of the estimates. As we will see in Section 5, the 
multiview normalized epipolar constraint is such a function 
and we will show how to compute its Hessian. Neverthe- 
less, the sensitivity issue is not a main subject of this paper 

Finally, from an optimization theoretic viewpoint, with 
such a function we can further understand: 

(ii) What geometric space does the optimization 
take place on? Is there any generic optimization 
technique for minimizing such a function? 

In this paper, we will give clear answers to the above 
questions through the development of a solution to the 
constrained nonlinear least squares optimization problem 
which minimizes the reprojection error subject to all con- 
straints among multiple images. Question set (i) will be 
answered in Section 4. The answers will become evident 
from the derivation and the form of the multiview normal- 
ized epipolar constraint. Question set (ii) will be answered 
in Section 5 where a generic optimization algorithm is ex- 
plicitly laid out for minimizing the multiview normalized 
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epipolar constraint. Although our results, including the al- 
gorithm, can be easily generalized to trilinear constraints or 
even to an uncalibrated framework, we choose to present 
the calibrated case using bilinear (epipolar) constraints so 
as to clearly convey the main ideas. 

Relations to Previous Work: Our algorithm belongs to 
the so called batch methods for motion and structure recov- 
ery from multiple views [13, 14, 161, and is a necessary ex- 
tension of the unconstrained nonlinear least squares method 
[ 131. We believe that our results, especially the normalized 
epipolar constraint, may help to improve existing recursive 
methods such as those in [S, 121 if the filter objective func- 
tion is modified to the one given by us. Moreover, studying 
the Hessian of such an objective will allow to extend exist- 
ing sensitivity studies [ 1, 61 to the multiview case. 

2. Notation and Problem Statement 
We first introduce some notation which will be fre- 

quently used in this paper. We use a,  ,D and A for scalars, 
p and q for points in !R3,  x for image points, a‘ and x‘ 
for vectors and capital letters for matrices. We represent 
a point q = [ q l ,  q 2 ,  q3IT E !R3 in homogeneous coordi- 
nates as 4 = [ql , q 2 , q 3 ,  1IT E R4. Also, given a vector 
p = b l , p z , p 3 I T  E !R3, we define [ P I x  E so(3) (the space 
of skew symmetric matrices in !R3x3) as the matrix generat- 
ing the cross product, that is, for any two vectors p ,  q E !R3 
we havep x q = bIxq. 

The camera motion is modeled as a rigid body motion 
in !R3. The displacement of the camera belongs to the spe- 
cial Euclidean group SE(3) ,  represented in homogeneous 
coordinates as: 

S E ( 3 ) = { G = [  T ] l p ~ ? R ~ , R t S 0 ( 3 )  I , (1) 

where SO(3)  is the space of 3 x 3 rotation matrices. Let 
q ( t ) ,  t E 8 be the coordinates of q with respect to the cam- 
era frame at time t .  Then the coordinate transformation 
G(t)  E SE(3)  between q ( t )  and q ( t 0 )  is given by: 

- q ( t )  = G(t)g(to) = [(R(t)q(to) + P ( W  11*. ( 2 )  

Without loss of generality, we may assume that q ( t 0 )  are the 
coordinates of q with respect to a predefined inertial frame. 

Define P = [13x3,03xl]  E ?R3x4  to be the projection 
matrix and N c ?R3 to be the imaging surface. Then, the 
image x = (2, y, z ) ~  E N of a point q E 8’ is in general 
assumed to satisfy the following equation: 

Ax = Pq. - (3) 

where X > 0 encodes the (unknown positive) scale of the 
point q with respect to its image x. For instance, X = 43  for 
perspective projection and X = )1q)1 for spherical projec- 
tion. If the imaging surface has variable curvature, X can be 

more involved. Combining (2) and (3), we have the imaging 
model for a moving camera: 

X(t )x ( t )  = PG(t)q. - (4) 

Problem Statement: Given a set of corresponding image 
points xZ,,xi,. . . ,xk E N of a 3D point q’, i = 1 , .  . . , n, 
with respect to m camera frames (at m unknown locations 
or time instances), recover the relative motions among the 
m camera frames and then the 3D locations of the n points 
with respect to the m camera frames. 

To be consistent with the notation, we always use the su- 
perscript to enumerate the n different points. We omit the 
superscript when we refer to a generic single point. The 
subscript is always used to enumerate the m different cam- 
era frames. According to the problem statement, in (4), 
except for the fact that x is measured and P is a constant 
matrix, everything else, i.e., X , q  and G, is unknown and 
entitled to be recovered from the measured x. As we will 
soon see, due to some constraints that multiple images of a 
3D point must satisfy, the problem of recovering the cam- 
era motion G and that of recovering the 3D location of the 
point q can be very much decoupled. Furthermore, once the 
camera motion is known, determining the 3D locations of 
all the feature points is a much simpler problem. Hence, 
in this paper, we will focus on the problem of recovering 
camera motion. Once the motion is well estimated, a good 
reconstruction of 3D structure can also be obtained. 

. .  

3. Multilinear Constraints 
Denote the relative motion between the kth and j t h  

frames as Gkj = (Rkj,,pkj) E S E ( 3 ) ,  1 5 j , k  5 m. 
For i = 1,. . . , n, let X: be the scale of the point qz with 
respect to its j t h  image xj. Then from (4) we have: 

which we rewrite in a more compact notation as: 

XZ? = Aq’. - (6) 

We call -4 = [Zl , ti2, Z3, &] E ! R 3 m x 4  the motion matrix. 
We then have the well-known results: 

Proposition 1 (Multilinear Constraint) Given m images 
{x, E !R3}F1 of apoint q, and the matrix il of relative mo- 
tions between camera frumes, the columns {2J E !J?3m}J”=1 
of matrix X satisfi the following wedge product equation: 

(7) a’l A a’a A a’3 A & A x’l A . . . A Sm = 0. 
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For given camera motions, this equation gives multilinear 
constraints in the m images xJ of a single 3D point. Among 
all the constraints given by this wedge product equation’, 
those involving only four images are called quadrilinear, 
those involving only three images are called trilinear, and 
those involving only two images are called either bilinear, 
fundamental or epipolar. 

It has been shown that constraints (on the images xJ ’s) 
involving more than four images are (algebraically) depen- 
dent on the trilinear and bilinear ones [4]. It has also been 
shown that trilinear and quadrilinear constraints are alge- 
braically dependent on bilinear ones when the optical cen- 
ters of the camera do not lie on a straight line [7]. This 
degenerate case is also called rectilinear motion and is il- 
lustrated geometrically in Figure l .  In fact, a set of points 
{x,}?=~ on m image planes satisfy all multilinear con- 
straints if and only if “rays” extending from camera cen- 
ters along these image points intersect at a unique point in 
3D - the “incidental” condition. As a consequence of this 
interpretation of multilinear constraints, in order for an ex- 
tra image to satisfy all multilinear constraints, it only needs 
to satisfy two (bilinear) coplanar constraints given that the 
new camera center is not collinear with the previous ones. 
For example, in Figure 2, in order for the fourth image to 
satisfy all multilinear constraints, it is sufficient for the ray 
(04, q )  to be coplanar with the ray ( 0 2 ,  q )  and with the ray 
(o3,q). The coplanar condition between the ray (04, q )  and 
the ray (01 , q)  is redundant. 

For the problem of motion and structure reconstruction, 
we are more interested in recovering the motion matrix A 
from measured images xj ’ s  which nonetheless automati- 
cally satisfy the incidental condition. In general, it is the 
coefficients of all the multilinear constraints that contain in- 
formation about the motion matrix A - in the two view case, 
these coefficients are exactly the essential matrix. As for re- 
lationships among all coefficients, it is also known that the 
following statement is true [7]: 

Proposition 2 (Geometric Dependency) r f  the kernels of 
all the matrices PGkl, k = 1 , .  . . ,m  are linearly depen- 
dent, then the coeflcients of trilinear or quadrilinear con- 
straints are functions of those of all bilinear constraints. 

It is easy to see that the kernel of the matrix PGkl is 
spanned by the vector [ - p ~ l R k l , l ] T  E g4. Note that 
-Rrlpkl E 313 is exactly the optical center of the cam- 
era with respect to the initial coordinate frame. Then for all 
the kernels to be linearly dependent, the optical centers of 
camera frames 2 to m must all be the same. Therefore, as 

‘We recall that in X k  the wedge product o f t  vectors is equal to zero 
if and only if the subspace generated by the e vectors is of dimension less 
than e.  In other words, all the e x t minors of the IC x t matrix with 
columns consisting of those vectors must be zero. Here we have k = 3m 
and e = m + 4. 

Figure 1 :  Degeneracy: Cen- 
ters of camera lie on a 
straight line. Coplanar con- 
straints are not sufficient 
to uniquely determine the 
intersection hence trilinear 
constraints are needed. 

I 

Figure 2: Sufficiency: Cen- 
ters of camera and the point 
are not coplanar. Three (bi- 
linear) coplanar constraints 
are sufficient to uniquely de- 
termine the intersection. 

long as the multiple images are taken at different locations, 
whatever can be recovered from trilinear constraints (using 
image correspondences) must be recoverable from epipolar 
constraints. As we know, epipolar constraints cannot deter- 
mine the relative scale of translation for rectilinear motion, 
so neither can trilinear constraints. In Section 6 we will 
present an experiment showing that statistically this relative 
scale can still be estimated if we normalize our objective 
function correctly with respect to a given noise model. 

4. Multiview Normalized Epipolar Constraint 
Multilinear constraints have conventionally been used to 

formulate various objective functions for motion recovery. 
However, if we do use them as constraints, we only need to 
pick a minimal set of independent ones. In this paper we 
will assume that the centers of the camera do not lie on a 
straight line, unless otherwise stated (Comment 5 will dis- 
cuss the degenerate case). Therefore, the minimal set will 
be the set of 2771 - 3 pairwise epipolar constraints among 
three consecutive images. In this section, we show how to 
use these constraints to derive a clean form of an statisti- 
cally optimal objective function for motion (and structure) 
recovery. 

The rigid body motion between the ICth and j t h  camera 
frames is Gkj = ( R k j , p k j )  E SE(3),  1 5 k , j  5 m. Thus 
the coordinates of a 3D point q E !R3 with respect to frames 
j and k are related by (see (2)): 

q k  = Rkjqj + P k j  . (8) 

Let us denote by Ejk = R & [ p k j l x  E !R3x3 the essential 
matrix associated with the camera motion between the kth 
and j t h  frames, then in the absence of noise, image points 
xi satisfy the epipolar constraints: 

36 



In the presence of isotropic noises, we seek for points 
ji. = {Xi} on the image plane and a configuration of m 
camera frames G = {Gkj} such that they minimize the to- 
tal reprojection error. That is, we want to minimize the 
objective: 

n m  

subject to the constraints: 

where e3 = ( O , O , l ) T  E R3,1 5 j 5 m - 1 , 1  5 IC 5 
m - 2 , l  5 e 5 m and 1 5 i 5 n. The first two constraints 
are epipolar constraints among three consecutive images. 
The last constraint is for the imaging model of perspective 
projection.2 Using Lagrangian multipliers, the above con- 
strained optimization problem is equivalent to minimizing: 

n m  i+2 

for some ai.k, f i j  E 92. From the necessary condition for 
local minima, V F  = 0, we obtain % 

. i f 2  

+ cy&EGXk +Oje3 = 0,  (13) 
k=j-2>1 

for all i = 1 , .  . . , n, j = 1,.  . . , m. Multiplying the above 
equation by [ e ~ ] :  [e31 to eliminate /3;, we obtain: 

j -1  

+ cx&EZ%;), (14) 
k=j- 2>l 

for all i = 1 , .  . . , n ,  j = l , . .  . ,m.  I t  is readily seen that, 
in order to convert the above constrained optimization to 
an unconstrained one, we need to solve for aij  and ajk's, 
For this purpose, we define vectors 5 i i ,  x i ,  Ax2 E !R3" 
associated with the i th  point as Xz = [XiT,. . . , X:] T , 

*Without loss of generality, we will only discuss the perspective pro- 
jection case. The spherical projection case is similar and hence omitted for 
simplicity. 

x i  = [xiT,.  . . , x z l T ,  Axi = x i  - Xi, the vector of all 
Lagrangian multipliers as: 

and the block diagonal matrix D E 923mx3m having 
[er ]  [e31 as diagonal blocks. 

Form??, we definematrices E=E(m) E X3mx3(2m-3)  
and X i  = XZ(m) E X3mx(2m-3)  recursively as: 

E(m-  1> 1 O(3m-9)xg  
O 3 X 3 ( 2 m - 5 )  I Em 

E ( m )  = 

with 

We define the pseudo-array multiplication E . X i  recur- 
sively as: 

with 

Using this notation, (14) can be rewritten as: 

Note that D is a projection matrix, i.e., D2 = D. All the 
constraints in (1 1)  then can be rewritten compactly as two 
matrix equations: 

The first equation is simply a matrix expression of all the 
epipolar constraints. Thus we can solve (18) for 6%: 

given that the matrix ( E . X ' i ) T D E . z L  E !J?22"'-3x2m-3 1s ' 

invertible. This is the case not only for general motion but 
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also for the rectilinear motion, except for points on the line 
containing all the optical centers. 

Substituting (18) and (20) into the objective function, we 
obtain the following expression for F ( 6 , X ) :  

F o r m  = 2 the objective function reduces to: 

which is the sum of the normalized epipolar constraints for 
two views. Hence, the terms on (21) are exactly multiview 
versions of the crossed normalized epipolar constraints 
for two views [61. 

In order to minimize F(G,  j t ) ,  we need to iterate between 
the camera motion G and triangulated structure using a mul- 
tiview version of the optimal triangulation procedure pro- 
posed in [6]. This procedure consist of (1) initialize 2 = x ,  
(2)  compute the motion G with 2 fixed, (3) compute the 
structure with 

In this paper, we will only demonstrate how to obtain 
optimal motion estimates. We then obtain a new function of 
the camera motion only, F,(G) = F(G, 2) with j t  fixed. In 
the absence of noise, each term of Fn (G) should be: 

fixed , (4) goto ( 2 )  until (G, 2) converge. 

where Xi is obtained from Xi by replacing xj by the 
known xj. We call this the multiview normalized epipo- 
lar constraint. This is a natural generalization of the nor- 
malized epipolar constraint in the two view case [6].  Thus 
F,(G) can be regarded as a statistically adjusted objective 
function for directly estimating the camera motion. 

Comment 1 (Bilinear vs. Trilinear Constraints) I t  is 
true that one can also use a set of independent trilinear 
constraints to replace those in (11 )  and, with a similar 
exercise, derive its normalized version for motion (and 
structure) estimation. Howevel; trilinear tensors (as 
fiinctions of camera motions) do not have as good of a 
geometric structure as the bilinear ones. This makes the 
associated optimization problem harder to describe, even 
though it is essentially an equivalent optimization problem. 

Comment 2 (Calibrated vs. Uncalibrated Camera) In 
the uncalibrated case, nothing substantial will change in 
the above derivation, except that essential matrices need to 
be replaced by fundamental matrices and that the camera 
intrinsic parameters will introduce 5 new unknowns. 

5. Geometric Optimization Methods : 

Fn in the previous section is a function defined on the 
space of configurations of m camera frames, which is not 
a regular Euclidean space. Thus conventional optimiza- 
tion techniques cannot be directly applied' to minimize Fn 
(see Comment 3). In this section, we show how to apply 
newly developed geometric optimization techniques [ 2 ,  111 
to solve this problem. Here we will adopt the Newton's 
method, although it may not be the fastest, because it al- 
lows us to compute the Hessian of the objective function 
which is potentially useful for sensitivity analysis. 

The configuration G of m cameia frames is determined 
by relative rotations and translations: 

R = [R21,R32>. . . ,Rm,m-1] ~ . S 0 ( 3 ) ~ - ~ ,  (24) 
T T T T 3m-3 7; = [P21,P32, . . . ,Pm,m-1] € !R : (25) 

Then F,(G) can be denoted as F,(R,P).' It is direct 
to check that F,(R,AP)  = F,(R,P) for all # 0. 
Therefore, F,(R, P )  is a function defined on the manifold 
M = S0(3)m-' x S3m-4 where $3m-4 is a 3m - 4 di- 
mensional spheroid. M is simply a product of Stiefel mani- 
folds and it has total dimension 6m - 7. Any tangent vector 
X E T(R ,P)M can be represented as X = (XR, X p ) ,  with 
XR E T ~ ( S 0 ( 3 ) ~ - l )  and X p  E T P ( S ' ~ - ~ )  defined by: 

XR = [RZI [ w z ~ ]  x 7 , . ., Rm,m-l [ ~ m , m - l ] x ] ,  (26) 

(27) 

where ui+l,i E !R3, Xi+l,i E !R3, i = 1 , .  . . , m - 1 and 
X F ~ P  = 0. Then the Riemannian metric @(.,.) on the: 
manifold M is explicitly given by: 

T T  
X p  = [ X 2 L , X m , m - l ]  7 

m-1 

@(X, X) = W,T+l,iWi+l,i + XP'XP. (28:) 
i=l 

As in the two view case [6], we can directly apply the 
Riemannian optimization schemes developed in [2, 1 I ]  fo:r 
minimizing the function F,(R, P ) .  

Riemannian Newton's Algorithm for Minimizing 

1. Pick an orthonormal basis {Bi}!zi-7 on T ( R , P ) M .  
Compute the vector g E !J?6m-7 with its ith en- 
try given by ( g ) i  = dF,(Bi). Compute the matrix 
H E !J?(6m-7)x(6m-7) with its ( i , j ) t h  entry given 
by (H)i,j = HessF,(Bi,Bj). Compute the vector 

Fn (2, P ) :  

6 = -H-'g E %6m-7. 

2. Recover the vector A E T(R ,p )  M whose coordinates 
with respect to the orthonormal basis Bi 's are 6. Up- 
date the point (R,  P )  along the geodesic to exp(A). 

3. Go to step I i f l lg [  1 2 6 for some pre-spec$ed E > 0. 
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In the above algorithm, we still need to know: how to pick 
an orthonormal basis on T M ,  how to compute geodesics on 
M and how to compute the gradient and Hessian of F,. 

Using the Gram-Schmidt process, we can find vectors 
V$, . . . , V;m-4 E ?R3m-3 such that, together with P, they 
form an orthonormal basis of ?R3m-3.  Let e l ,  e2, e3 E R3 
be the standard orthonormal basis of R3. Then a natural 
orthonormal basis { B i } f ~ ~ 7  on T ( z , p ) M  is given by: 

B32-’+j = ([O,. . . ,0 ,  Ri+l, i[ejlx,O,.  . . , O ] , O )  (29) 

for 1 5 i 5 m - 1, 15 j 5 3 a n d  

B3m-3+i = (0 ,  V;) , for 1 5 i 5 3m - 4. (30) 

Given a vector X = ( X n , X p )  E T ( R , ~ ) M  with Xn 
and X ,  given by (26) and (27) respectively, the geodesic 
(R(t), P ( t ) )  = e x p ( X t ) ,  t E R is given by: 

~ ( t )  = (Rzlet[wZ1lx , . . . , Rm,m-let[Wm,m-l 1, (31) 
P ( t )  = PCOS( l lXPl l  t )  + X P  sin(llXPll t)lllXPII. (32) 

The tangent of this geodesic at t = 0 is exactly X. 
With an orthonormal basis, the computation of gradient 

and Hessian can be reduced to the computation of direc- 
tional derivatives along geodesics on M .  Then we have: 

Polarizing HessF,(X, X) we can obtain the expression of 
HessF,(X, Y )  for arbitrary X,Y E T p , p ) M :  

1 
4 HessF,(X, Y )  = - (HessF,(X + Y ,  X + Y ) -  

HessF,(X - Y ,  X - Y ) ) .  (35)  

According to its definition, gradF, E T ( R , P ~ M  is given by: 

dF,(X) = @(grad&, X), V X  E T(R ,P)M,  (36) 

which is equal to the 1-form dF, with respect to an or- 
thonormal frame. Therefore, at each point (R, P ) ,  we pick 
the orthonormal basis {Bi}:2;7 on T ( R , D ) M  as above and 
compute the first and second order derivatives of F, with 
respect to the corresponding geodesics of the base vec- 
tors. The gradient and Hessian of F, are then explicitly 
expressed by the vector g and the matrix H as described in 
the above algorithm. The updating vector A computed in 
the algorithm is in fact intrinsically defined3 and satisfies: 

HessF,,(A,X) = @(-gradF,,X), V X  E T(R ,P)M.  (37) 
‘That is, the definition of A is independent on the choice of the coor- 

dinate frame. 

Note that F, has a very good structure - only matrix 
E depends on (R, P )  and it consists of blocks of essential 
matrices Ej,j+l and Ej,j+z. The computation of the Hes- 
sian can then be reduced to computing derivatives of these 
matrices with respect to the chosen base vectors. From the 
definition of the essential matrix Ejk, we have: 

Ej,j+l = RjT+1,jbj+l,jlx, (38) 

Ej,j+2 = Ej,j+lRjT,z,j+l + RjT+l,jEj+l,j+2. (39) 

Hence the computation can be further reduced to derivatives 
of essential matrix Ej,j+l only. For X E T p T ) M  of the 
form (26) and (27), by direct computation, we have: 

d E j , j + l ( X )  = [ ~ ~ + l , j I X R j T + l , j [ P j + l , j l X  

~ e s s ~ j , j + l ( ~ ,  X) = [ , j + l , j j 2 x ~ j T + l , j 1 p j + l , j l x  

+ ~ j T + , , j [ ~ j + l , j ~ x ,  (40) 

+ 2 bj+ 1 ,jl x TRjT, 1 , j  [X,+l , j  I x (4 1 ) 

- Xj+ 1 ,j Xj+ 1 , j  RjT+I , j  bj+ 1 , j  I x 
T 

for j = 1, . . . , m - 1. Note that these formulas are consis- 
tent with the corresponding ones in the two view case [6]. 
Thus we now have all the necessary ingredients for imple- 
menting the proposed optimization scheme. 

Comment 3 (Riemannian vs. Euclidean Newton) We 
could have used the standard (Euclidean) Newtons algo- 
rithm, instead. Howeve6 since A4 is not Euclidean, at each 
iteration the new motion estimates are not necessarily in 
M .  Therefore, it is necessary to project those estimates 
to M ,  which not only introduces additional computation 
but also deteriorates the convergence of the algorithm. In 
fact, convergence is only guaranteed for the exact Newton’s 
algorithm. 

Comment 4 (Newton vs. Levenberg-Marquardt) Since 
we have shown how to compute the gradient and the 
Hessian of F, and the geodesics of M ,  the reader can use 
any (Riemannian) gradient or Hessian based optimization 
algorithm, for example Levenberg - Marquardt. In practice, 
since the computation of the Hessian is costly (95% of the 
computing time in our implementation of the Newton’s 
algorithm), the reader is recommended to use either a 
gradient based method or to approximate the Hessian by 
some form of the gradient. Here, we computed the Hessian 
anyway since it approximates the covariance matrix of 
the estimates, which would be useful for future sensitivity 
analysis of motion estimation in the multiview case. 

6. Experiments on Real Images 
In this section we present two experiments. The first one 

considers an indoor sequence, with the camera undergo- 
ing rectilinear motion. The second one involves an outdoor 
scene with generic motion. 
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In order to work with real images, we need to calibrate 
the camera, track a set of feature points and establish their 
correspondences across multiple frames. We calibrated the 
camera from a set of planar feature points using Zhang’s 
technique [ 181. For feature tracking and correspondence, 
we adapted the algorithm from [19]. 

The multiview algorithm is then initialized with esti- 
mates from the conventional eight-point linear algorithm for 
two views. Since the translation estimates of the linear al- 
gorithmare given up to scale only, for the multiview case an 
initialization of the relative scale between consecutive trans- 
lations is required. This is done by triangulation since the 
directions of the translations are known. For example, the 
relative scale between p21 and p32 is sin(Q:)/ sin(?) where 
Q: is the angle between p31 and R21p;?1 and y is the angle 
between p23 and R13p13. 

The estimated motion is then compared with the ground 
truth data. Error measure for translation is the angle be- 
tween p and p in degrees where p is an estimate of the true 
p .  Error measure, for rotation is arccos ( t r (R5T) -1 )  in de- 

grees where l? is an estimate of the true R. 
Camera motions are specified by their translation and ro- 

tation axes. For example, between a pair of frames, the sym- 
bol X Y  means that the translation is along the X-axis and 
rotation is along the Y-axis. n of such symbols connected 
by hyphens specify a sequence of consecutive motions. 

6.1. Indoor Rectilinear Motion Sequence 
We use 4 imagestof an indoor scene, with the motion of 

the camera in a straight line (rectilinear motion) along the Z- 
axis (see Figure 3). The relative scales between consecutive 
translations are 2: 1 and 1 :2, respectively. Even though the 
motion is rectilinear, relative scales still can be initialized 
by triangulation, because image measurements are noisy. 

Table 1 shows the error between the estimated motion 
and the actual motion of the camera. It can be observed that 
the algorithm is able to recover the correct motion and that 
rotation estimates tend to be more accurate than translation 
estimates. Table 2 shows the error of the relative scales be- 
tween consecutive translations. We can see that the scale 
is estimated with an error below 7%. This shows that it is 
possible to use bilinear constraints only to estimate motion, 
even in the case of rectilinear motion. 

Comment 5 (Rectilinear Motion) The experiment reveals 
an interesting situation: When we formulate the recovery 
problem using the Lagrangian method, it is necessary and 
suflcient that the set of constraints on images be alge- 
braically independent. The suficiency is clearly violated 
when the motion becomes rectilinear. Howevel; the geomet- 
ric dependency guarantees that if the image measurements 
are very close to the true ones, one should be able obtain a 
close estimate of the true motion from epipolar constraints 

only., Such an estimate can be interpreted as a “limit” of a 
sequence of estimates of generic configurations. Therefore, 
in the presence of noise, we do not really need trilinear con- 
straints to estimate motion (including relative scales) cor- 
rectly even’ in the rectilinear motion case. Nevertheless, we 
believe that more theoretical analysis is required to confirm 
this experimental results. 

.6.2. Outdoor Generic Motion Sequence 
This sequence consists of 4 images of an outdoor envi- 

ronment, with the camera undergoing ‘motion -in the YY- 
YX-YY (rotation-translation) axes. The relative scale be- 
tween all the translations is ’ l : l .  The correspondences are 
shown in Figure 4. The results are shown in Tables 3 and 4. 

We can see that the algorithm is able to recover the cor- 
rect motion. However, the estimates are in general. worse 
than those of the indoor experiment. This is not unexpected. 
First, the feature points from,the indoor sequence are in gen- 
eral closer to the camera. Therefore,,even a small amount of 
motion would cause a noticeable change in the position of 
the feature points. However, when the points are far away, 
even a large motion would not cause. a significant change 
in the relative location of these points. ,Secondly, the con- 
ditions of an outdoor environment are more volatile. For 
example, the leaves on the trees as well as the grass on the 
lawn can shift positions (due to wind, shadows, etc) from 
image to image, independent of the camera motion. 

, .  . t  , ,  ‘ I  1 

. . .  

7. Conclusions and Discussions 
In this paper, we contend by using (bilinear) epipolar 

constraint that multilinear constraints need to be properly 
normalized when used for motion (or structure) estimation. 
There are several consequences of such a normalization. 
First, the so obtained objective function is no longer lin- 
ear hence it does not preserve the tensor structure of mul- 
tilinear constraints. Second, such a normalization is a nat- 
ural generalization of the well known normalized epipolar 
constraint between two images. Third, the normalization 
not only provides optimal motion (and structure) estimates 
but, more importantly, reveals certain non-trivial relation- 
ship between epipolar and trilinear constraints - as a neces- 
sary complement to the well known algebraic or geometric: 
dependency. We now know that, in principle, normalized 
epipolar constraint alone suffices for estimating correct mo- 
tion including the relative translation scale even in the rec- 
tilinear motion case. However, more extensive simulation, 
experiments and theoretical analysis are still needed to eval- 
uate how practical the algorithm is when applied to degen- 
erate cases, because it may be very sensitive to noise. In a 
practical implementation, the reader is also recommended 
to extend the idea of normalization in this paper to trilinear 
constraints or even to an uncalibrated camera. 
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Frames 
1-2 
2-3 
3-4 

Rotation Errors Translation Errors 
0.78" 9.0" 
1.94" 2.8" 
0.91" 1.7" 

Table 3: Motion estimate errors in degrees 

2-3 
3-4 

1 

4.9" 1.9" 
5.1" 14.5" 

Translations Scale Error 

2-3 7.1% 
1-2 9.0% ~ 

L 

1-2 6.58% 
2-3 1.52% 

Frame 1 Frame 7 Frame 1 Frame 2 

100 100 100 100 

200 200 200 200 

300 300 300 300 

400 400 400 400 

100 200 300 400 500 600 100 200 300 400 500 600 100  200 300 400 500 600 100 200 300 400  500 600 

Frame R Frame 4 Frame 3 F a m e  4 

100 100 IO0 100 

200 200 200 200 

300 300 300 300 

400 400 400 400 

100 200 300 400 500 600 100 2W 300 400 500 600 100 200 300 400 500 600 100  200 300 400 500 600 

Figure 3: Indoor rectilinear motion image sequence 
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