
Low Rank Subspace Clustering (LRSC)

René Vidala, Paolo Favarob

aCenter for Imaging Science, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
bInstitute of Informatics and Applied Mathematics, University of Bern, 3012, Switzerland

Abstract

We consider the problem of fitting one or more subspaces to a collection of data points drawn from the subspaces and corrupted
by noise and/or gross errors. We pose this problem as a non-convex optimization problem, where the goal is to decompose the
corrupted data matrix as the sum of a clean and self-expressive dictionary plus a matrix of noise and/or gross errors. By self-
expressive we mean a dictionary whose atoms can be expressed as linear combinations of themselves with low-rank coefficients. In
the case of noisy data, our key contribution is to show that this non-convex matrix decomposition problem can be solved in closed
form from the SVD of the noisy data matrix. The solution involves a novel polynomial thresholding operator on the singular values
of the data matrix, which requires minimal shrinkage. For one subspace, a particular case of our framework leads to classical PCA,
which requires no shrinkage. For multiple subspaces, the low-rank coefficients obtained by our framework can be used to construct
a data affinity matrix from which the clustering of the data according to the subspaces can be obtained by spectral clustering. In
the case of data corrupted by gross errors, we solve the problem using an alternating minimization approach, which combines our
polynomial thresholding operator with the more traditional shrinkage-thresholding operator. Experiments on motion segmentation
and face clustering show that our framework performs on par with state-of-the-art techniques at a reduced computational cost.

Keywords: subspace clustering, low-rank and sparse methods, principal component analysis, motion segmentation, face clustering

1. Introduction

The past few decades have seen an explosion in the availabil-
ity of datasets from multiple modalities. While such datasets
are usually very high-dimensional, their intrinsic dimension is
often much smaller than the dimension of the ambient space.
For instance, the number of pixels in an image can be huge, yet
most computer vision models use a few parameters to describe
the appearance, geometry and dynamics of a scene. This has
motivated the development of a number of techniques for find-
ing low-dimensional representations of high-dimensional data.

One of the most commonly used methods is Principal Com-
ponent Analysis (PCA), which models the data with a single
low-dimensional subspace. In practice, however, the data points
could be drawn from multiple subspaces and the membership
of the data points to the subspaces could be unknown. For in-
stance, a video sequence could contain several moving objects
and different subspaces might be needed to describe the motion
of different objects in the scene. Therefore, there is a need to
simultaneously cluster the data into multiple subspaces and find
a low-dimensional subspace fitting each group of points. This
problem, known as subspace clustering, finds numerous ap-
plications in computer vision, e.g., image segmentation (Yang
et al., 2008), motion segmentation (Vidal et al., 2008) and face
clustering (Ho et al., 2003), image processing, e.g., image rep-
resentation and compression (Hong et al., 2006), and systems
theory, e.g., hybrid system identification (Vidal et al., 2003).

Prior Work on Subspace Clustering. Over the past decade, a
number of subspace clustering methods have been developed.

This includes algebraic methods (Boult and Brown, 1991;
Costeira and Kanade, 1998; Gear, 1998; Vidal et al., 2005), it-
erative methods (Bradley and Mangasarian, 2000; Tseng, 2000;
Agarwal and Mustafa, 2004; Lu and Vidal, 2006; Zhang et al.,
2009), statistical methods (Tipping and Bishop, 1999; Sugaya
and Kanatani, 2004; Gruber and Weiss, 2004; Yang et al., 2006;
Ma et al., 2007; Rao et al., 2008, 2010), and spectral clustering-
based methods (Boult and Brown, 1991; Yan and Pollefeys,
2006; Zhang et al., 2010; Goh and Vidal, 2007; Elhamifar and
Vidal, 2009, 2010, 2013; Liu et al., 2010; Chen and Lerman,
2009). Among them, methods based on spectral clustering have
been shown to perform very well for several applications in
computer vision (see Vidal (2011) for a review and compari-
son of existing methods).

Spectral-clustering based methods decompose the subspace
clustering problem in two steps. In the fist step, an affinity ma-
trix C is constructed, where ideally Ci j ≈ 1 if points i and j are
in the same subspace and Ci j ≈ 0 otherwise. In the second step,
the segmentation of the data is obtained by applying spectral
clustering techniques (see von Luxburg (2007) for a review) to
the matrix C. Arguably, the most difficult step is to build a good
affinity matrix. This is because two points could be very close
to each other, but lie in different subspaces (e.g., near the inter-
section of two subspaces). Conversely, two points could be far
from each other, but lie in the same subspace.

Earlier methods for building an affinity matrix (Boult and
Brown, 1991; Costeira and Kanade, 1998) compute the singular
value decomposition (SVD) of the data matrix D = UΣV� and
let C = VrV�r , where the columns of Vr are the top r = rank(D)

Preprint submitted to Pattern Recognition Letters April 15, 2013

singular vectors of D. The rationale behind this choice is that
Ci j = 0 when points i and j are in different independent sub-
spaces and the data are uncorrupted, as shown in Vidal et al.
(2005). In practice, however, the data are often contaminated
by noise and gross errors. In such cases, the equation Ci j = 0
does not hold, even if the rank of the noiseless D was given.
Moreover, selecting a good value for r becomes very difficult,
because D is full rank. Furthermore, the equation Ci j = 0 is
derived under the assumption that the subspaces are linear. In
practice, many datasets are better modeled by affine subspaces.

More recent methods for building an affinity matrix address
these issues by using techniques from sparse and low-rank rep-
resentation. For instance, it is shown in Elhamifar and Vidal
(2009, 2010, 2013) that a point in a union of multiple subspaces
admits a sparse representation with respect to the dictionary
formed by all other data points, i.e., D = DC, where C is sparse.
It is also shown in Elhamifar and Vidal (2009, 2010, 2013) that,
if the subspaces are independent, the nonzero coefficients in the
sparse representation of a point correspond to other points in
the same subspace, i.e., if Ci j � 0, then points i and j belong
to the same subspace. Moreover, the nonzero coefficients can
be obtained by �1 minimization. The coefficients are then used
to cluster the data according to the multiple subspaces. A very
similar approach is presented in Liu et al. (2010). The major
difference is that a low-rank representation is used in lieu of the
sparsest representation. While the same principle of represent-
ing a point as a linear combination of other points has been suc-
cessfully used when the data are corrupted by noise and gross
errors, from a theoretical viewpoint it is not clear that the above
methods are effective when using a corrupted dictionary.
Paper Contributions. In this paper, we propose a general op-
timization framework for solving the subspace estimation and
clustering problem in the case of data drawn from multiple lin-
ear subspaces and corrupted by noise and/or gross errors. The
proposed framework, which we call Low Rank Subspace Clus-
tering (LRSC), is based on solving the following non-convex
optimization problem:

(P1)
min

A,C,E,G
�C�∗ +

α

2
�G�2F + γ�E�1

s.t. D = A +G + E, A = AC and C = C�,

and its relaxation

(P2)
min

A,C,E,G
�C�∗ +

τ

2
�A − AC�2F +

α

2
�G�2F + γ�E�1

s.t. D = A +G + E and C = C�,

where �X�∗ =
�

i σi(X), �X�2F =
�

i j X2
i j and �X�1 =

�
i j |Xi j|

are, respectively, the nuclear, Frobenius and �1 norms of X.
In the above formulations, A ∈ RM×N is an unknown matrix
whose columns are points drawn from a union of n ≥ 1 low-
dimensional linear subspaces of unknown dimensions {di}

n
i=1,

where di � M. We assume that the entries of A are contam-
inated by noise represented by the matrix G ∈ RM×N . We as-
sume also that a small fraction ρ � MN of the entries of A is
contaminated by gross errors of arbitrary magnitude, which are
represented by a matrix E ∈ RM×N .

Given a corrupted data matrix D = A+G+E, we wish to find
a self-expressive, noise-free and outlier-free (clean) data matrix
A and a symmetric, low-rank affinity matrix C ∈ RN×N . We do
so by minimizing the cost function in P2, which encourages:

• C to be low-rank (by minimizing �C�∗),

• A to be self-expressive (by minimizing �A − AC�2F),

• G to be small (by minimizing �G�2F), and

• E to be sparse (by minimizing �E�1).

By self-expressive we mean that the clean data points can be ex-
pressed as linear combinations of themselves with coefficients
C, i.e., A = AC. Notice that this constraint makes our problem
non-convex, because both A and C are unknown. This is an
important difference with respect to existing methods, which
enforce D = DC where D is the dictionary of corrupted data
points. Another important difference is that we directly enforce
C to be symmetric, while existing methods symmetrize C as a
post-processing step.

The main contribution of our work is to show that impor-
tant particular cases of P2 (see Table 1) can be solved in closed
form from the SVD of the data matrix. In particular, we show
that in the absence of gross errors (i.e., γ = ∞), A and C can
be obtained by thresholding the singular values of D and A, re-
spectively. The thresholding is done using a novel polynomial
thresholding operator, which reduces the amount of shrink-
age with respect to existing methods. Indeed, when the self-
similarity constraint A = AC is enforced exactly (i.e., α = ∞),
the optimal solution for A reduces to classical PCA, which does
not perform any shrinkage. Moreover, the optimal solution for
C reduces to the affinity matrix for subspace clustering pro-
posed by Costeira and Kanade (1998). In the case of data cor-
rupted by gross errors, a closed-form solution appears elusive.
We thus use an augmented Lagrange multipliers method. Each
iteration of our method involves a polynomial thresholding of
the singular values to reduce the rank and a regular shrinkage-
thresholding to reduce gross errors.
Paper Outline. The remainder of the paper is organized as fol-
lows (see Table 1). Section 2 reviews existing results on sparse

Table 1: Particular cases of P2 Solved in this Paper

Relaxed Exact

Uncorrupted

Section 3.1 Section 3.2
0 < τ < ∞ τ = ∞
α = ∞ α = ∞
γ = ∞ γ = ∞

Noise

Section 4.1 Section 4.2
0 < τ < ∞ τ = ∞
0 < α < ∞ 0 < α < ∞
γ = ∞ γ = ∞

Gross Errors

Section 5.1 Section 5.2
0 < τ < ∞ τ = ∞
0 < α < ∞ 0 < α < ∞
0 < γ < ∞ 0 < γ < ∞

2

representation and rank minimization for subspace estimation
and clustering as well as some background material needed for
our derivations. Section 3 formulates the low rank subspace
clustering problem for linear subspaces in the absence of noise
or gross errors and derives a closed form solution for A and C.
Section 4 extends the results of Section 3 to data contaminated
by noise and derives a closed form solution for A and C based
on the polynomial thresholding operator. Section 5 extends the
results to data contaminated by both noise and gross errors and
shows that A and C can be found using alternating minimiza-
tion. Section 6 presents experiments that evaluate our method
on synthetic and real data. Section 7 gives the conclusions.

2. Background

In this section we review existing results on sparse repre-
sentation and rank minimization for subspace estimation (Sec-
tion 2.1) and subspace clustering (Section 2.2). We also review
some trace inequalities, which will be useful in our derivations
(Section 2.3).

2.1. Subspace Estimation by Sparse Representation and Rank
Minimization

Low Rank Minimization. Given a data matrix corrupted by
Gaussian noise D = A + G, where A is an unknown low-rank
matrix and G represents the noise, the problem of finding a low-
rank approximation of D can be formulated as

min
A
�D − A�2F subject to rank(A) ≤ r. (1)

The optimal solution to this (PCA) problem is given by A =
UHσr+1 (Σ)V�, where D = UΣV� is the SVD of D, σk is the
k-th singular value of D, and H�(x) is the hard thresholding
operator:

H�(x) =

x |x| > �
0 else.

(2)

When r is unknown, the problem of finding a low-rank ap-
proximation can be formulated as

min
A

rank(A) +
α

2
�D − A�2F , (3)

where α > 0 is a parameter. Since the optimal solution of (1)
for a fixed rank r = rank(A) is A = UHσr+1 (Σ)V�, the problem
in (3) is equivalent to

min
r

r +
α

2

�

k>r

σ2
k(D). (4)

The optimal r is the smallest r such that σr+1 ≤
√

2/α. There-
fore, the optimal A is given by A = UH√ 2

α

(Σ)V�.
Since rank minimization problems are in general NP hard,

a common practice (see Recht et al. (2010)) is to replace the
rank of A by its nuclear norm �A�∗, i.e., the sum of its singular
values, which leads to the following convex problem

min
A

�A�∗ +
α

2
�D − A�2F , (5)

where α > 0 is a user-defined parameter.
It is shown in Cai et al. (2008) that the optimal solution to the

problem in (5) is given by A = US 1
α
(Σ)V�, where S�(x) is the

shrinkage-thresholding operator

S�(x) =

x − � x > �
x + � x < −�
0 else.

(6)

Notice that the latter solution does not coincide with the one
given by PCA, which performs hard-thresholding of the singu-
lar values of D without shrinking them by 1/α.
Principal Component Pursuit. While the above methods
work well for data corrupted by Gaussian noise, they break
down for data corrupted by gross errors. In Candès et al. (2011)
this issue is addressed by assuming sparse gross errors, i.e., only
a small percentage of the entries of D are corrupted. Hence, the
goal is to decompose the data matrix D as the sum of a low-rank
matrix A and a sparse matrix E, i.e.,

min
A,E

rank(A) + γ�E�0 s.t. D = A + E, (7)

where γ > 0 is a parameter. Since this problem is in general
NP hard, a common practice is to replace the rank of A by its
nuclear norm and the �0 semi-norm by the �1 norm. It is shown
in Candès et al. (2011) that, under broad conditions, the optimal
solution to the problem in (7) is identical to that of the convex
problem

min
A,E

�A�∗ + γ�E�1 s.t. D = A + E. (8)

While a closed form solution to this problem is not known,
convex optimization techniques can be used to find the mini-
mizer. We refer the reader to Lin et al. (2011) for a review of
numerous approaches. One such approach is the Augmented
Lagrange Multiplier (ALM) method, which considers the fol-
lowing optimization problem

max
Y

min
A,E
�A�∗ + γ�E�1+�Y,D−A−E�+

α

2
�D−A−E�2F . (9)

The third term enforces the equality constraint via the matrix of
Lagrange multipliers Y , while the fourth term (which is zero at
the optimum) makes the cost function strictly convex and thus
improves the convergence. Notice that the minimization over A
and E for a fixed Y can be re-written as

min
A,E
�A�∗ + γ�E�1 +

α

2
�D − A − E + α−1Y�2F . (10)

Given E and Y , it follows from the solution of (5) that the op-
timal solution for A is A = USα−1 (Σ)V�, where UΣV� is the
SVD of D − E + α−1Y . Given A and Y , the optimal solution for
E satisfies

−α(D − A − E + α−1Y) + γsign(E) = 0. (11)

It is shown in Lin et al. (2011) that this equation can be solved
in closed form using the shrinkage-thresholding operator as

3

E = Sγα−1 (D − A + α−1Y). Therefore, the inexact ALM method
iterates the following steps till convergence

(U,Σ,V) = svd(D − Ek + α
−1
k Yk)

Ak+1 = USα−1
k

(Σ)V�

Ek+1 = Sγα−1
k

(D − Ak+1 + α
−1
k Yk)

Yk+1 = Yk + αk(D − Ak+1 − Ek+1)
αk+1 = ραk.

(12)

This ALM method is essentially an iterated thresholding al-
gorithm, which alternates between thresholding the SVD of
D − E + Y/α to get A and thresholding D − A + Y/α to get
E. The update for Y is simply a gradient ascent step. Also, to
guarantee the convergence of the algorithm, the parameter α is
updated by choosing the parameter ρ such that ρ > 1 so as to
generate a sequence αk that goes to infinity.

2.2. Subspace Clustering by Sparse Representation and Rank
Minimization

Consider now the more challenging problem of clustering
data drawn from multiple subspaces. In what follows, we dis-
cuss two methods based on sparse and low-rank representation
for addressing this problem.
Sparse Subspace Clustering (SSC). The work of Elhamifar
and Vidal (2009) shows that, in the case of uncorrupted data, an
affinity matrix for solving the subspace clustering problem can
be constructed by expressing each data point as a linear combi-
nation of all other data points. That is, we wish to find a matrix
C such that D = DC and diag(C) = 0. In principle, this leads to
an ill-posed problem with many possible solutions. To resolve
this issue, the principle of sparsity is invoked. Specifically, ev-
ery point is written as a sparse linear combination of all other
data points by minimizing the number of nonzero coefficients.
That is

min
C

�

i

�Ci�0 s.t. D = DC and diag(C) = 0, (13)

where Ci is the i-th column of C. Since this problem is combi-
natorial, a simpler �1 optimization problem is solved

min
C
�C�1 s.t. D = DC and diag(C) = 0. (14)

It is shown in Elhamifar and Vidal (2009, 2010, 2013) that un-
der some conditions on the subspaces and the data, the solu-
tions to the optimization problems in (13) and (14) coincide. It
is also shown that Ci j = 0 when points i and j are in differ-
ent subspaces. In other words, the nonzero coefficients of the
i-th column of C correspond to points in the same subspace as
point i. Therefore, one can use C to define an affinity matrix
as |C| + |C�|. The segmentation of the data is then obtained by
applying spectral clustering (von Luxburg, 2007) to this affinity.

In the case of data contaminated by noise G, the SSC al-
gorithm assumes that each data point can be written as a lin-
ear combination of other data points up to an error G, i.e.,
D = DC +G, and solves the following convex problem

min
C,G
�C�1 +

α

2
�G�2F s.t. D = DC +G and diag(C) = 0. (15)

In the case of data contaminated also by gross errors E, the
SSC algorithm assumes that D = DC+G+E, where E is sparse.
Since both C and E are sparse, the equation D = DC +G + E =
[D I][C� E�]� +G means that each point is written as a sparse
linear combination of a dictionary composed of all other data
points plus the columns of the identity matrix I. Thus, one can
find C by solving the following convex optimization problem

min
C,G,E

�C�1 +
α

2
�G�2F + γ�E�1 (16)

s.t. D = DC +G + E and diag(C) = 0. (17)

While SSC works well in practice, until recently there was
no theoretical guarantee that, in the case of corrupted data,
the nonzero coefficients correspond to points in the same sub-
space.1 Moreover, notice that the model is not really a subspace
plus error model, because a contaminated data point is written
as a linear combination of other contaminated points plus an er-
ror. To the best of our knowledge, there is no method that tries
to simultaneously recover a clean dictionary and cluster the data
within this framework.
Low Rank Representation (LRR). This algorithm (Liu et al.,
2010) is very similar to SSC, except that it aims to find a low-
rank representation instead of a sparse representation. This is
motivated by the fact that, in the case of uncorrupted data drawn
from n independent subspaces of dimensions r = {di}

n
i=1, the

rank of the data matrix is rank(D) =
�n

i=1 di. Thus, the LRR
algorithm finds C by solving the following convex optimization
problem

min
C
�C�∗ s.t. D = DC. (18)

It is shown in Liu et al. (2011) that in the case of uncor-
rupted data drawn from independent linear subspaces, the op-
timal solution to (18) is given by the matrix C = V1V�1 , where
D = U1Σ1V�1 is the rank r SVD of D. As shown in Vidal et al.
(2008), this matrix is such that Ci j = 0 when points i and j are
in different subspaces, hence it can be used to build an affinity
matrix.

In the case of data contaminated by noise or gross errors, the
LRR algorithm solves the convex optimization problem

min
C
�C�∗ + γ�E�2,1 s.t. D = DC + E, (19)

where �E�2,1 =
�N

k=1

��N
j=1 |E jk |2 is the �2.1 norm of the matrix

of errors E. Notice that this problem is analogous to (15) and
(17), except that the �1 and the Frobenius norms are replaced by
the nuclear and the �2,1 norms, respectively. It is argued in Liu
et al. (2010) that this allows one to better handle outliers, since
it is a convex relaxation to the number of corrupted data points,
rather than the number of corrupted entries.

The LRR algorithm proceeds by solving the optimization
problem in (19) using an ALM method. The optimal C is then
used to define an affinity matrix |C|+ |C�|. The segmentation of
the data is then obtained by applying spectral clustering to the
normalized Laplacian.

1We refer the reader to Soltanolkotabi et al. (2013) for very recent results in
this direction.

4

2.3. The Von Neumann Trace Inequality
In this section, we review two matrix product inequalities,

which we will use later in our derivations.

Lemma 1 (Von Neumann’s Inequality). For any m × n real
valued matrices X and Y,

trace(X�Y) ≤
n�

i=1

σi(X)σi(Y), (20)

where σ1(X) ≥ σ2(X) ≥ · · · ≥ 0 and σ1(Y) ≥ σ2(Y) ≥ · · · ≥
0 are the descending singular values of X and Y respectively.
The case of equality occurs if and only if it is possible to find
unitary matrices UX and VX that simultaneously singular value-
decompose X and Y in the sense that

X = UXΣXV�X and Y = UXΣYV�X , (21)

where ΣX and ΣY denote the m × n diagonal matrices with the
singular values of X and Y, respectively, down in the diagonal.

Proof. See Mirsky (1975).

Lemma 2. For any n × n real valued, symmetric positive defi-
nite matrices X and Z,

trace(XZ) ≥
n�

i=1

σi(X)σn−i+1(Z), (22)

where σ1(X) ≥ σ2(X) ≥ · · · ≥ 0 and σ1(Z) ≥ σ2(Z) ≥ · · · ≥ 0
are the descending singular values of X and Z, respectively. The
case of equality occurs if and only if it is possible to find a uni-
tary matrix UX that simultaneously singular value-decomposes
X and Z in the sense that

X = UXΣXU�X and Z = UXΠΣZΠ
�U�X , (23)

where ΣX and ΣZ denote the n × n diagonal matrices with the
singular values of X and Z, respectively, down in the diagonal
in descending order, and Π is a permutation matrix such that
ΠΣZΠ

� contains the singular values of Z in the diagonal in
ascending order.

Proof. Let Y = λI − Z, where λ ≥ �Z�2. Then trace(XY) =
trace(X(λI − Z)) = λtrace(X) − trace(XZ). Also,

trace(XY) ≤
n�

i=1

σi(X)σi(Y) =
n�

i=1

σi(X)σi(λI − Z) = (24)

n�

i=1

σi(X)
�
λ − σn−i+1(Z)

�
= λtrace(X) −

n�

i=1

σi(X)σn−i+1(Z).

It follows from Lemma 1 that trace(XZ) ≥
n�

i=1
σi(X)σn−i+1(Z),

as claimed. Moreover, the equality is achieved if an only if there
exists a matrix UX (recall that X and Z are symmetric) such that
X = UXΣXU�X and Y = UXΣYU�X . Therefore,

Z = λI − Y = λI − UXΣYU�X = λI − UXΣλI−ZU�X
= λI − UX(λI − ΠΣZΠ

�)U�X
= UXΠΣZΠ

�U�X

(25)

as claimed.

3. Low Rank Subspace Clustering with Uncorrupted Data

In this section, we consider the low rank subspace clustering
problem in the case of uncorrupted data. That is, we consider
problems P1 and P2 with α = ∞ and λ = ∞, so that G = E = 0
and D = A. In Section 3.1, we study the relaxed problem P2 and
show that the optimal solution for C can be obtained in closed
form from the SVD of A by applying a nonlinear thresholding to
its singular values. In Section 3.2, we study the exact problem
P1, whose optimal solution is obtained by hard thresholding of
the singular values of A, as shown in Liu et al. (2011). However,
we provide a much simpler derivation of the result.

3.1. Uncorrupted Data and Relaxed Constraints
Consider the following optimization problem

(P3) min
C
�C�∗ +

τ

2
�A − AC�2F s.t. C = C�,

where τ > 0 is a parameter. Notice that this cost function is
convex on C, but not strictly convex. Therefore, we do not
know a priory if the solution to P3 is unique. The following
theorem shows that the minimizer of P3 is unique and can be
computed in closed form from the SVD of A.

Theorem 1. Let A = UΛV� be the SVD of A, where the diag-
onal entries of Λ = diag({λi}) are the singular values of A in
decreasing order. The optimal solution to P3 is

C = VPτ(Λ)V� = V1

�
I −

1
τ
Λ−2

1

�
V�1 , (26)

where the operator Pτ acts on the diagonal entries of Λ as

Pτ(x) =

1 − 1
τx2 x > 1/

√
τ

0 x ≤ 1/
√
τ
, (27)

and U = [U1 U2], Λ = diag(Λ1,Λ2) and V = [V1 V2] are
partitioned according to the sets I1 = {i : λi > 1/

√
τ} and

I2 = {i : λi ≤ 1/
√
τ}. Moreover, the optimal value is

Φτ(A) =
�

i∈I1

�
1 −

1
2τ
λ−2

i

�
+
τ

2

�

i∈I2

λ2
i . (28)

Proof. Let A = UΛV� be the SVD of A and C = UC∆U�C be
the eigenvalue decomposition (EVD) of C. The cost function
of P3 reduces to

�UC∆U�C �∗ +
τ

2
�UΛV�(I − UC∆U�C)�2F = (29)

�∆�∗ +
τ

2
�ΛV�UC(I − ∆)U�C �

2
F = �∆�∗ +

τ

2
�ΛW(I − ∆)�2F ,

where W = V�UC . To minimize this cost with respect to W, we
only need to consider the last term of the cost function, i.e.,

�ΛW(I − ∆)�2F = trace
�
(I − ∆)2W�Λ2W

�
. (30)

Applying Lemma 2 to X = W(I−∆)2W� and Z = Λ2, we obtain
that for all unitary matrices W

min
W

trace
�
(I − ∆)2W�Λ2W

�
=

N�

i=1

σi
�
(I − ∆)2�σn−i+1(Λ2), (31)

5

where the minimum is achieved by a permutation matrix W =
Π� that sorts the diagonal entries of Λ2 in ascending order, i.e.,
the diagonal entries of ΠΛ2Π� are in ascending order.

Let the i-th largest entry of (I − ∆)2 and Λ2 be, respectively,
(1 − δi)2 = σi

�
(I − ∆)2� and γ2

n−i+1 = λ
2
i = σi(Λ2). Then

min
W
�∆�∗ +

τ

2
�ΛW(I − ∆)�2F =

N�

i=1

|δi| +
τ

2

N�

i=1

γ2
i (1 − δi)2. (32)

To find the optimal ∆, we take the derivative of the cost with
respect to δi and set it to zero, which yields

δi
|δi|
− τγ2

i (1 − δi) = 0 =⇒ δi +
1
τγ2

i

δi
|δi|
= 1. (33)

This equation can be solved in closed form by using the
shrinkage-thresholding operator in (6), which gives

δi = S 1
τγ2i

(1) =

1 − 1
τγ2

i
γi > 1/

√
τ

0 γi ≤ 1/
√
τ
. (34)

Then, δi = Pτ(λn−i+1), which can be compactly written as ∆ =
ΠPτ(Λ)Π�. Therefore,

Π�∆Π = Pτ(Λ) =
�
I − 1

τΛ
−2
1 0

0 0

�
, (35)

where Λ = diag(Λ1,Λ2) is partitioned according to the sets
I1 = {i : λi > 1/

√
τ} and I2 = {i : λi ≤ 1/

√
τ}.

To find the optimal W, notice from Lemma 2 that the equality
trace
�
(I − ∆)2W�Λ2W

�
=
�N

i=1(1 − δi)2λ2
n−i+1 is achieved if and

only if there exists a unitary matrix UX such that

(I−∆)2 = UX(I−∆)2U�X and W�Λ2W = UXΠΛ
2Π�U�X . (36)

Since the SVD of a matrix is unique up to the sign of the sin-
gular vectors associated with different singular values and up
to a rotation and sign of the singular vectors associated with
repeated singular values, we conclude that UX = I up to the
aforementioned ambiguities of the SVD of (I − ∆)2. Likewise,
we have that W� = UXΠ up to the aforementioned ambiguities
of the SVD ofΛ2. Now, ifΛ2 has repeated singular values, then
(I − ∆)2 has repeated eigenvalues at the same locations. There-
fore, W� = UXΠ = Π up to a block-diagonal transformation,
where each block is an orthonormal matrix that corresponds to
a repeated singular value of ∆. Nonetheless, even though W
may not be unique, the matrix C is always unique and equal to

C = UC∆U�C = VW∆W�V� = VΠ�∆ΠV� (37)

=
�
V1 V2

� �I − 1
τΛ
−2
1 0

0 0

� �
V1 V2

��
= V1(I −

1
τ
Λ−2

1)V�1 ,

as claimed.
Finally, the optimal C is such that AC = U1(Λ1 −

1
τΛ
−1
1)V�1

and A − AC = U2Λ2V�2 +
1
τU1Λ1V�1 . This shows (28), because

�C�∗ +
τ

2
�A − AC�2F =

�

i∈I1

�
1 −

1
τ
λ−2

i

�
+
τ

2

�

i∈I1

λ−2
i

τ2 +
�

i∈I2

λ2
i

 ,

as claimed.

λ

Φτ(λ)

1
√
τ

0.5

1

τ
2λ

2

1 − 1
2τλ
−2

Figure 1: Plot of Φτ(λ).

Notice that the optimal value of P3,Φτ(A), is a decomposable
function of the singular values of A, as are the Frobenius and
nuclear norms of A, �A�2F =

�
λ2

i and �A�∗ =
�
λi, respectively.

However, unlike |A|F or |A|∗, Φτ(A) is not a convex function
of A because Φτ(λ) is quadratic near zero and saturates as λ
increases, as illustrated in Figure 1. Interestingly, as τ goes to
infinity, Φτ approaches rank(A), as we shall see. Therefore, we
may view Φτ(A) as a non-convex relaxation of rank(A).

3.2. Uncorrupted Data and Exact Constraints
Consider now the optimization problem

(P4) min
C
�C�∗ s.t. A = AC and C = C�.

The following Theorem shows that the Costeira and Kanade
affinity matrix C = V1V�1 is the optimal solution to P5. The
theorem follows from Theorem 1 by letting τ → ∞. An alter-
native proof can be found in Liu et al. (2011). Here, we provide
a simpler and more direct proof.

Theorem 2. Let A = UΛV� be the SVD of A, where the diag-
onal entries of Λ = diag({λi}) are the singular values of A in
decreasing order. The optimal solution to P4 is

C = V1V�1 , (38)

where V = [V1 V2] is partitioned according to the sets I1 = {i :
λi > 0} and I2 = {i : λi = 0}. Moreover, the optimal value is

Φ∞(A) =
�

i∈I1

1 = rank(A). (39)

Proof. Let C = UC∆U�C be the EVD of C. Then A = AC can be
rewritten as UΛV� = UΛV�UC∆U�C , which reduces to

ΛV�UC = ΛV�UC∆ (40)

since U�U = I and U�C UC = I. Let W = V�UC =
�
w1, · · · ,wN

�
.

Then, Λwj = Λwjδ j for all j = 1, . . . ,N. This means that
δ j = 1 if Λwj � 0 and δ j is arbitrary otherwise. Since our

6

goal is to minimize �C�∗ = �∆�∗ =
�N

j=1 |δ j|, we need to set
as many δ j’s to zero as possible. Since A = AC implies that
rank(A) ≤ rank(C), we can set at most N − rank(A) δ j’s to zero
and the remaining rank(A) δ j’s must be equal to one. Now, if
δ j = 0, then Λwj = Λ1V�1 UCej = 0, where e j is the j-th column
of the identity. This means that the columns of UC associated
to δ j = 0 must be orthogonal to the columns of V1, and hence
the columns of UC associated with δ j = 1 must be in the range
of V1. Thus, UC =

�
V1R1 U2R2

�
Π for some rotation matrices

R1 and R2, and permutation matrix Π, and so the optimal C is

C =
�
V1R1 V2R2

� �I 0

0 0

� �
V1R1 V2R2

��
= V1V�1 , (41)

as claimed.

4. Low Rank Subspace Clustering with Noisy Data

In this section, we consider the low rank subspace clustering
problem in the case of noisy data. That is, we consider problems
P1 and P2 with λ = ∞, so that E = 0 and D = A + G. While
in principle the resulting problems appear to be very similar
to those in (15) and (19), there are a number of differences.
First, notice that instead of expressing the noisy data as a linear
combination of itself plus noise, i.e., D = DC + G, we search
for a clean dictionary, A, which is self-expressive, i.e., A = AC.
We then assume that the data are obtained by adding noise to
the clean dictionary, i.e., D = A + G. As a consequence, our
method searches simultaneously for a clean dictionary A, the
coefficients C and the noise G. Second, the main difference
with (15) is that the �1 norm of the matrix of the coefficients is
replaced by the nuclear norm. Third, the main difference with
(19) is that the �2,1 norm of the matrix of the noise is replaced by
the Frobenius norm. Fourth, our method enforces the symmetry
of the affinity matrix as part of the optimization problem, rather
than as a post-processing step.

As we will show in this section, these modifications result
in a key difference between our method and the state of the
art: while the solution to (15) requires �1 minimization and the
solution to (19) requires an ALM method, the solutions to P5
and P6 can be computed in closed form from the SVD of the
data matrix D. For the relaxed problem, P2, the closed-form
solution for A is found by applying a polynomial thresholding
to the singular values of D, as we will see in Section 4.1. For the
exact problem, P1, the closed-form solution for A is given by
classical PCA, except that the number of principal components
can be automatically determined, as we will see in Section 4.2.

4.1. Noisy Data and Relaxed Constraints

In this section, we assume that the data are contaminated by
noise, i.e., D = A + E, and relax the constraint A = AC by
adding a penalty to the cost. More specifically, we consider the
optimization problem

(P5) min
A,C
�C�∗ +

τ

2
�A − AC�2F +

α

2
�D − A�2F s.t. C = C�.

The key difference with respect to the problem considered in
Section 3.1 is that A is unknown. Hence the cost function in P5
is not convex in (A,C) because of the product AC. Nonetheless,
we will show in this subsection that the optimal solution is still
unique, unless one of the singular values of D satisfies a con-
straint that depends on α and τ. In such a degenerate case, the
problem has two optimal solutions. Moreover, the optimal so-
lutions for both A and C can be computed in closed form from
the SVD of D, as stated in the following theorem.

Theorem 3. Let D = UΣV� be the SVD of the data matrix D.
The optimal solutions to P5 are of the form

A = UΛV� and C = VPτ(Λ)V�, (42)

where each entry of Λ = diag(λ1, . . . , λn) is obtained from each
entry of Σ = diag(σ1, . . . ,σn) as the solutions to

σ = ψ(λ) =

λ + 1

ατλ
−3 if λ > 1/

√
τ

λ + ταλ if λ ≤ 1/
√
τ
, (43)

that minimize

φ(λ,σ) =
α

2
(σ − λ)2 +

1 − 1
2τλ
−2 λ > 1/

√
τ

τ
2λ

2 λ ≤ 1/
√
τ
. (44)

The solution for each λ, hence for A and C, is unique, except
when D has a singular value σ such that (56) holds.

The proof of this result will be done in three steps. First, we
will use Theorem 1 to show that C can be computed in closed
form from the SVD of A. Second, we will show that the optimal
A can be obtained in closed form from the SVD of D. Third,
we will study conditions under which the solution is unique.

A Closed-Form Solution for C. Notice that when A is fixed,
P5 reduces to P3. Therefore, it follows from Theorem 1 that the
optimal solution for C is C = VPτ(Λ)V�, where A = UΛV� is
the SVD of A. Moreover, it follows from (28) that if we replace
the optimal C into the cost of P5, then P5 is equivalent to

min
A
Φτ(A) +

α

2
�D − A�2F . (45)

A Closed-Form Solution for A. To solve (45), let D = UΣV�
and A = UAΛV�A be the SVDs of D and A, respectively. Then,

�D − A�2F = �UΣV� − UAΛV�A �
2
F

= �Σ�2F − 2trace(VΣU�UAΛV�A) + �Λ�2F
= �Σ�2F − 2trace(ΣW1ΛW�2) + �Λ�2F ,

(46)

where W1 = U�UA and W2 = V�VA. Therefore, the minimiza-
tion over A in (45) can be carried out by minimizing first with
respect to W1 and W2 and then with respect to Λ.

The minimization over W1 and W2 is equivalent to

max
W1,W2

trace(ΣW1ΛW�2). (47)

7

By letting X = Σ and Y = W1ΛW�2 in Lemma 1, we obtain

max
W1,W2

trace(ΣW1ΛW�2) =
n�

i=1

σi(Σ)σi(Λ) =
n�

i=1

σiλi. (48)

Moreover, the maximum is achieved if and only if there exist
orthogonal matrices UW and VW such that

Σ = UWΣV�W and W1ΛW�2 = UWΛV�W . (49)

Hence, the optimal solutions are W1 = UW = I and W2 = VW =
I up to a unitary transformation that accounts for the sign and
rotational ambiguities of the singular vectors of Σ. This means
that A and D have the same singular vectors, i.e., UA = U and
VA =V , and that �D − A�2F = �U(Σ − Λ)V��2F = �Σ − Λ�

2
F . By

substituting this expression for �D − A�2F into (45), we obtain

min
Λ

�

i∈I1

(1 −
1
2τ
λ−2

i) +
τ

2

�

i∈I2

λ2
i +
α

2

�

i

(σi − λi)2. (50)

where I1 = {i : λi > 1/
√
τ} and I2 = {i : λi ≤ 1/

√
τ}.

It follows from the above equation that the optimal λi can be
obtained independently for each σi by minimizing the ith term
of the above summation, which is of the form φ(λ,σ) in (44).
The first order derivative of φ is given by

∂φ

∂λ
= α(λ − σ) +

1
τλ
−3 λ > 1/

√
τ

τλ λ ≤ 1/
√
τ
. (51)

Therefore, the optimal λ’s can be obtained as the solution of the
nonlinear equation σ = ψ(λ), as claimed in (43).
Uniqueness of the Closed Form Solution. When 3τ ≤ α, the
solution for λ is unique, as shown in Figure 2. This is because

∂2φ

∂λ2 =

α − 3

τλ
−4 λ > 1/

√
τ

α + τ λ ≤ 1/
√
τ

(52)

is strictly positive, hence φ is a strictly convex function of λ.

When 3τ > α, the solution is unique if σ < σ1 � 4
3

4
�

3
ατ

or σ > σ3 � α+τ
α
√
τ
, as illustrated in Figure 3. However, when

σ1 ≤ σ ≤ σ3 there could be up to three different solutions. The
first candidate solution can be computed in closed form as

λ1(σ) =
α

α + τ
σ. (53)

The remaining two candidate solutions λ2 and λ3 can be com-
puted as the two real roots of the polynomial

p(λ) = λ4
− σλ3 +

1
ατ
= 0, (54)

with λ2 being the smallest and λ3 being the largest root. The
other two roots of p are complex. Out of the three candidate so-
lutions, λ1 and λ3 correspond to a minimum and λ2 corresponds
to a maximum. This is because

λ1 ≤ 1/
√
τ, λ2 <

4

�
3
ατ

and λ3 >
4

�
3
ατ
, (55)

λ

ψ(λ)

1
√
τ

σ

α+τ
α
√
τ

λ + ταλ

λ + 1
ατλ
−3

Figure 2: Plot of ψ(λ) when 3τ ≤ α.

and so ∂
2φ
∂λ2 is positive for λ1, negative for λ2 and positive for λ3.

Out of the two possible minimizers, only one of them will be
a global minimum whenever

φ(λ1(σ),σ) < φ(λ3(σ),σ) or φ(λ1(σ),σ) > φ(λ3(σ),σ).

In either of such cases the solution for Λ, hence for A and C,
will be unique. The only case in which the solution is not
unique is when D has a singular value σ such that

φ(λ1(σ),σ) = φ(λ3(σ),σ), (56)

which implies that

ατ

2(α + τ)
σ2 =

α

2
(σ − λ3(σ))2 + 1 −

1
2τ
λ3(σ)−2. (57)

This completes the proof of Theorem 3.

4.1.1. The Polynomial Thresholding Operator Pα,τ
Theorem 3 gives us a way to obtain A from the SVD of

the data matrix in closed form. Remarkably, the solution is
obtained by applying a polynomial thresholding operator λ =
Pα,τ(σ) to the singular values of D. In what follows, we show
that this operator can be computed as

λ = Pα,τ(σ) =

λ3(σ) if σ > σ∗
λ1(σ) if σ ≤ σ∗,

(58)

for some σ∗ > 0. Moreover, we show that, for some values of α
and τ, σ∗ can be computed in closed form. Specifically, when
3τ ≤ α, there is a unique solution for λ, which is given by

λ =

λ1 if λ ≤ 1/

√
τ

λ2 = λ3 if λ > 1/
√
τ.

(59)

8

λ

ψ(λ)

λ1 λ2 λ3

1
√
τ

4
�

3
ατ

4
3

4
�

3
ατ

σ

α+τ
α
√
τ

λ + ταλ λ + 1
ατλ
−3

Figure 3: Plot of ψ(λ) when 3τ > α.

Thus, when 3τ ≤ α we have

σ∗ = ψ
� 1
√
τ

�
=
α + τ

α
√
τ
. (60)

When 3τ > α, the solution is λ = λ1 or λ = λ3 depending on
whether φ(λ1(σ)) < φ(λ3(σ)) or φ(λ1(σ)) > φ(λ3(σ)), respec-
tively. We thus need to show that there exists a σ∗ > 0 such
that φ(λ1(σ)) < φ(λ3(σ)) for σ < σ∗ and φ(λ1(σ)) > φ(λ3(σ))
for σ > σ∗. Because of the intermediate value theorem, it is
sufficient to show that

f (σ) = φ(λ1(σ),σ) − φ(λ3(σ),σ) (61)

is continuous and increasing for σ ∈ [σ1,σ3], negative at σ1
and positive at σ3, so that there is a σ∗ ∈ (σ1,σ3) such that

f (σ∗) = 0. Recall that σ1 =
4
3

4
�

3
ατ and σ3 =

α+τ
α
√
τ
. The function

f is continuous in [σ1,σ3], because a) φ is a continuous func-
tion of (λ,σ), b) the roots of a polynomial (λ1 and λ2) vary con-
tinuously as a function of the coefficients (σ) and c) the com-
position of two continuous functions is continuous. Also, f is
increasing in [σ1,σ3], because

d f
dσ
=
∂φ

∂λ

����
(λ1,σ)

dλ1

dσ
+
∂φ

∂σ

����
(λ1,σ)
−
∂φ

∂λ

����
(λ3,σ)

dλ3

dσ
−
∂φ

∂σ

����
(λ3,σ)

= 0 + α(σ − λ1) − 0 − α(σ − λ3) = α(λ3 − λ1) > 0.

Now, notice from Figure 3 that when σ < σ1 the optimal solu-

tion is λ = λ1. When σ = σ1, λ1 =
4α

3(α+τ)
4
�

3
ατ is a minimum

and λ2 = λ3 =
4
�

3
ατ is an inflection point, thus the optimal so-

Pα,τ(σ)

σ

1
√
τ

σ1

σ∗

σ3

λ + ταλ

λ + 1
ατλ
−3

Figure 4: The polynomial thresholding operator.

lution is λ = λ1.2 When σ > σ3, the optimal solution is λ3.
Finally, when σ = σ3, λ1 = λ2 =

1
√
τ

is a maximum and λ3 is
a minimum, thus the optimal solution is λ = λ3. Therefore, the
threshold for σ must lie in the range

4
3

4

�
3
ατ
< σ∗ <

α + τ

α
√
τ
. (62)

4.1.2. Approximate Polynomial Thresholding Operator
Notice, however, that finding a closed-form formula for σ∗ is

not straightforward, because it requires solving (56). While this
equation can be solved numerically for each α and τ, a simple
closed form formula can be obtained when 1

ατ � 0 (relative
to σ). In this case, the quartic becomes p(λ) = λ4 − σλ3 = 0,
which can be immediately solved and yields three solutions that
are equal to 0 and are hence out of the range λ > 1/

√
τ. The

only valid solution to the quartic is

λ = σ ∀σ : σ > 1/
√
τ. (63)

Thus, a simpler threshoding procedure can be obtained by ap-
proximating the thresholding function with two piecewise lin-
ear functions. One is exact (when λ ≤ 1/

√
τ) and the other one

2One can also show that φ(λ1(σ1),σ1) < φ(λ3(σ1),σ1) as follows:

φ(λ1(σ1),σ1) =
ατ

2
1
α + τ

16
9

�
3
ατ
=

8τ
3(α + τ)

�
α

3τ

φ(λ3(σ1),σ1) = 1 −
1
2τ
λ−2

3 +
α

2
(σ − λ3)2 = 1 −

1
2τ
λ−2

3 +
α

18
λ2

3

= 1 −
9 − ατλ4

3

18τλ2
3
= 1 −

1
3τλ2

3
= 1 −

1
3

�
α

3τ
.

Therefore, φ(λ1(σ1),σ1) < φ(λ3(σ1),σ1) because

1
3

� 8τ
α + τ

+ 1
�� α

3τ
< 1 ⇐⇒

� 9τ + α
α + τ

�2 α
27τ
< 1 ⇐⇒ (3τ − α)3 > 0,

which follows from the fact that 3τ > α.

9

is approximate (when λ > 1/
√
τ). The approximation, how-

ever, is quite accurate for a wide range of values for α and τ.
Since we have two linear functions, we can easily find a thresh-
old for σ as the value σ∗ at which the discontinuity happens.
To do so, we can plug in the given solutions in (56). We obtain

ατ

2(α + τ)
σ2
∗ = 1 −

1
2τσ2

∗

. (64)

This gives 4 solutions, out of which the only suitable one is

σ∗ =

�
α + τ

ατ
+

�
α + τ

α2τ
. (65)

Finally, the approximate polynomial thresholding operator can
be written as

λ = �Pα,τ(σ) =

σ if σ > σ∗
α
α+τσ if σ ≤ σ∗.

(66)

Notice that as τ increases, the largest singular values of D are
preserved, rather than shrank by the operator Sα−1 in (6). Notice
also that the smallest singular values of D are shrank by scaling
them down, as opposed to subtracting a threshold.

4.2. Noisy Data and Exact Constraints
In this section, we assume that the data is generated from

the exact self-expressive model, A = AC, and contaminated by
noise, i.e., D = A +G. This leads to the optimization problem

(P6) min
A,C
�C�∗ +

α

2
�D − A�2F s.t. A = AC and C = C�.

This problem can be seen as the limiting case of P5 with τ→ ∞.
In this case, the polynomial thresholding operator reduces to the
hard thresholding operator H� in (2) with threshold � = σ∗ =�

2
α . Therefore, the optimal A can be obtained from the SVD of

D = UΣV� as A = UH√ 2
α

(Σ)V�, while the optimal C is given
by Theorem 2. We thus have the following result.

Theorem 4. Let D = UΣV� be the SVD of the data matrix D.
The optimal solution to P6 is given by

A = U1Σ1V�1 and C = V1V�1 , (67)

where Σ1 contains the singular values of D that are larger than�
2
α , and U1 and V1 contain the corresponding singular vectors.

5. Low Rank Subspace Clustering with Corrupted Data

In this section, we consider the low-rank subspace clustering
problem in the case of data corrupted by noise and gross errors,
i.e., we consider problems P1 and P2. Similar to the case of
noisy data discussed in Section 4, the major difference between
these optimization problems and those in (17) and (19) is that,
rather than using a corrupted dictionary, we search simultane-
ously for a clean dictionary A, the low-rank coefficients C and

the sparse errors E. Also, notice that the �1 norm of the ma-
trix of coefficients is replaced by the nuclear norm, that the �2,1
norm of the matrix of errors is replaced by the �1 norm, and that
we enforce the symmetry of the affinity matrix as part of the op-
timization problem, rather than as a post-processing. A closed
form solution to the low-rank subspace clustering problem in
the case of data corrupted by noise and gross errors appears
elusive at this point. Therefore, we propose to solve P1 and P2
using an alternating minimization approach, as described next.

5.1. Corrupted Data and Relaxed Constraints

Iterative Polynomial Thresholding (IPT). We begin by con-
sidering the relaxed problem P2, which is equivalent to

min
A,C,E

�C�∗ +
τ

2
�A − AC�2F +

α

2
�D − A − E�2F + γ�E�1

s.t. C = C�.
(68)

When E is fixed, this problem reduces to P5, except that D is
replaced by D − E. Therefore, it follows from Theorem 3 that
A and C can be computed from the SVD of D − E = UΣV� as

A = UPα,τ(Σ)V� and C = VPτ(Pα,τ(Σ))V�, (69)

where Pτ is the operator in (27) and Pα,τ is the polynomial
thresholding operator in (58).

When A and C are fixed, the optimal solution for E satisfies

−α(D − A − E) + γsign(E) = 0. (70)

This equation can be solved in closed form by using the
shrinkage-thresholding operator in (6) and the solution is

E = S γ
α
(D − A). (71)

This suggest an iterative thresholding algorithm that, start-
ing from A0 = D and E0 = 0, alternates between applying
polynomial thresholding to D − Ek to obtain Ak+1 and applying
shrinkage-thresholding to D − Ak+1 to obtain Ek+1, i.e.

(Uk,Σk,Vk) = svd(D − Ek)
Ak+1 = UkPα,τ(Σk)V�k
Ek+1 = Sγα−1 (D − Ak+1).

(72)

Notice that, since the updates for A and E do not depend on C,
we do not need to compute C at each iteration: we can simply
obtain C from A upon convergence.

Although the optimization problem in (68) is non-convex,
the algorithm in (72) is guaranteed to converge, as shown in
Tseng (2001). Specifically, it follows from Theorem 1 that the
optimization problem in (68) is equivalent to the minimization
of the cost function

f (A, E) = Φτ(A) +
α

2
�D − A − E�2F + γ�E�1. (73)

It is easy to see that the algorithm in (72) is a coordinate descent
method applied to the minimization of f . This function is con-
tinuous, has a compact level set {(A, E) : f (A, E) ≤ f (A0, E0)},

10

and has at most one minimum in E as per (71). Therefore, it
follows from Theorem 4.1 part (c) in Tseng (2001) that the al-
gorithm in (72) converges to a coordinate-wise minimum of f .

Notice, however, this minimum is not guaranteed to be a
global minimum. Moreover, in practice its convergence can be
slow as observed in Lin et al. (2011) for similar problems.
Alternating Direction Method of Multipliers (ADMM). We
now propose an alternative solution to P2 in which we enforce
the constraint D = A + E exactly. This means that we toler-
ate outliers, but we do not tolerate noise. Using the method of
multipliers, this problem can be formulated as

max
Y

min
A,E,C:C=C�

�C�∗ +
τ

2
�A − AC�2F +

µ

2
�D − A − E�2F

+ �Y,D − A − E� + γ�E�1. (74)

In this formulation, the term with µ does not play the role of pe-
nalizing the noise G = D−A−E, as before. Instead, it augments
the Lagrangian with the squared norm of the constraint.

To solve the minimization problem over (A, E,C), notice that
when E is fixed the optimization over A and C is equivalent to

min
A,C
�C�∗ +

τ

2
�A − AC�2F +

µ

2
�D − A − E + µ−1Y�2F s.t. C = C�.

It follows from Theorem 3 that the optimal solutions for A and
C can be computed from the SVD of D− E + µ−1Y = UΣV� as
A = UPµ,τ(Σ)V� and C = VPτ(Pµ,τ(Σ))V�. Conversely, when
A and C are fixed, the optimization problem over E reduces to

min
E

µ

2
�D − A − E + µ−1Y�2F + γ�E�1. (75)

As discussed in Section 2.1, the optimal solution for E is given
as E = Sγ/µ(D − A + µ−1Y).

Given A and E, the ADMM algorithm updates Y using gradi-
ent ascent with step size µ, which gives Y ← Y + µ(D− A− E).
Therefore, starting from A0 = D, E0 = 0 and Y0 = 0, we ob-
tain the following ADMM for solving the low-rank subspace
clustering problem in the presence of gross corruptions,

(Uk,Σk,Vk) = svd(D − Ek + µ
−1
k Yk)

Ak+1 = UkPµk ,τ(Σk)V�k
Ek+1 = Sγµ−1

k
(D − Ak+1 + µ

−1
k Yk)

Yk+1 = Yk + µk(D − Ak+1 − Ek+1)
µk+1 = ρµk,

(76)

where ρ > 1 is a parameter. As in the case of the IPT method, C
is obtained from A upon convergence. Experimentally, we have
observed that our method always converges. However, while
the convergence of the ADMM is well studied for convex prob-
lems, we are not aware of any extensions to the nonconvex case.

5.2. Corrupted Data and Exact Constraints
Let us now consider the subspace estimation and clustering

problem P1, where the constraint A = AC is enforced. We
can solve P1 as the limiting case of P2 when τ → ∞. In this
case, the polynomial thresholding operator Pα,τ becomes the
hard thresholding operator H√ 2

α

. Therefore, we can solve P1

using the IST and ADMM algorithms described in Section 5.1
with Pα,τ replaced byH√ 2

α

.

6. Experiments

In this section we evaluate the performance of LRSC on two
computer vision tasks: motion segmentation and face cluster-
ing. Using the subspace clustering error,

subspace clustering error =
of misclassified points

total # of points
, (77)

as a measure of performance, we compare LRSC to state-of-
the-art subspace clustering algorithms based on spectral clus-
tering, such as LSA (Yan and Pollefeys, 2006), SCC (Chen and
Lerman, 2009), LRR (Liu et al., 2010), and SSC (Elhamifar and
Vidal, 2013). We choose these methods as a baseline, because
they have been shown to perform very well on the above tasks,
as reported in Vidal (2011). For the state-of-the-art algorithms,
we use the implementations provided by their authors. Follow-
ing the experimental setup in Elhamifar and Vidal (2013), the
parameters of the different methods are set as shown in Table 2.

Table 2: Parameter setup of different algorithms. K is the number of nearest
neighbors used by LSA to fit a local subspace around each data point, d is the
dimension of each subspace assumed by LSA and SCC, τ is a parameter weight-
ing the self-expressiveness error, α is a parameter weighting noise, and γ is a
parameter weighting gross errors by the �1 (SSC, LRSC) or �2,1 (LRR) norms.

Parameter LSA SCC LRR SSC LRSC
Motion Segmentation

K 8
d 4 3
τ 420
α 800

mini max j�i |d�i d j |
∞, 3000, 5000

γ 4 ∞ ∞, 5
ρ 1.0 1.1

Face Clustering
K 7
d 5 9
τ 0.045, 0.075
α ∞ ∞

γ 0.18 20
mini max j�i �d j�1

∞, 11
ρ 1.0 1.1

Notice that the SSC and LRR algorithms in Elhamifar and
Vidal (2013) and Liu et al. (2010), respectively, apply spec-
tral clustering to a similarity graph built from the solution of
their proposed optimization programs. Specifically, SSC uses
the affinity |C| + |C|�, while LRR uses the affinity |C|. How-
ever, the implementation of the SSC algorithm normalizes the
columns of C to be of unit �1 norm. To investigate the effect
of this post-processing step, we report the results for both cases
of without (SCC) and with (SCC-N) the column normalization
step. Also, the code of the LRR algorithm in Liu et al. (2012)
applies a heuristic post-processing step to the low-rank solu-
tion prior to building the similarity graph, similar to Lauer and
Schnörr (2009). Thus, we report the results for both without
(LRR) and with (LRR-H) the heuristic post-processing step.

Notice also that the original published code of LRR con-
tains the function “compacc.m” for computing the misclassi-
fication rate, which is erroneous, as noted in Elhamifar and Vi-
dal (2013). Here, we use the correct code for computing the

11

Figure 5: Motion segmentation: given feature points on multiple rigidly moving
objects tracked in multiple frames of a video (top), the goal is to separate the
feature trajectories according to the moving objects (bottom).

misclassification rate and as a result, the reported performance
for LRR-H is different from the published results in Liu et al.
(2010) and Liu et al. (2012). Likewise, our results for LRSC
are different from those in our prior work Favaro et al. (2011),
where we had also used the erroneous function “compacc.m”.

Finally, since LSA and SCC need to know the number of sub-
spaces a priori and the estimation of the number of subspaces
from the eigenspectrum of the graph Laplacian in the noisy set-
ting is often unreliable, to have a fair comparison, we provide
the number of subspaces as an input to all the algorithms.

6.1. Experiments on Motion Segmentation

Motion segmentation refers to the problem of clustering a set
of 2D point trajectories extracted from a video sequence into
groups corresponding to different rigid-body motions. Here, the
data matrix D is of dimension 2F × N, where N is the number
of 2D trajectories and F is the number of frames in the video.
Under the affine projection model, the 2D trajectories associ-
ated with a single rigid-body motion live in an affine subspace
of R2F of dimension d = 1, 2 or 3 (Tomasi and Kanade, 1992).
Therefore, the trajectories associated with n different moving
objects lie in a union of n affine subspaces in R2F , and the mo-
tion segmentation problem reduces to clustering a collection of
point trajectories according to multiple affine subspaces. Since
LRSC is designed to cluster linear subspaces, we apply LRSC
to the trajectories in homogeneous coordinates, i.e., we append
a constant λ = 0.1 and work with 2F + 1 dimensional vectors.

We use the Hopkins155 motion segmentation database (Tron
and Vidal, 2007) to evaluate the performance of LRSC against
that of other algorithms. The database, which is available online
at http://www.vision.jhu.edu/data/hopkins155, con-
sists of 155 sequences of two and three motions. For each
sequence, the 2D trajectories are extracted automatically with
a tracker and outliers are manually removed. Figure 5 shows
some sample images with the feature points superimposed.

Tables 3 and 4 give the average subspace clustering error ob-
tained by different variants of LRSC on the Hopkins 155 motion
segmentation database. We can see that most variants of LRSC
have a similar performance. This is expected, because the tra-
jectories are corrupted by noise, but do not have gross errors.
Therefore, the Frobenius norm on the errors performs almost
as well as the �1 norm. However, the performance depends on

Table 3: Clustering error (%) of different variants of the LRSC algorithm on the
Hopkins 155 database with the 2F-dimensional data points. The parameters in
the first four columns are set as τ = 420, α = 3000 for 2 motions, α = 5000
for 3 motions and γ = 5. The parameters in the last four columns are set as
τ = 4.5×104

√
MN

and α = 3000 for two motions, τ = 6×104
√

MN
and α = 5000 for 3

motions, and γ = 5. For P2-ADMM, we also set µ0 = 100 and ρ = 1.1.

Method P3 P5 P2 P2 P3 P5 P2 P2

ADMM IPT ADMM IPT

2 Motions
Mean 3.39 3.27 3.13 3.27 2.58 2.57 2.62 2.57

Median 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 Motions
Mean 7.28 7.29 7.31 7.29 6.68 6.64 6.76 6.67

Median 2.53 2.53 2.53 2.53 1.76 1.76 1.76 1.76

All
Mean 4.25 4.16 4.05 4.16 3.49 3.47 3.53 3.48

Median 0.00 0.19 0.00 0.19 0.09 0.09 0.00 0.09

Table 4: Clustering error (%) of different variants of the LRSC algorithm on
the Hopkins 155 database with the data projected onto a 4n-dimensional space
using PCA. The parameters for LRSC are chosen as in Table 3.

Method P3 P5 P2 P2 P3 P5 P2 P2

ADMM IPT ADMM IPT

2 Motions
Mean 3.19 3.28 3.93 3.28 2.59 2.57 3.43 2.57

Median 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 Motions
Mean 7.27 7.28 8.07 7.28 6.64 6.67 8.13 6.62

Median 2.54 2.54 3.76 2.54 1.76 1.76 2.30 1.76

All
Mean 4.09 4.16 4.85 4.17 3.49 3.48 4.48 3.47

Median 0.19 0.19 0.21 0.19 0.19 0.09 0.19 0.00

Table 5: Clustering error (%) of different algorithms on the Hopkins 155
database with the 2F-dimensional data points.

Method LSA SCC LRR LRR-H SSC SSC-N LRSC
2 Motions
Mean 4.23 2.89 4.10 2.13 2.07 1.52 2.57

Median 0.56 0.00 0.22 0.00 0.00 0.00 0.00

3 Motions
Mean 7.02 8.25 9.89 4.03 5.27 4.40 6.64

Median 1.45 0.24 6.22 1.43 0.40 0.56 1.76
All
Mean 4.86 4.10 5.41 2.56 2.79 2.18 3.47

Median 0.89 0.00 0.53 0.00 0.00 0.00 0.09

Table 6: Clustering error (%) of different algorithms on the Hopkins 155
database with the 4n-dimensional data points obtained by applying PCA.

Method LSA SCC LRR LRR-H SSC SSC-N LRSC
2 Motions
Mean 3.61 3.04 4.83 3.41 2.14 1.83 2.57

Median 0.51 0.00 0.26 0.00 0.00 0.00 0.00

3 Motions
Mean 7.65 7.91 9.89 4.86 5.29 4.40 6.62

Median 1.27 1.14 6.22 1.47 0.40 0.56 1.76
All
Mean 4.52 4.14 5.98 3.74 2.85 2.41 3.47

Median 0.57 0.00 0.59 0.00 0.00 0.00 0.00

12

the choice of the parameters. In particular, notice that choos-
ing τ that depends on the number of motions and size of each
sequence gives better results than using a fixed τ.

Tables 5 and 6 compare the best results of LRSC against
the state-of-the-art results. Overall, LRSC compares favorably
against LSA and SCC and LRR without post-processing of the
affinity matrix. Relative to LRR with post-processing, LRSC
performs worse when the data is not projected, and better when
the data is projected. However, LRSC does not perform as well
as either version of SSC (with or without post-processing).

Overall, we can see that even the simplest version of LRSC
(P3), whose solution can be computed in closed form, per-
forms on par with state-of-the-art motion segmentation meth-
ods, which require solving a convex optimization problem.

6.2. Experiments on Face Clustering

Face clustering refers to the problem of clustering a set of
face images from multiple individuals according to the identity
of each individual. Here, the data matrix D is of dimension
P × N, where P is the number of pixels, and N is the num-
ber of images. For a Lambertian object, the set of all images
taken under all lighting conditions, but the same viewpoint and
expression, forms a cone in the image space, which can be
well approximated by a low-dimensional subspace (Basri and
Jacobs, 2003). In practice, a few pixels deviate from the Lam-
bertian model due to cast shadows and specularities, which can
be modeled as sparse outlying entries. Therefore, the face clus-
tering problem reduces to clustering a set of images according
to multiple subspaces and corrupted by sparse gross errors.

We use the Extended Yale B database (Lee et al., 2005) to
evaluate the performance of LRSC against that of state-of-the-
art methods. The database includes 64 frontal face images of
38 individuals acquired under 64 different lighting conditions.
Each image is cropped to 192 × 168 pixels. Figure 6 shows
sample images from the database. To reduce the computa-
tional cost and the memory requirements of all algorithms, we
downsample the images to 48× 42 pixels and treat each 2, 016-
dimensional vectorized image as a data point.

Following the experimental setup of Elhamifar and Vidal
(2013), we divide the 38 subjects into 4 groups, where the
first three groups correspond to subjects 1 to 10, 11 to 20, 21
to 30, and the fourth group corresponds to subjects 31 to 38.
For each of the first three groups we consider all choices of
n ∈ {2, 3, 5, 8, 10} subjects and for the last group we consider
all choices of n ∈ {2, 3, 5, 8}. Finally, we apply clustering algo-
rithms for each trial, i.e., each set of n subjects.

Table 7 shows the average and median subspace clustering
errors of different algorithms. In this experiment, we first apply
the Robust Principal Component Analysis (RPCA) algorithm of
Candès et al. (2011) to the face images of each subject and then
apply different subspace clustering algorithms to the low-rank
component of the data obtained by RPCA. While this cannot be
done in practice, because the clustering of the data is not known
beforehand, this experiment illustrates some of the challenges
of the face clustering and validates several conclusions about
the performances of different algorithms. In particular, notice

Table 7: Clustering error (%) of different algorithms on the Extended Yale B
database after applying RPCA separately to the data points in each subject.

Algorithm LSA SCC LRR LRR-H SSC-N LRSC
2 Subjects

Mean 6.15 1.29 0.09 0.05 0.06 0.00

Median 0.00 0.00 0.00 0.00 0.00 0.00

3 Subjects
Mean 11.67 19.33 0.12 0.10 0.08 0.00

Median 2.60 8.59 0.00 0.00 0.00 0.00

5 Subjects
Mean 21.08 47.53 0.16 0.15 0.07 0.00

Median 19.21 47.19 0.00 0.00 0.00 0.00

8 Subjects
Mean 30.04 64.20 4.50 11.57 0.06 0.00

Median 29.00 63.77 0.20 15.43 0.00 0.00

10 Subjects
Mean 35.31 63.80 0.15 13.02 0.89 0.00

Median 30.16 64.84 0.00 13.13 0.31 0.00

Table 8: Clustering error (%) of different algorithms on the Extended Yale B
database without pre-processing the data.

Algorithm LSA SCC LRR LRR-H SSC-N LRSC
2 Subjects

Mean 32.80 16.62 9.52 2.54 1.86 5.32
Median 47.66 7.82 5.47 0.78 0.00 4.69

3 Subjects
Mean 52.29 38.16 19.52 4.21 3.10 8.47

Median 50.00 39.06 14.58 2.60 1.04 7.81
5 Subjects

Mean 58.02 58.90 34.16 6.90 4.31 12.24
Median 56.87 59.38 35.00 5.63 2.50 11.25

8 Subjects
Mean 59.19 66.11 41.19 14.34 5.85 23.72

Median 58.59 64.65 43.75 10.06 4.49 28.03
10 Subjects

Mean 60.42 73.02 38.85 22.92 10.94 30.36
Median 57.50 75.78 41.09 23.59 5.63 28.75

that LSA and SCC do not perform well, even with de-corrupted
data. Notice also that LRR-H does not perform well for more
than 8 subjects, showing that the post processing step on the
obtained low-rank coefficient matrix not always improves the
result of LRR. SSC and LRSC, on the other hand, perform very
well, with LRSC achieving perfect performance.

Table 8 shows the results of applying different clustering al-
gorithms to the original data, without first applying RPCA to
each group. Notice that the performance of LSA and SCC dete-
riorates dramatically, showing that these methods are very sen-
sitive to gross errors. The performance of LRR is better, but the
errors are still very high, especially as the number of subjects
increases. In this case, the post processing step of LRR-H does
help to significantly reduce the clustering error.

Finally, Figure 7 shows the average computational time of
each algorithm as a function of the number of subjects (or
equivalently the number of data points). Note that the compu-
tational time of SCC is drastically higher than other algorithms.
This comes from the fact that the complexity of SCC increases
exponentially in the dimension of the subspaces, which in this

13

Figure 6: Face clustering: given face images of multiple subjects (top), the goal is to find images that belong to the same subject (bottom).

2 3 5 8 10
10

0

10
1

10
2

10
3

10
4

Number of subjects

C
o
m

p
u
ta

ti
o

n
al

 t
im

e
(s

ec
)

LSA

SCC

LRR

LRSC

SSC

Figure 7: Average computational time (sec.) of the algorithms on the Ex-
tended Yale B database as a function of the number of subjects.

case is d = 9. On the other hand, SSC, LRR and LRSC use fast
and efficient convex optimization techniques which keeps their
computational time lower than other algorithms. Overall, LRR
and LRSC are the fastest methods.

7. Discussion and Conclusion

We have proposed a new algorithm for clustering data drawn
from a union of subspaces and corrupted by noise/gross errors.
Our approach was based on solving a non-convex optimization
problem whose solution provides an affinity matrix for spectral
clustering. Our key contribution was to show that important
particular cases of our formulation can be solved in closed form
by applying a polynomial thresholding operator to the SVD of
the data. A drawback of our approach to be addressed in the
future is the need to tune the parameters of our cost function.
Further research is also needed to understand the correctness of
the resulting affinity matrix in the presence of noise and corrup-
tions. Finally, all existing methods decouple the learning of the
affinity from the segmentation of the data. Further research is
needed to integrate these two steps into a single objective.

References

Agarwal, P., Mustafa, N., 2004. k-means projective clustering. In: ACM Sym-
posium on Principles of database systems.

Basri, R., Jacobs, D., 2003. Lambertian reflection and linear subspaces. IEEE
Transactions on Pattern Analysis and Machine Intelligence 25 (3), 218–233.

Boult, T., Brown, L., 1991. Factorization-based segmentation of motions. In:
IEEE Workshop on Motion Understanding. pp. 179–186.

Bradley, P. S., Mangasarian, O. L., 2000. k-plane clustering. Journal of Global
Optimization 16 (1), 23–32.

Cai, J.-F., Candés, E. J., Shen, Z., 2008. A singular value thresholding algorithm
for matrix completion. SIAM Journal of Optimization 20 (4), 1956–1982.

Candès, E., Li, X., Ma, Y., Wright, J., 2011. Robust principal component anal-
ysis? Journal of the ACM 58 (3).

Chen, G., Lerman, G., 2009. Spectral curvature clustering (SCC). International
Journal of Computer Vision 81 (3), 317–330.

Costeira, J., Kanade, T., 1998. A multibody factorization method for indepen-
dently moving objects. International Journal of Computer Vision 29 (3),
159–179.

Elhamifar, E., Vidal, R., 2009. Sparse subspace clustering. In: IEEE Confer-
ence on Computer Vision and Pattern Recognition.

Elhamifar, E., Vidal, R., 2010. Clustering disjoint subspaces via sparse rep-
resentation. In: IEEE International Conference on Acoustics, Speech, and
Signal Processing.

Elhamifar, E., Vidal, R., 2013. Sparse subspace clustering: Algorithm, theory,
and applications. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence.

Favaro, P., Vidal, R., Ravichandran, A., 2011. A closed form solution to ro-
bust subspace estimation and clustering. In: IEEE Conference on Computer
Vision and Pattern Recognition.

Gear, C. W., 1998. Multibody grouping from motion images. Int. Journal of
Computer Vision 29 (2), 133–150.

Goh, A., Vidal, R., 2007. Segmenting motions of different types by unsuper-
vised manifold clustering. In: IEEE Conference on Computer Vision and
Pattern Recognition.

Gruber, A., Weiss, Y., 2004. Multibody factorization with uncertainty and miss-
ing data using the EM algorithm. In: IEEE Conf. on Computer Vision and
Pattern Recognition. Vol. I. pp. 707–714.

Ho, J., Yang, M. H., Lim, J., Lee, K., Kriegman, D., 2003. Clustering appear-
ances of objects under varying illumination conditions. In: IEEE Conference
on Computer Vision and Pattern Recognition.

Hong, W., Wright, J., Huang, K., Ma, Y., 2006. Multi-scale hybrid linear mod-
els for lossy image representation. IEEE Trans. on Image Processing 15 (12),
3655–3671.

Lauer, F., Schnörr, C., 2009. Spectral clustering of linear subspaces for motion
segmentation. In: IEEE International Conference on Computer Vision.

Lee, K.-C., Ho, J., Kriegman, D., 2005. Acquiring linear subspaces for face
recognition under variable lighting. IEEE Transactions on Pattern Analysis
and Machine Intelligence 27 (5), 684–698.

Lin, Z., Chen, M., Wu, L., Ma, Y., 2011. The augmented Lagrange
multiplier method for exact recovery of corrupted low-rank matrices.
arXiv:1009.5055v2.

Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y., 2011. Ro-
bust recovery of subspace structures by low-rank representation. In:
http://arxiv.org/pdf/1010.2955v1.

Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y., 2012. Robust recovery of sub-
space structures by low-rank representation. IEEE Transactions on Pattern
Analysis and Machine Intelligence.

Liu, G., Lin, Z., Yu, Y., 2010. Robust subspace segmentation by low-rank rep-
resentation. In: International Conference on Machine Learning.

Lu, L., Vidal, R., 2006. Combined central and subspace clustering on computer
vision applications. In: International Conference on Machine Learning. pp.
593–600.

Ma, Y., Derksen, H., Hong, W., Wright, J., 2007. Segmentation of multivariate
mixed data via lossy coding and compression. IEEE Transactions on Pattern
Analysis and Machine Intelligence 29 (9), 1546–1562.

Mirsky, L., 1975. A trace inequality of John von Neumann. Monatshefte für
Mathematic 79, 303–306.

Rao, S., Tron, R., Ma, Y., Vidal, R., 2008. Motion segmentation via robust
subspace separation in the presence of outlying, incomplete, or corrupted
trajectories. In: IEEE Conference on Computer Vision and Pattern Recogni-
tion.

Rao, S., Tron, R., Vidal, R., Ma, Y., 2010. Motion segmentation in the pres-
ence of outlying, incomplete, or corrupted trajectories. IEEE Transactions
on Pattern Analysis and Machine Intelligence 32 (10), 1832 – 1845.

Recht, B., Fazel, M., Parrilo, P., 2010. Guaranteed minimum-rank solutions

14

of linear matrix equations via nuclear norm minimization. SIAM Review
52 (3), 471–501.

Soltanolkotabi, M., Elhamifar, E., Candes, E., 2013. Robust subspace cluster-
ing. http://arxiv.org/abs/1301.2603.

Sugaya, Y., Kanatani, K., 2004. Geometric structure of degeneracy for multi-
body motion segmentation. In: Workshop on Statistical Methods in Video
Processing.

Tipping, M., Bishop, C., 1999. Mixtures of probabilistic principal component
analyzers. Neural Computation 11 (2), 443–482.

Tomasi, C., Kanade, T., 1992. Shape and motion from image streams under
orthography: A factorization method. International Journal of Computer Vi-
sion 9, 137–154.

Tron, R., Vidal, R., 2007. A benchmark for the comparison of 3-D motion seg-
mentation algorithms. In: IEEE Conference on Computer Vision and Pattern
Recognition.

Tseng, P., 2000. Nearest q-flat to m points. Journal of Optimization Theory and
Applications 105 (1), 249–252.

Tseng, P., 2001. Convergence of a block coordinate descent method for nondif-
ferentiable minimization. Journal of Optimization Theory and Applications
109 (3), 475–494.

Vidal, R., March 2011. Subspace clustering. IEEE Signal Processing Magazine
28 (3), 52–68.

Vidal, R., Ma, Y., Sastry, S., 2005. Generalized Principal Component Analysis
(GPCA). IEEE Transactions on Pattern Analysis and Machine Intelligence
27 (12), 1–15.

Vidal, R., Soatto, S., Ma, Y., Sastry, S., 2003. An algebraic geometric approach
to the identification of a class of linear hybrid systems. In: Conference on
Decision and Control. pp. 167–172.

Vidal, R., Tron, R., Hartley, R., August 2008. Multiframe motion segmenta-
tion with missing data using PowerFactorization and GPCA. International
Journal of Computer Vision 79 (1), 85–105.

von Luxburg, U., 2007. A tutorial on spectral clustering. Statistics and Com-
puting 17.

Yan, J., Pollefeys, M., 2006. A general framework for motion segmentation:
Independent, articulated, rigid, non-rigid, degenerate and non-degenerate.
In: European Conf. on Computer Vision. pp. 94–106.

Yang, A., Wright, J., Ma, Y., Sastry, S., 2008. Unsupervised segmentation of
natural images via lossy data compression. Computer Vision and Image Un-
derstanding 110 (2), 212–225.

Yang, A. Y., Rao, S., Ma, Y., 2006. Robust statistical estimation and segmenta-
tion of multiple subspaces. In: Workshop on 25 years of RANSAC.

Zhang, T., Szlam, A., Lerman, G., 2009. Median k-flats for hybrid linear mod-
eling with many outliers. In: Workshop on Subspace Methods.

Zhang, T., Szlam, A., Wang, Y., Lerman, G., 2010. Hybrid linear modeling via
local best-fit flats. In: IEEE Conference on Computer Vision and Pattern
Recognition. pp. 1927–1934.

15

