
A Divide-and-Conquer Framework for Large-Scale Subspace Clustering

Chong You, Claire Donnat, Daniel P. Robinson, René Vidal
Johns Hopkins University, Baltimore, MD, 21218, USA

Abstract— Given data that lies in a union of low-dimensional
subspaces, the problem of subspace clustering aims to learn—
in an unsupervised manner—the membership of the data to
their respective subspaces. State-of-the-art subspace clustering
methods typically adopt a two-step procedure. In the first step,
an affinity measure among data points is constructed, usually by
exploiting some form of data self-representation. In the second
step, spectral clustering is applied to the affinity measure to find
the membership of the data to their respective subspaces. While
such methods are broadly applicable to mid-size datasets with
10,000 data points in 10,000 variables, they cannot be directly
applied to large-scale datasets. This paper proposes a divide-
and-conquer framework for large-scale subspace clustering.
The data is first divided into chunks and subspace clustering
is applied to each chunk. After removing potential outliers
from each cluster, a new cross-representation measure for the
similarity between subspaces is used to merge clusters from
different chunks that correspond to the same subspace. A self-
representation method is then used to assign outliers to clusters.
We evaluate the proposed strategy on synthetic large-scale
dataset with 1,000,000 data points, as well as on the MNIST
database, which contains 70,000 images of handwritten digits.
The numerical results highlight the scalability of our approach.

I. INTRODUCTION

Recently there has been an explosion in the availability of
data in many fields. In computer vision, for example, with
over 300 hours of video being uploaded to YouTube every
minute, it is easier to have access to databases of hundreds
of terabytes. Many traditional techniques for data processing
become inefficient and ineffective for data of such scale. The
need for fast and efficient algorithms that are capable of
processing such datasets is hence of paramount importance.
Subspace clustering. In many practical applications the
intrinsic dimension of a dataset is much smaller than the
dimension of the ambient space. For example, the trajectories
of image points from a moving rigid object lie approximately
in an affine subspace of dimension one, two, or three. Thus,
the key to analyzing high-dimensional data is to find efficient
and robust ways for learning its low-dimensional structure.
While conventional techniques, such as Principal Component
Analysis (PCA), assume the data comes from a single low-
dimensional subspace, in practice data often comes from
multiple classes and is hence better approximated by a union
of low-dimensional subspaces. Subspace clustering is the
problem of simultaneously finding the union of subspaces
and the segmentation of the data into its respective subspaces.
Sparse subspace clustering. In the past decade, many sub-
space clustering methods ranging from statistical to algebraic

This work was supported by NSF grant 1447822.

ones have been studied [14]. Among them, spectral clustering
based methods have been shown to be very effective for
many applications. Here, we focus on the Sparse Subspace
Clustering (SSC) algorithm [4], which has been shown to
be robust to noise and outliers, and also enjoys various
theoretical guarantees of correctness. SSC is based on the
observation that a point in a low-dimensional subspace can
be written as a sparse linear combination of other points
from the same subspace. Mathematically, consider the data
matrix X = [x1, · · · ,xN] whose columns are assumed to
lie in a union of low-dimensional subspaces. Given any point
xj , there exists a sparse vector cj such that xj = Xcj and
the nonzero entries of cj correspond to columns in X from
the same subspace as xj . Such a representation cj is called
subspace-preserving. In principle, a subspace-preserving rep-
resentation can be found by solving the optimization problem

min
cj

‖cj‖0 s.t. xj = Xcj , cjj = 0, (1)

where ‖cj‖0 counts the number of nonzero entries in the
vector cj . It has been shown in [21] that the solution to (1)
is subspace-preserving almost surely when the data on each
subspace are drawn from any continuous distribution. Given
the representation matrix C = [c1, · · · , cN], the clustering
of data X is obtained by applying spectral clustering [15] to
the symmetric data affinity matrix |C|+ |C>|.

Since the problem in (1) is NP-hard, the work [4] proposed
to use the `1-norm instead of the `0 semi-norm, resulting in
a convex optimization problem known as basis pursuit (BP):

min
cj

‖cj‖1 s.t. xj = Xcj , cjj = 0. (2)

We will refer to the subspace clustering method based on (2)
as SSC-BP. Remarkably, the solution of (2) is still subspace-
preserving when the subspaces are independent [4] or satisfy
certain separation conditions [5], [12]. Similar results exist
for data corrupted by noise [17], corrupted by outliers [12],
or pre-processed using dimension-reduction techniques [16].
Large-scale subspace clustering. Although problem (2),
which is the basis for SSC-BP, can be solved in polyno-
mial time, the SSC-BP algorithm becomes rather slow for
datasets of more than 10,000 points. This has motivated
many strategies for scaling-up SSC-BP. In particular, the
orthogonal matching pursuit (OMP) algorithm [3], [23] is
a greedy procedure for finding the sparse representation
in (1), which can be used instead of (2). This method,
which is called SSC-OMP in [23], was shown to be orders
of magnitude faster than SSC-BP, and therefore capable

1

of handling 100,000 data points. It was also shown that
SSC-OMP gives a subspace-preserving representation under
conditions that are comparable to those of SSC-BP [24].
Contributions. Although SSC-OMP has been shown to be
more efficient than SSC-BP, it still has a computational
complexity of O(N2) and thus cannot deal with datasets
containing 1M points or more. The goal of this work is to
develop an algorithm that is able to cluster 1M data points in
a reasonable amount of time. To achieve this goal, we design
a divide-and-conquer approach in which the original data is
split into chunks of moderate size so that points in each
chunk can be efficiently clustered using traditional subspace
clustering methods. The clusters from different chunks that
correspond to the same subspace are then merged to obtain a
complete clustering of the original data. For this purpose, we
design a novel subspace similarity measure that exploits the
subspace self-expressiveness property. Unlike prior subspace
similarity measures based on principal angles, the proposed
measure does not require prior knowledge of the subspace
dimensions, which can be hard to estimate. We also study
strategies to clean the clusters, which can improve clustering
accuracy. Finally, tests on both synthetic and real world
datasets validate the efficiency of this approach.

II. RELATED WORK

Several scalable subspace clustering methods have been
studied in the past few years, including methods based on
active sets [22], truncated SVD [8], [19], factorization [11]
and subsampling [10], [1]. The work of [22] proposes an
active set algorithm for solving SSC-BP that is significantly
faster than previous solvers and is able to cluster 70,000 data
points in less than one hour. However, the algorithm is still
not scalable to 1M data points as it takes more than 24 hours
to cluster 581,012 data points. The works of [8] and [19]
present fast algorithms for low rank representation (LRR)
[9], a subspace clustering method that finds a subspace-
preserving representation by learning a matrix of coefficients
C that is of low-rank. They exploit the fact that the optimal
solution C is of low-rank by using a truncated SVD to
update C at each iteration, which reduces the computational
complexity from O(N3) to O(N2). However, since the rep-
resentation matrix of LRR is non-sparse and requires O(N2)
memory, LRR-based methods cannot be directly applied to a
dataset of size, say, 100,000 data points, as it would require
∼ 80GB memory. To address the memory issue, [11] exploits
the fact that the representation matrix in LRR is low rank
and uses a factored form of the representation matrix C to
save memory. However, there are no theoretical guarantees
that the method in [11] will give the correct clustering.

Subsampling-based methods have also been proposed to
help scale existing methods. [10] presented the Scalable SSC
method, in which SSC is applied to a subset of the data drawn
at random from the entire dataset. Once the subsampled data
is clustered, the remaining data points are classified to one of
the computed clusters. While this method is computationally
efficient, its clustering accuracy becomes sensitive to the
subsampled data, i.e., it requires the subsampled data to

well represent the distribution of points in all subspaces.
The work of [1] learns a small-sized dictionary and clusters
the data based on the affinity between the data points and
the dictionary atoms. While the learned dictionary would
be expected to be more representative of the data than the
random subsampled data used by Scalable SSC, there are
no theoretical guarantees on the quality of the dictionary for
the purpose of clustering. Indeed, the clustering accuracy is
reduced for many cases in the empirical evaluation in [1].

III. A DIVIDE-AND-CONQUER APPROACH

We propose a divide-and-conquer approach to large-scale
subspace clustering called SSC-DC. The entire procedure
(see Algorithm 1) consists of four phases. First, instead of
learning a representation matrix for the entire data, SSC-
DC randomly splits the data into smaller chunks and then
independently performs SSC on each chunk. Second, since
the resulting clusters may contain points from more than
one subspace, SSC-DC uses an outlier pursuit procedure to
separate inliers from outliers within each cluster. Third, a
new similarity measure between clusters is used to merge
clusters of inliers that correspond to the same subspace.
Finally, once the clusters have been merged, the outliers are
reclustered by assigning them to one of the merged clusters.

A. Phase 1: split and cluster

First, SSC-DC partitions the N data points into B disjoint
chunks, {X(b)}Bb=1, where the size of each chunk N/B (we
assume that B divides N) is small enough so that the chunks
can be handled by modern SSC methods. Once the chunks
have been formed, SSC-BP or SSC-OMP is applied to each
chunk X(b) to get n clusters {X(b)

` }n`=1, where n is the
number of subspaces and is set to be the same for all chunks.

B. Phase 2: detect outliers

If the clustering within each chunk from Phase 1 were
perfect, then each cluster would only contain points from a
single subspace. In practice, some clusters could be corrupted
by points from other subspaces, which could significantly
affect the ability to merge the clusters in Phase 3.

To address this issue, we apply an outlier detection
algorithm to each of the clusters to identify and remove
outliers. Specifically, assume that each one of the clusters
{X(b)

` }
b∈{1,··· ,B}
`∈{1,··· ,n} obtained in Phase 1 contains many points

from one of the subspaces as well as a few points from
other subspaces. The goal of Phase 2 is to detect and remove
points from other subspaces (a.k.a. outliers), thus generating
a submatrix X̄(b)

` of the matrix X(b)
` for all ` ∈ {1, . . . , n}

and b ∈ {1, . . . , B} that contains only points from one of the
subspaces (a.k.a. inliers). The outlier detection problem has
been studied in the context of robust PCA, e.g. see [20], [7],
[13]. In this work, we use the Outlier Pursuit method of [20],
which aims to decompose the data matrix as X(b)

` = L+S.
Here, L is some low-rank matrix whose non-zero columns
(the inliers) span the underlying subspace containing X

(b)
` ,

and S is a column-sparse matrix (i.e. there are only a few

2

nonzero columns) whose non-zero columns correspond to
the outliers. To compute L and S, one solves

min
L,S
‖L‖∗ + λ‖S‖2,1 s.t. X

(b)
` = L+ S, (3)

where λ > 0 is a trade-off parameter, ‖L‖∗ is the nuclear
norm of L defined as the sum of the singular values of L, and
‖S‖2,1 is the sum of the `2-norms of the columns of S. Once
the outliers have been detected as the non-zero columns of S,
we assign them to an outlier set to be processed in Phase 4.

C. Phase 3: merge subspaces

Given the data matrices {X̄(b)
` }

b∈{1,··· ,B}
`∈{1,··· ,n} , each one con-

taining ideally data from only one subspace, the goal of
Phase 3 is to merge clusters whose data come from the same
subspace. For this purpose, we adopt a two-step procedure
in which pairwise similarities between clusters are computed
and spectral clustering is applied to the resulting similarity.

A classical measure of the similarity between two sub-
spaces is their principal angle, which can be computed from
the largest singular value of the matrix U>V , where U and
V are orthogonal bases for the two subspaces. However,
since real data typically contains noise, it can be difficult to
compute a basis for each subspace since the dimensions of
the subspaces are unknown and nontrivial to estimate. Given
two data submatrices whose columns are from the same
subspace, either overestimation or underestimation of the
subspace dimension can result in an inaccurate estimation of
the principal angle. Thus, there is a need to design measures
of subspace similarity that do not require an estimate of the
subspace dimension and are robust to noisy data.

Motivated by the fact that points in the same subspace can
be used to mutually express each other, we design a “cross-
expressiveness” based similarity measure for two subspaces.
The idea is that if the columns of two matrices Y1 and
Y2 are drawn from the same subspace, then it holds that
Y1 = Y2 · C1 for some C1, i.e., each column of Y1 can be
expressed using the columns from Y2. On the other hand, if
Y1 and Y2 are drawn from two different subspaces (assume
that one subspace does not contain the other), then such a
representation C1 does not exist because the columns of Y1
cannot be expressed using columns from Y2. Motivated by
this ideal setting, and to cope with the possible existence of
noise in the data, we compute the representation C1 as:

C1 = argmin
C

‖Y1 − Y2C‖2F + λ‖C‖2F , (4)

for some weighting parameter λ > 0. Note that problem (4)
has the closed form solution C1 = (Y >2 Y2 + λI)−1Y >2 Y1.
Our new dissimilarity measure between Y1 and Y2 is then
defined as

d(Y1, Y2) =
1

2

(
‖Y1 − Y2C1‖F
‖Y1‖F

+
‖Y2 − Y1C2‖F
‖Y2‖F

)
, (5)

where C1 is computed from (4) and C2 is computed by
swapping Y1 and Y2 in (4). Based on the dissimilarity
measure (5), the similarity between Y1 and Y2 is computed
as exp(−d(Y1, Y2)/(2σ2)) for some parameter σ > 0.

Algorithm 1 SSC Divide-and-conquer
Input: The data matrix X = [x1, · · · ,xN], the number of

clusters n, and the number of chunks B.
1: Phase 1: Split and cluster

Split the data matrix X evenly into {X(b)}b=1,··· ,B .
Apply SSC on each X(b) to get clusters {X(b)

` }
b=1,··· ,B
`=1,··· ,n .

2: Phase 2: Detect outliers
For each matrix in {X(b)

` }
b=1,··· ,B
`=1,··· ,n solve (3). Place points

corresponding to nonzero columns of S into the outlier
set, and denote the matrix containing the remaining
points as X̄(b)

` .
3: Phase 3: Merge subspaces

Compute similarities exp(−d(X̄
(b)
` , X̄

(b′)
`′)/(2σ2)) using

(5) for all pairs (b, `) 6= (b′, `′). Apply spectral clustering
using this similarity matrix to get clusters {X̄`}`=1,··· ,n.

4: Phase 4: Recluster outliers
Assign each y in the outlier set to one of the clusters in
{X̄`}`=1,··· ,n by using (7).

Output: A clustering of X into n clusters {X̄`}`=1,··· ,n.

D. Phase 4: recluster outliers

After the merging procedure in Phase 3, the algorithm
has generated n clusters {X̄`}`=1,··· ,n, each of which will
ideally contain only points from one of the ground-truth
subspaces. However, the points that were detected as outliers
in Phase 2 still need to be assigned to one of the clusters.
A simple approach for assigning outliers to clusters would
be to fit a subspace to each one of the clusters that have
already been obtained and then assign each outlier to one of
those n clusters. However, this would require us to know the
dimension of the subspaces, and any errors in the estimation
of the dimensions could lead to errors in the assignments.

To address this issue, we note that since the class labels for
clusters {X̄`}n`=1 have already been generated, we can treat
{X̄`}n`=1 as training data and use any supervised classifica-
tion technique to classify each point in the outlier set. Here,
we adopt a representation based classification technique [18],
[25]. If we define X̄ = [X̄1, · · · , X̄n], then a representation
for any outlier point y may be found by solving1

min
c
‖y − X̄c‖22 + λ‖c‖22 (6)

for some parameter λ > 0. Ideally, the nonzero entries in
the representation vector c will correspond to points in X̄
that are from the same subspace as y. In practice, nonzero
entries of c may be distributed among multiple subspaces.
Following the procedure in [18], let δ`(c) be a vector of the
same size as c such that the entries of δ`(c) are all zero
except for those that correspond to X̄`, which are equal to
the corresponding entries of c. The point y is then assigned
to the class ` that gives the minimum representation residual

1Observe that this problem is potentially huge when D and N are large.
However, when D is small one can use the inversion lemma to solve for c
efficiently. As we shall see in our experiments, the time spent in Phase 4 is
not significant in practice. That being said, simpler classification methods
can be tried when D and N are both large.

3

of y using δ`(c), i.e., to the class ` that solves

min
`
‖y − X̄δ`(c)‖2. (7)

This completes the description of our SSC-DC framework.

IV. EXPERIMENTS

A. Synthetic data

To test the effectiveness of SSC-DC on large-scale datasets
and to study how the number of chunks affects the running
time, we design experiments using synthetic data. First, we
choose 10 subspaces each of dimension 5, independently
and uniformly at random in an ambient space of dimension
15. Second, we generate an equal number of data points
uniformly at random on each of the subspaces. The total
number of data points is varied from 10,000 to 1,000,000.

For Phase 1 of SSC-DC, the data is randomly divided
into 10, 50 or 100 chunks and SSC-BP is applied to each
chunk. We use the SPAMS package2 to solve the sparse
representation problem (2) used by SSC-BP. The clusters
are merged according to Phase 3 of Algorithm 1 with
λ = 0.1 in (4) and σ = 1. We do not perform outlier
detection (i.e. Phase 2) and reclustering (i.e. Phase 4) in
this experiment. The running times of different algorithms
on different number of data points are shown in Figure 1.

The curve for SSC is the baseline, which was obtained by
applying SSC-BP to the entire data, i.e., it uses one chunk.
We see that while it only needs one minute to handle 10,000
data points, it takes around 14 hours to cluster∼360,000 data
points. Since the running time for each algorithm is limited
to 24 hours, SSC does not finish clustering 1,000,000 data
points. If we use SSC-DC with 10 chunks, we can observe
a significant reduction on the running time for all scales
of the tested data. In particular, SSC-DC with 10 chunks
uses around one hour to cluster ∼360,000 in comparison to
the 14 hours used by SSC. By using the divide-and-conquer
strategy, our method is able to cluster 1,000,000 data points.

When the number of chunks in SSC-DC is increased from
10 to 50, we observe that the running time increases when
the data size is relatively small, but decreases when the
data size is relatively large. This illustrates the trade-off
in choosing the number of chunks in SSC-DC. Although
increasing the number of chunks reduces the scale of the
problems solved by SSC on each chunk, it also increases the
number of subspaces to be merged in Phase 3. Therefore, the
computational cost associated with these two effects should
be balanced in practice. As shown in Figure 1, SSC-DC
(100 chunks) is less efficient than SSC-DC (50 chunks),
although it is likely that SSC-DC (100 chunks) will be more
efficient that SSC-DC (50 chunks) when the dataset size
grows beyond 1,000,000 data points.

B. MNIST handwritten digit data

To evaluate the performance of SSC-DC on real data, we
use the MNIST handwritten digit database [6]. It contains
70,000 images of handwritten digits 0-9. Following the setup

2http://spams-devel.gforge.inria.fr/

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

Number of data points

R
un

ni
ng

 ti
m

e
(s

ec
.)

SSC
SSC−DC (10 chunks)
SSC−DC (50 chunks)
SSC−DC (100 chunks)

Fig. 1. Performance of SSC-DC with different numbers of chunks on
synthetic data. We randomly generate 10 subspaces of dimension 5 in an
ambient space of dimension 15, and then randomly draw the same number of
points from each subspace. The x-axis gives the overall number of points,
which is varied from 10,000 to 1,000,000 and shown in log scale. The
y-axis reports the running time in log scale. The missing points for SSC
indicate that the algorithm does not finish within 24 hours.

in [22], [23], we compute the features for each image from
a scattering transform network [2]. The feature vectors are
of size 3,472, but are then projected to dimension 500 using
PCA, resulting in the data to be clustered.

We test the capability of SSC-DC on clustering the entire
70,000 images into 10 groups corresponding to digits 0-9.
We use SSC-OMP for subspace clustering in Phase 1. Note
that the solution for S in (3), which is supposed to be column
sparse, contains dense noise because the dataset contains
noise. Therefore, we compute the `2-norm of the columns
of S, and declare those that are larger than a threshold as
outliers; we found it difficult to determine a proper threshold
for declaring outliers. For simplicity, we sort the `2-norms of
the columns of S in descending order, and declare the data
that correspond to the first 10% as outliers. While this may
produce many false outliers, it is unlikely to significantly
affect the final clustering result because the false outliers are
reclustered in Phase 4.

Table I shows clustering accuracy and running time for
various number of chunks. The results are averages over
10 independent trials. In terms of clustering accuracy, the
performance of SSC-DC becomes worse as the number of
chunks increases. This is in accordance with the analysis and
empirical results in [23], where it is shown that the clustering
performance of SSC-OMP becomes better when there are
more samples in each subspace. Therefore, the clustering
on each chunk in Phase 1 becomes less accurate as the
number of chunks increases, which affects the final clustering
accuracy. Table I also reports the performance of SSC-
OMP, which exactly corresponds to the same computation
in Phase 1 of SSC-DC (1 chunk). Note that the clustering
accuracy of SSC-OMP is considerably lower than SSC-DC
(1 chunk), which demonstrates that the outlier detection and
reclassification procedures in Phase 2 and Phase 4 of SSC-

4

TABLE I
PERFORMANCE OF DIFFERENT SUBSPACE CLUSTERING METHODS ON

THE MNIST DATASET. THE DATASET CONSISTS OF 70,000 IMAGES OF

10 HANDWRITTEN DIGITS (I.E. , 0-9). SSC-DC WITH NUMBER OF

CHUNKS B ∈ {1, 2, 5, 10, 20, 50, 100, 200}, AS WELL AS OTHER

METHODS FOR COMPARISON, ARE APPLIED TO FEATURES EXTRACTED

FROM THE IMAGES BY A SCATTERING NETWORK, WHICH ARE THEN

PROJECTED TO DIMENSION 500 USING PCA.

Method Acc. (%) Time (sec.)
Total P1 P2 P3 P4

SSC-DC (1) 96.55 5254 1825 3304 30 93
SSC-DC (2) 96.10 4390 1049 3185 59 94
SSC-DC (5) 94.90 1596 436 937 134 88
SSC-DC (10) 93.04 1081 272 454 266 88
SSC-DC (20) 91.46 1081 196 274 523 87
SSC-DC (50) 89.07 1689 169 183 1243 93

SSC-DC (100) 85.46 2635 148 132 2260 94
SSC-DC (200) 78.93 5518 144 119 5161 93

SSC-OMP 94.75 1825 NA NA NA NA
SSC-BP 92.46 80987 NA NA NA NA

EnSC [22] 93.79 1694 NA NA NA NA
OLRSC [11] 75.30 1284 NA NA NA NA

DC effectively boost clustering accuracy.
The third column of Table I reports the overall running

time of SSC-DC. It shows that the running time first de-
creases as the number of chunks increases, and then starts
increasing once the number of chunks is larger than 20. This
behavior can be explained by the breakdown of the running
time for the 4 phases as reported in columns 4–7 of Table I.
In particular, notice that the running time of Phase 1 strictly
decreases as the number of chunks increases, showing that
SSC becomes more efficient when the chunks are smaller. On
the other hand, the running time of Phase 3 strictly increases
as the number of chunks increases, showing that it quickly
becomes prohibitively expensive to merge subspaces as the
number of subspace increases. At last, we note that Phase
2 (outlier detection via Outlier Pursuit) is the bottleneck in
running time when the number of chunks is small. Thus,
SSC-DC has the potential to be more efficient by using more
scalable algorithms for outlier detection.

For comparison purposes, the results for several methods
are reported at the bottom of Table I. We can see that SSC-
BP is more than one order of magnitude slower than the other
methods. The EnSC [22] and the OLRSC [11], which use an
active-set approach and factorization scheme, respectively,
are able to efficiently cluster the data. However, EnSC is
still slower when compared with SSC-DC (5 chunks), and
OLRSC does not have comparable clustering accuracy.

V. CONCLUSION

We presented a divide-and-conquer strategy for subspace
clustering aimed at large-scale datasets. We designed a new
measure of subspace similarity that did not require the
knowledge of the subspace dimension and that is effective
in merging subspaces obtained from subspace clustering
performed on each chunk of data. We also adopted an outlier
detection and reclustering procedure to clean computed clus-
ters and thus improve clustering accuracy. Our framework

was able to cluster 1,000,000 data points in approximately
the time required by other modern SSC methods to cluster
about 100,000 data points.

REFERENCES

[1] A. Adler, M. Elad, and Y. Hel-Or. Linear-time subspace clustering
via bipartite graph modeling. IEEE Transactions on Neural Networks
and Learning Systems, 26(10):2234 – 2246, 2015.

[2] J. Bruna and S. Mallat. Invariant scattering convolution networks.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
35(8):1872–1886, 2013.

[3] E. L. Dyer, A. C. Sankaranarayanan, and R. G. Baraniuk. Greedy
feature selection for subspace clustering. Journal of Machine Learning
Research, 14(1):2487–2517, 2013.

[4] E. Elhamifar and R. Vidal. Sparse subspace clustering. In IEEE
Conference on Computer Vision and Pattern Recognition, pages 2790–
2797, 2009.

[5] E. Elhamifar and R. Vidal. Sparse subspace clustering: Algorithm,
theory, and applications. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 35(11):2765–2781, 2013.

[6] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE,
86(11):2278 – 2324, 1998.

[7] G. Lerman, M. B. McCoy, J. A. Tropp, and T. Zhang. Robust
computation of linear models by convex relaxation. Foundations of
Computational Mathematics, 15(2):363–410, 2015.

[8] Z. Lin, R. Liu, and Z. Su. Linearized alternating direction method with
adaptive penalty for low rank representation. In Neural Information
Processing Systems, 2011.

[9] G. Liu, Z. Lin, and Y. Yu. Robust subspace segmentation by low-rank
representation. In International Conference on Machine Learning,
pages 663–670, 2010.

[10] X. Peng, L. Zhang, and Z. Yi. Scalable sparse subspace clustering.
IEEE Conference on Computer Vision and Pattern Recognition, pages
430–437, 2013.

[11] J. Shen, P. Li, and H. Xu. Online low-rank subspace clustering by
basis dictionary pursuit. In Proceedings of the 33rd International
Conference on Machine Learning, pages 622–631, 2016.

[12] M. Soltanolkotabi and E. J. Candès. A geometric analysis of subspace
clustering with outliers. Annals of Statistics, 40(4):2195–2238, 2012.

[13] M. Tsakiris and R. Vidal. Dual principal component pursuit. In ICCV
Workshop on Robust Subspace Learning and Computer Vision, pages
10–18, 2015.

[14] R. Vidal. Subspace clustering. IEEE Signal Processing Magazine,
28(3):52–68, March 2011.

[15] U. von Luxburg. A tutorial on spectral clustering. Statistics and
Computing, 17, 2007.

[16] Y. Wang, Y. Wang, and A. Singh. A deterministic analysis of noisy
sparse subspace clustering for dimensionality-reduced data. In Pro-
ceedings of the 32nd International Conference on Machine Learning,
pages 1422–1431, 2015.

[17] Y.-X. Wang and H. Xu. Noisy sparse subspace clustering. Journal of
Machine Learning Research, 17(12):1–41, 2016.

[18] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma. Robust
face recognition via sparse representation. IEEE Trans. Pattern Anal.
Mach. Intell., 31(2):210–227, 2009.

[19] S. Xiao, W. Li, D. Xu, and D. Tao. Falrr: A fast low rank representation
solver. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 4612–4620, 2015.

[20] H. Xu, C. Caramanis, and S. Sanghavi. Robust pca via outlier pursuit.
In Advances in Neural Information Processing Systems, pages 2496–
2504, 2010.

[21] Y. Yang, J. Feng, N. Jojic, J. Yang, and T. S. Huang. `0-sparse
subspace clustering. In European Conference on Computer Vision,
pages 731–747. Springer, 2016.

[22] C. You, C.-G. Li, D. Robinson, and R. Vidal. Oracle based active
set algorithm for scalable elastic net subspace clustering. In IEEE
Conference on Computer Vision and Pattern Recognition, 2016.

[23] C. You, D. Robinson, and R. Vidal. Scalable sparse subspace clustering
by orthogonal matching pursuit. In IEEE Conference on Computer
Vision and Pattern Recognition, 2016.

[24] C. You and R. Vidal. Geometric conditions for subspace-sparse
recovery. In International Conference on Machine learning, pages
1585–1593, 2015.

[25] L. Zhang, M. Yang, and X. Feng. Sparse representation or col-
laborative representation: Which helps face recognition? In IEEE
International Conference on Computer Vision, pages 471–478, 2011.

5

