
Corrective Consensus: Converging to the Exact Average

Yin Chen† Roberto Tron∗ Andreas Terzis† Rene Vidal∗

yinchen@cs.jhu.edu tron@cis.jhu.edu terzis@cs.jhu.edu rvidal@jhu.edu
Computer Science Department† Center for Imaging Science∗

Johns Hopkins University

Abstract— Consensus algorithms provide an elegant
distributed way for computing the average of a set of
measurements across a sensor network. However, the
convergence of the node estimates to the global average depends
on the timely and reliable exchange of the measurements
to neighboring sensors. These assumptions are violated in
practice due to random packet losses, causing the estimated
average to be biased. In this paper we present and analyze a
practical consensus protocol that overcomes these difficulties
and assures convergence to the correct average. Simulation
results show that the proposed corrective consensus has ten
times less overhead to reach the same level of accuracy as
the one achieved by a variant of standard consensus that uses
retransmissions to (partially) overcome the negative effects of
packet losses. In networks with more severe packet loss rates,
corrective consensus is more than forty times more accurate
than standard consensus that uses retransmissions. More
importantly, by continuing to execute the corrective consensus
algorithm the estimation error can become arbitrarily small.

I. INTRODUCTION

Consider a collection of low-power sensing nodes that
form an ad-hoc wireless network, each measuring a quantity
of interest, and imagine we are interested in computing
the mean of the network’s measurements. Collecting the
measurements to a central location and disseminating the
result to the whole network is often inefficient or infeasible.
Instead, averaging consensus algorithms [14] provide a fully
distributed way to iteratively solve this task. While every
node exchanges messages only with its directly connected
neighbors, it can be shown that, under mild conditions, these
algorithms converge to the correct global average ([24]).

Consensus algorithms form the basis for a large number of
distributed algorithms, such as Distributed Hypothesis Test-
ing [13], Distributed Maximum Likelihood Estimation [2],
[19], and Distributed Kalman Filtering [11], [18], and have
been studied under a wide variety of conditions including
networks with undirected or directed links, time varying
topology [7], and noisy channels [9], [20].

Nevertheless, standard consensus is not robust to packet
losses [4], which are common in low-power wireless net-
works. The problem is that traditional solutions require sym-
metric packet exchanges, i.e., if node j receives a packet
from node i, then it is assumed that node i will receive
a packet from node j. If this does not happen (due to
packet losses), consensus algorithms will misbehave and not
converge to the correct global average. This adverse effect
can be lessened, though not completely eliminated, through
reliable transmission schemes that reduce the effective link

loss. Doing so, however, significantly increases the commu-
nication and execution overhead of the algorithm. Moreover,
the estimated average can still be far from the correct value,
as we show in Section III.

In Section IV we introduce corrective consensus, a mecha-
nism that eliminates the consensus error even in the presence
of asymmetric link losses. The core idea is to maintain at
each node i additional variables φij that represent the amount
of change node i has made to its local state due to the updates
from its neighbor j. By periodically exchanging these new
variables between neighbors during corrective iterations, the
nodes have a chance to update their local states and correct
the errors caused by lost packets. We prove that this scheme
results in almost sure convergence to the correct average by
selecting an appropriate number of retransmissions in the
standard and corrective iterations.

In Section V we use simulations to compare the con-
vergence properties of corrective and standard consensus
algorithms. The results show that in a network with 10
nodes and 80% packet loss, standard consensus may fail to
converge to the correct average even with 50 retransmissions.
On the other hand, corrective consensus reaches the same
order of error at a speed that is more than 10 times faster.
Continuing the execution of the corrective consensus reduces
the error to zero.

II. RELATED WORK

Rajagopal and Wainwright investigated consensus averag-
ing on graphs whose links are symmetric and polluted by
quantization noise [15]. Specifically, they studied consensus
algorithms based on damped updates and proved conver-
gence to a Gaussian distribution whose variance depends on
eigenvalues of the network’s Laplacian graph. We consider
networks that suffer from a more severe form of faults, where
links can arbitrarily discard packets.

Kar and Moura studied average consensus with random
topologies and noisy channels [7]. They proposed two al-
gorithms: A-NC, which averages multiple runs of consensus
with a fixed number of iterations, and A-ND, which modifies
conventional consensus by forcing the weights to satisfy
a persistence condition (slowly decaying to zero). When
the channels are without noise, only A-ND assures almost-
sure convergence to the correct average as our algorithm
does. However, their assumption is that packet losses are
symmetric and the modification on the weights increases the
number of iterations needed to reach convergence.

Asymmetric packet losses have also been modeled with
directed switching network topologies, for instance by
Kingston and Beard [8] (which use standard consensus) and
Li and Zhang [9] (which use an approach similar to A-ND).
In all the cases, however, there is the critical assumption
that the network is balanced (a precise definition will be
given later).

Mehyar et al. derived asynchronous averaging algorithms
in packet-switched networks [10]. They implemented
and tested their algorithms on Planetlab, a global-scale
distributed network overlaid on the public Internet.
Their formulation also uses variables φij to correct errors.
Nevertheless, their algorithms assume a reliable bidirectional
exchange of packets between any pair of nodes. Furthermore,
Internet-connected PC class nodes do not have the resource
constraints that wireless sensor nodes face.

In summary, the main problem with existing solutions is
that they assume symmetric packet losses or balanced graphs,
which is not a realistic assumption in wireless networks. Our
work, on the other hand, guarantees almost-sure convergence
without this restrictive assumption.

Control systems over wireless networks that drop packets
have drawn much attention [6], [21]. Instead of achieving
statistical optimality, our work aims to completely eliminate
the error caused by packet drops in average consensus algo-
rithms and enable their practical use in wireless networks.

III. BACKGROUND

Consensus is a distributed iterative algorithm designed for
networks of connected devices, such as networks of wire-
less sensor nodes deployed to measure physical quantities
of interest (e.g., temperature). Each node i starts with its
own measurement zi and the consensus algorithm aims to
compute z = 1

N

∑N
i=1 zi, where N is the number of nodes in

the network. In other words, consensus calculates the average
of the initial measurements across the whole network. Rather
than collecting all the zi’s at a central node to compute the
average, each node i maintains a running local estimate of
z, denoted as xi(t) with t being the iteration counter. xi(t)
is also known as the state variable of node i. During each
consensus iteration, nodes exchange their state variables with
their neighbors and each node updates its own state based
on a weighted average of the state variables it receives. It
can then be shown that under certain conditions all xi(t)
eventually converge to z [9], [12], [14], [17].

We model the network as a directed graph (digraph) G =
(V, E), where the vertex set V = {1, 2, . . . , N} represents the
nodes and the ordered pair (i, j) ∈ E is an edge if node j can
transmit packets to node i directly (note that this definition
is different from a common notation where (i, j) denotes
the directed link i → j). Reflecting the realities of packet-
switched wireless communication, we assume that link (i, j)
may experience random packet losses. For ease of analysis,
we further assume that the packet losses are independent,
and denote the probability of loss as 1−pij ∈ [0, 1) for link
(i, j). Said differently, pij > 0 is the Packet Reception Ratio
(PRR) of the wireless link j → i, and pij = 0 if (i, j) 6∈ E .

We assume that pij is time-invariant and that pij = pji for
all (i, j) ∈ E pair, i.e., the PRRs in both directions (j → i)
and (i→ j) are equal. The set of neighboring nodes of node
i is denoted as Ni = {j : (i, j) ∈ E}.

Nodes can leverage the broadcast nature of the wireless
medium to broadcast their state variables to their neighbors
in every iteration of the consensus algorithm. Then, the value
of pij determines the probability of receiving the broadcast
packet on the j → i link. Nodes can perform multiple broad-
casts in one iteration to increase the probability of delivering
their updates. Then if node j transmits n broadcasts, the
probability of successfully delivering at least one copy of
the update on the j → i link is p̂ij = 1 − (1 − pij)n. Here
the p̂ij is the effective PRR on the j → i link.

One can define the network adjacency matrix A(t) of
graph G as Aij(t) = 1 if node j successfully transmitted
its state value to node i during the t-th iteration and zero
otherwise. Furthermore, by definition Aii = 0 for all i’s.
We assume that the network adjacency matrix A(t) is a ran-
dom matrix whose entries are i.i.d. and stationary Bernoulli
variables taking values {0, 1}. Also, we denote di(t) =∑N
j=1Aij(t) as the in-degree of node i in iteration t. The

degree matrix D(t) is a diagonal matrix with Dii(t) = di(t)
and the Laplacian matrix of graph G is

L(t) = D(t)−A(t). (1)

The eigenvalues of L(t) are within a disk centered at
maxi,t(di(t)) + 0j on the complex plane with a radius of
maxi,t(di(t)), due to Gershgorin’s theorem [5].

A. Standard Consensus

In the standard Laplacian-based consensus each node i
updates its state xi as

xi(t) =
∑N
j=1Wij(t− 1)xj(t− 1), xi(0) = zi. (2)

In vector form, the whole network iterates as

x(t) = W (t− 1)x(t− 1), x(0) = z, (3)

where x(t) and z are column vectors in RN , and W (t−1) ∈
RN×N is the weight matrix used during the t-th iteration.
The weight matrix W (t) is defined as

W (t) = I − εL(t), (4)

where I is the identity matrix and ε > 0 is a small constant.
One important property of W (t) is that W (t)1 = 1 for any
t, where 1 is the column vector of all ones. If we select
ε < 1/maxi,t(di(t)), then the eigenvalues of W (t) will be
distributed as 1 = λ1 ≥ |λ2| ≥ · · · ≥ |λN | ≥ 0.

Let E(W) be the expectation of W (t), which does not
depend on t. Note that when link qualities are symmetric
(i.e., pij = pji,∀(i, j) ∈ E) E(W) is also symmetric and
thus from E(W)1 = 1, it follows that 1TE(W) = 1T

also holds. It can be shown that if G is connected and
ε < 1/maxi,t(di(t)), then |λ2(E(W))| < 1 ([14]). This is an
important property because it follows that the update scheme
shown in (3) reaches consensus, i.e., limt→∞ x(t) = α1, if
|λ2(E(W))| < 1 ([22]).

While α = z when the weight matrix W (t) is symmetric
(as is the case for undirected graphs [25]), W (t) is a random
matrix and is not always balanced, i.e., ∃ t s.t. 1TW (t) 6=
1T . In this case, consensus will converge to a biased value
that is not equal to the average of the nodes’ initial states [4].

B. Effect of Packet Loss

Link losses affect consensus since packets exchanged be-
tween a pair of nodes {i, j} can be asymmetrically dropped
such that the sum of the states is not preserved. Note that
symmetric packet drops do not affect the sum of states.

Acknowledgments and retransmissions intuitively should
allow node i to detect asymmetric packet losses and either
resend the lost packet to j or discard the packet received
from j. In this way nodes i and j would both either update
or not update their local states and the sum of states would
be preserved. Unfortunately, due to the well-known Two
Generals’ Problem [1], node i and node j can never be
certain that they will take the same action, regardless of how
many messages they are willing to exchange. If for once
node i updates whereas node j does not, an error could be
introduced and consensus will generally not converge to the
exact average of the initial states.

Nonetheless, doing retransmissions should effectively re-
duce the probability that nodes take different actions. How-
ever, our simulation results show that the deviation between
α and z can still be quite significant even with a high number
of repeated message exchanges. Figure 1 presents the results
of running consensus on a 10-node ring topology in which
the PRR of all links is 20%. It is evident from Figure 1(a)
that, without retransmissions, errors can easily accumulate.
Every node in Figure 1(b) is configured to perform up
to 20 retransmissions if necessary. Therefore the effective
PRR is approximately 99% on every link. Nevertheless, the
converged value still has a nontrivial bias.

The results above indicate that retransmissions can indeed
reduce biases in the converged value. However, real-life
wireless networks have long links with low PRR ([26]) and
thus require a large number of retransmissions to ameliorate
the effects of packet losses. Doing so however increases
the time necessary to complete each consensus iteration.
For example, each iteration in Figure 1(b) takes at least 20
times longer than one iteration in Figure 1(a). Therefore,
the total convergence time ends up significantly prolonged
in Figure 1(b), despite the fewer number of iterations. The
speed of convergence is critical for some type of applications,
such as control of unmanned vehicles and surveillance with a
camera network. Section V elaborates on convergence speed.

IV. CORRECTIVE CONSENSUS

Notice that (2) can be written as

xi(t+ 1) = xi(t) +

N∑
j=1

Wij(t)
(
xj(t)− xi(t)

)
, xi(0) = zi,

(5)
therefore we can define a new set of variables φij(t) as

φij(t+1) = φij(t)+Wij(t)
(
xj(t)−xi(t)

)
, φij(0) = 0. (6)

It can be seen that on each node i, the auxiliary variable
φij represents the amount of change that node i has made
to its state variable xi(t) due to neighbor j. Also, note that
keeping φij and updating it according to (6) do not need
any additional message exchange because the nodes already
execute (5) at every iteration.

If node i and j always take the same action, as explained
in Section III-B, then the changes they make should be
symmetric, i.e., φij = −φji. Therefore, it is natural to define
a new set of variables ∆ij(t) = φij(t) + φji(t), whereas
∆ij(t) represents the amount of bias (in the sum of the states)
that has accumulated on both directions of the (i, j) link.
Note that from (5) and (6) we have the interesting property
that

xi(t) = xi(0) +
∑
j∈Ni

φij(t), (7)

from which it follows that∑N−1
i=1

∑N
j=i+1 ∆ij(t) = 1Tx(t)− 1Tx(0). (8)

Therefore, one straightforward approach for eliminating
the consensus error is to first run consensus according to (5)
until x = α1 and then remove the bias by

α← α− 1
N

∑N−1
i=1

∑N
j=i+1 ∆ij . (9)

Unfortunately, (9) requires each node to know
1
N

∑N−1
i=1

∑N
j=i+1 ∆ij , which is a consensus problem

by itself. Note that φij(t) is locally stored at node i, and
calculating ∆ij(t) requires nodes i and j to exchange φij(t)
and φji(t).

Instead of removing the bias in one step, which is unre-
alistic, nodes should reduce the error in a distributed and
iterative manner: each node i corrects its own state value.
Specifically, node i collects φji (j ∈ Ni) from its neighbors
to calculate the ∆ij’s. Then node i adjusts its state variable
xi(t) using the ∆ij’s, thereby accounting for the errors
accumulated on its direct (1-hop) links. After this correction,
nodes resume the standard consensus shown in (5) while
periodically performing the corrective step described above.

In summary, there are two types of iterations in corrective
consensus: Standard and Corrective iterations.

(1) During a standard iteration, nodes exchange state
values in a best-effort manner and update the values in accor-
dance with (5). Each node performs up to n transmissions
to deliver its state variables (i.e., the node performs up to
n − 1 retransmissions). In addition, each node also updates
the φij’s according to (6).

(2) During a corrective iteration, nodes exchange φij’s to
calculate the ∆ij’s and use them to adjust their state variables
xi’s and auxiliary variables φij’s. Each node attempts up to
m transmissions to deliver the φij’s.

Corrective consensus starts with the standard iterations and
after every k consecutive standard iterations, one corrective
iteration takes place as follows

xi(k + 1) = xi(k)−
N∑
j=1

∆ij(k)/2 (10)

φij(k + 1) = φij(k)−∆ij(k)/2 (11)

0 50 100 150 200 250 300 350
−5

−4

−3

−2

−1

0

1

2

3

4

5

Iteration

S
ta

te
 V

al
ue

s

(a) Standard consensus without any retransmissions.

0 10 20 30 40 50 60
−5

−4

−3

−2

−1

0

1

2

3

4

5

Iteration

S
ta

te
 V

al
ue

s

(b) Each node performs up to 20 retransmissions when necessary.

Fig. 1. Running consensus on a 10-node ring topology in which all links have PRR of 20% and the sum of all initial state values is equal to zero. In
both cases, consensus converges to biased estimates (1.12 and -0.34 respectively).

Overall, corrective consensus iterates as follows

xi(t+ 1) =

xi(t)−

1

2

N∑
j=1

∆ij(t) if t = l(k + 1)− 1

xi(t) +
N∑
j=1

Wij(t)
(
xj(t)− xi(t)

)
otherwise

φij(t+ 1) =

φij(t)−
1

2
∆ij(t) if t = l(k + 1)− 1

φij(t) +Wij(t)(xj(t)− xi(t)) otherwise

(12)

where l = 1, 2, 3, · · · .
Notice that similar to the xi’s, the φij’s can be delivered

asymmetrically (despite the m transmissions) due to packet
losses. Nevertheless, for ease of exposition we assume for
now that the φij’s are reliably delivered and remove this
assumption in Section IV-C. It follows from this assumption
that ∆ij(l(k + 1)) = 0, ∀i, j, l.

Figure 2 shows two examples of the corrective consensus
algorithm, in a 10-node ring topology for which all links have
PRR of 20%. The average of the initial state values is zero.
Figure 2(a) uses k = 149, while Figure 2(b) uses k = 24. In
Figure 2(a) the states converge to a biased value during the k
standard iterations and the biases are then eliminated during
each corrective iteration. After two corrective iterations, the
state values converge to the correct average of the initial
states. In Figure 2(b) k is not large enough for the states
to converge within each k standard iterations. Therefore, the
state value curves appear to be much smoother. It is also
evident from Figure 2(a) that selecting an overly large k can
lead to unnecessary iterations, which waste resources and
delay convergence.

A. Basic Properties
Based on the previous discussion, it is easy to see that

x(k + 1) = x(k)− 1

2

∑N
j=1 ∆1j(k)

...∑N
j=1 ∆Nj(k)

= x(0) +

∑N
j=1 φ1j(k)

...∑N
j=1 φNj(k)

− 1

2

∑N
j=1 φ1j(k) + φj1(k)

...∑N
j=1 φNj(k) + φjN (k)

= x(0) +
1

2

∑N
j=1 φ1j(k)− φj1(k)

...∑N
j=1 φNj(k)− φjN (k)

= x(0) +

1

2

∑
1≤j≤N
0≤s<k

 (W1j(s) +Wj1(s))(xj(s)− x1(s))
...

(WNj(s) +WjN (s))(xj(s)− xN (s))

= x(0) +

1

2

k−1∑
s=0

[
W (s) +WT (s)

− diag
((
W (s) +WT (s)

)
1
)]
M(s)x(0)

(13)

where

M(s) =

{∏s−1
u=0W (u) s ≥ 1

I s = 0
(14)

and note that M(s)x(0) = x(s).
Let us define

P (u) = I +
1

2

(u+1)(k+1)−2∑
s=u(k+1)

[
W (s) +WT (s)

− diag
((
W (s) +WT (s)

)
1
)]
M(s)

(15)

and it follows from ∆ij(u(k + 1)) = 0 that

x
(
(k + 1)(u+ 1)

)
= P (u)x

(
(k + 1)u

)
(16)

Theorem 1. P (u) has the following properties
1) P (u)1 = 1.
2) 1TP (u) = 1T .
3) E(P (u)) = (E(W))k.

Proof. 1) and 2) are easily verifiable. To show 3), note that
W (s) and M(s) are independent, E(W (s)) = E

(
WT (s)

)
=

E(W) and E(W)1 = 1.

As a direct result, we have

E
(
x
(
(k + 1)u

))
= (E(W))kux(0) (17)

which indicates that the expectation of the state values after
each corrective iteration will converge to 1z because E(W)
is symmetric and |λ2(E(W))| < 1 (cf. §III-A).

0 50 100 150 200 250 300 350 400
−4

−2

0

2

4

6

Iteration

S
ta

te
 V

al
ue

s

(a) k = 149.

0 20 40 60 80 100 120 140 160

−5

−4

−3

−2

−1

0

1

2

3

4

Iteration

S
ta

te
 V

al
ue

s

(b) k = 24.

Fig. 2. Two examples of corrective consensus. (a) When k is large, state values almost converge before the corrective iterations. After two corrective
iterations, state values reach the average of the initial measurements. (b) When k is small, variations across state values are still fairly large when corrective
iterations take place. In both cases corrective consensus converges to the correct average value.

B. Convergence Analysis

We start with the observation that if (12) converges to
a single point, then the converged point has to satisfy two
conditions: x = z1 and ∆ij = 0,∀i, j. Next, it suffices
to show that (12) will converge to a single point, which is
equivalent to proving x(t)− 11Tx(t)/N → 0.

Define
x̃(t) = x(t)− 1

N
11Tx(t) (18)

and our goal is to show that the L2-norm ‖x̃(t)‖ → 0.

Theorem 2. After k consecutive standard iterations, we have

E
(∥∥x̃((k + 1)u− 1

)∥∥) ≤ λ2kE(∥∥x̃((k + 1)(u− 1)
)∥∥)

where λ2 = E
(
|λ2(W (t))|

)
and u = 1, 2, 3, · · · .

Proof. ∀t 6= (k + 1)u− 1, u = 1, 2, · · · , we have

x(t+ 1)− 1

N
11Tx(t) = W (t)

(
x(t)− 1

N
11Tx(t)

)
because W (t)1 = 1, ∀t ≥ 0. Therefore, we have

‖x̃(t+ 1)‖ ≤ ‖x(t+ 1)− 1

N
11Tx(t)‖ ≤ |λ2(W (t))|‖x̃(t)‖

Taking expectations on both sides of the inequality leads to

E(‖x̃(t+ 1)‖) ≤ E
(
|λ2(W (t))|

)
E(‖x̃(t)‖) = λ2E(‖x̃(t)‖)

Therefore, for k consecutive standard iterations

E
(∥∥x̃((k + 1)u− 1

)∥∥) ≤ λ2kE(∥∥x̃((k + 1)(u− 1)
)∥∥)

Theorem 2 shows that ‖x̃(t)‖ decreases during the stan-
dard iterations. However, it is easy to verify that ‖x̃(t)‖
might increase in a corrective iteration. Therefore, we will
focus on the state values immediately after each corrective
iteration. Denote y(u) = x

(
(k+1)u

)
, then we are interested

in the sequence of ‖ỹ(u)‖. Here we also denote ỹ(u) =
y(u)− 1

N 11T y(u).

Theorem 3.

E
(
‖ỹ(u)‖

)
≤

(
λ2
k

+
1

2
ε
√

2p̃N
1− λ2

k

1− λ2

)u
‖ỹ(0)‖

where p = arg min
r∈{p̂ij}

|r−0.5|. We denote p̃ as a shorthand for

2(p− p2) and note that 0 ≤ p̃ ≤ 0.5.

Proof. Proof is omitted in the interest of space, and is
available in [3].

Define c =
(
λ2
k

+ 1
2ε
√

2p̃N 1−λ2
k

1−λ2

)
, and c is the critical

value that determines the speed of convergence.

Theorem 4. ‖ỹ(u)‖ almost surely converges to zero if c < 1.

Proof. By Markov’s inequality, we have ∀δ > 0

lim
t→∞

∞∑
i=t

P (‖ỹ(i)‖ > δ) ≤ lim
t→∞

∞∑
i=t

E
(
‖ỹ(i)‖

)
δ

≤ lim
t→∞

∞∑
i=t

‖ỹ(0)‖ci

δ
=
‖ỹ(0)‖
δ(1− c)

lim
t→∞

ct = 0

Now, the question is whether c will be smaller than 1. The
value of c is collectively controlled by ε, λ2, p̃ and k. Here
p̃ depends on the p̂ij’s only. λ2 depends on the expected
topology E(W), the p̂ij’s, and ε.

Theorem 5. Critical value c can always be made less than
one by employing retransmissions during standard iterations.

Proof. First, λ2 < 1 if G is connected. As a result, λ2
k

goes to 0 as k increases, whereas 1−λ2
k

1−λ2
in the second

term is upper bounded by 1
1−λ2

. Second, p̃ can be made
arbitrarily close to 0 by increasing n, which is the number
of transmissions in each standard iteration.

C. Unreliable Exchange of φij’s
In this section we consider the case that φij’s can be lost,

i.e., ∆ij

(
(k + 1)u

)
may be nonzero for u = 1, 2, 3, · · · . As

a consequence, the nonzero ∆ij values will propagate to the
standard iterations that follow. Therefore, the results obtained
from Theorem 3 are not directly applicable.

First, we need to define a set of variables indicating the
reception status of φij :

vij(u) =

1 if node i receives φji from node j

at the u-th corrective iteration
0 otherwise

(19)

0 50 100 150 200 250 300
−1

0

1

2

3

4

Iteration

S
um

 o
f t

he
 S

ta
te

 V
al

ue
s

(a) φij ’s are reliably delivered in corrective iterations.

0 50 100 150 200 250 300 350
−1

−0.5

0

0.5

1

1.5

Iteration

S
um

 o
f t

he
 S

ta
te

 V
al

ue
s

(b) φij ’s can be lost in corrective iterations.

Fig. 3. Sum of the state values when running corrective consensus in a 10-node ring topology in which all links have PRR of 80%. k = 49 in both
cases. (a) The sum of the state values is zero during each corrective iteration. When the φij ’s are not reliably exchanged in (b) the sum is nonzero even
during the corrective iterations (e.g., the 50th, 100th and 150th iterations). However, both cases eventually converge to the correct value.

We note here that vij(u) is a random variable whose
distribution depends on pij and the number of transmissions.
For example, vij(u) is always 1 if pij = 1, because node i
receives every packet from j. We denote qij = P (vij(u) =
1), ∀u. qij = 1 − (1 − pij)

m, where m is the maximum
number of transmissions allowed in each corrective iteration.

Next, we can rewrite the corrective consensus scheme as

xi(t+ 1) =

xi(t)−

1

2

N∑
j=1

∆ij(t)vij(l) t = l(k + 1)− 1

xi(t) +

N∑
j=1

Wij(t)
(
xj(t)− xi(t)

)
otherwise

φij(t+ 1) =

φij(t)−
1

2
∆ij(t)vij(l) t = l(k + 1)− 1

φij(t) +Wij(t)(xj(t)− xi(t)) otherwise

(20)

where l = 1, 2, 3, · · · .
Figure 3 plots the sum of the state values when running

corrective consensus, with the sum of the initial measure-
ments being zero. Figure 3(a) assumes the φij’s can always
be delivered and therefore the sum is always zero in every
corrective iteration. On the other hand, φij’s can be lost in
Figure 3(b) and as a result each corrective iteration is not
always able to reduce all the bias. In both cases the sums
eventually converge to the correct value.

Theorem 6. Define q = min{qij : qij > 0}. If there exists b
such that c ≤ b < 1 and

√
(1− q)(1− q/2) ≤ b(b−c)

2b−c , then
we have E

(
‖x̃((k + 1)u)‖

)
≤ cbu−1‖x̃(0)‖ for u ≥ 1.

Proof. The proof can be done by mathematical induction. It
is omitted in the interest of space and is available in [3].

Theorem 7. If E
(
‖x̃((k + 1)u)‖

)
≤ cbu−1‖x̃(0)‖ with c ≤

b < 1, then ‖x̃((k + 1)u)‖ almost surely converges to zero.

Proof. Proof is similar to the one used in Theorem 4.

Theorem 8. By tuning the number of retransmissions used
during the corrective iterations, it is always possible to
satisfy

√
(1− q)(1− q/2) ≤ b(b−c)

2b−c .

Proof. Define p = min{pij : pij > 0}, then q = 1 − (1 −
p)m. By increasing m, one can make

√
(1− q)(1− q/2)

arbitrarily close to 0. Therefore, ∀b such that c < b < 1, ∃
m such that

√
(1− q)(1− q/2) ≤ b(b−c)

2b−c .

Notice that when q = 1 (i.e., the φij’s are never lost),
we can choose b such that b = c and the results derived
in this section naturally degenerate to the ones presented in
Section IV-B.

We also note that while the convergence conditions derived
in this section are sufficient, it is not clear whether they are
also necessary. Nevertheless, the simulation results in the
next section suggest that the corrective consensus algorithms
always converge to the correct value when G is connected.
Furthermore, the corrective consensus algorithms in the next
section all use n = 1, meaning that the nodes simply broad-
cast their state values once during each standard iteration.

V. EVALUATION

In what follows, we first define convergence and then
evaluate the performance of the proposed corrective con-
sensus algorithm using convergence error and speed as the
evaluation metrics.

For the standard consensus, we declare that the algorithm
converges during the t-th iteration if the non-increasing
quantity ‖x̃(t)‖ is less than a threshold κ1. For the corrective
consensus, however, this quantity could increase during a
corrective iteration. Therefore, we add one more condition:
| 1N 1Tx(t)− z| < κ2, where κ2 is another predefined thresh-
old. We declare that corrective consensus reaches conver-
gence at the t-th iteration if both conditions are satisfied.

A. Convergence Error

Let the t̂-th iteration be the first iteration that the con-
vergence condition(s) are met. Then, our first metric is the
convergence error, defined as e = | 1N 1Tx(t̂)− z|.

Figure 4 compares the convergence errors for different
consensus algorithms that ran in a 10-node ring topology
with PRR=20% for every link. The initial states are within
[−10, 10] and z = 0, κ1 = κ2 = 0.001. As described in
Section III-B, increasing the number of transmissions n can
reduce the error of the standard consensus algorithm. When
n = 50 the standard consensus has comparable error values

0

0.5

1

1.5

2

1 2 3 4 5

C
on

ve
rg

en
ce

 E
rr

or

Fig. 4. Box-and-whisker diagram of the convergence errors for standard
consensus and corrective consensus. Columns 1-4 are standard consensus
with n = 1, 10, 20, 50 transmissions per iteration, respectively; column 5
is corrective consensus with n = 1, m = 10 and k = 25. Each column is
generated by running 1000 repetitions of experiments.

to the corrective consensus, with the average error being in
the order of 10−5 for both algorithms. We note that unlike
standard consensus which does not guarantee convergence to
z, the convergence error of corrective consensus will reach
zero, if not stopped by the convergence conditions.

B. Convergence Speed

Convergence speed can be measured in terms of num-
ber of iterations. Generally, fewer iterations translate to
shorter time. Nevertheless, as mentioned in Section III-B,
the duration of each iteration varies based on the number of
retransmissions performed.

In standard consensus, a node only needs to transmit its
state value to its neighbors. Due to the nature of wireless
communication, the most efficient approach is to broadcast
the state value as a packet, allowing all neighbors a chance
to receive the update. However, when nodes start to employ
the retransmission scheme, broadcasting leads to the ack
implosion problem (i.e., the neighbors’ acknowledgments
can collide at the origin). Not requiring neighbors to send ac-
knowledgments removes this problem. In that case however
a node has to blindly broadcast n times in every iteration,
regardless of whether the neighbors have received the update.
The problem becomes worse when n is large, which is likely
the case in real life wireless networks due to the existence
of long links with low PRR [26].

For this reason, we decide that when retransmissions are
enabled, a node unicasts its state value to each of its neigh-
bors. In turn, every neighbor replies with an acknowledge-
ment packet upon the reception of the state value. The node
attempts up to n times to deliver its state value to a neighbor.
Also due to the broadcast nature of wireless communication,
the other neighbors can overhear the unicast packet and take
it as the state value. Therefore, each node actually has in
average more than n opportunities of receiving the packet.

Without loss of generality, we assume that the duration of
one iteration is τ = nαβ for n > 1. Here n is the number
of transmissions per iteration, α reflects the network density
(i.e., the average number of neighbors) and β represents the
transmission latency.

In the corrective iteration of the corrective consensus,
each node needs to send the φij’s to its neighbors. Because
generally φij’s are not equal, the node needs to send different

100

200

300

400

1 2 3 4 5

C
on

ve
rg

en
ce

 It
er

at
io

ns

Fig. 5. Number of iterations until convergence. Columns 1-5 are the same
as Figure 4.

0

2000

4000

6000

1 2 3 4 5

C
on

ve
rg

en
ce

 T
im

e

Fig. 6. Convergence time. y-axis is proportional to the actual time. Columns
1-5 are the same as Figure 4.

packets to its neighbors and it does so by unicast. Therefore,
the time of one corrective iteration is τ = mαβ in this case,
with m being the number of allowed transmissions to deliver
each φij . In practice, the node could potentially put all the
φij’s in one packet and broadcast, if the network density
is low. Nevertheless, we do not consider this optimization in
the above analysis as it belongs to the implementation details
and also depends upon network conditions.

Doing retransmissions can dramatically increase the du-
ration of each iteration. Corrective consensus amortizes the
overhead related to retransmissions by performing them once
every k standard iterations. Note that in each of the k
standard iterations, the corrective consensus could simply
broadcast the state value once.

Figure 5 presents the number of iterations necessary for the
different consensus algorithms to converge, while Figure 6
shows the actual length of time necessary for the algorithms
to converge. The network configurations and parameters are
identical to those in Figure 4. The results from Figure 5
are somewhat misleading, suggesting that standard consen-
sus with retransmissions requires fewer iterations and is
‘faster’ to converge. However, it is evident from Figure 6
that the actual convergence time for standard consensus
with retransmissions is significantly longer than the time
for corrective consensus, confirming the amortization effect
of corrective consensus. In other words, each iteration in
corrective consensus is much cheaper (i.e., shorter) than
standard consensus with retransmissions.

Combining the results from Figure 4, we know that the
standard consensus requires n = 50 transmissions to achieve
the same error level with corrective consensus. Therefore,
one can see from Figure 6 that achieving the same error level
by retransmissions increases the execution time by more than
tenfold. Last but not least, by comparing columns 1 and 5
in Figure 6, one can see that the overhead introduced by the

n = 1 n = 10 n = 20 n = 50 n = 100 corrective
error 0.1153 0.0407 0.0386 0.0222 0.0208 4.6e-4

TABLE I
CONVERGENCE ERROR IN A 10-NODE RANDOM TOPOLOGY IN WHICH

LONG LINKS WITH LOW PRR EXIST.

corrective iterations is marginal compared to that of using
even a modest number of retransmissions.

C. Random Topology

Table I lists the performance of various consensus al-
gorithms in a topology formed by randomly placing 10
nodes within a rectangular area. The PRR between each
pair of nodes is determined by the log-normal path loss
model [16] with parameters experimentally derived from
an environmental monitoring sensor network deployed in a
forest and the PRR-SNR curve of the 802.15.4 compliant
CC2420 radio [23]. In this topology there exist long links
that have low PRR. Specifically, several links have PRR
below 10%, and the lowest is 3.4%. As a consequence, doing
retransmissions alone is hard to eliminate the convergence
error. Nevertheless, corrective consensus is able to reduce
the error to a very low level. Once again we note that the
error is due to the use of the κ1 and κ2 thresholds and the
error eventually reduces to zero as the corrective consensus
algorithm continues to execute.

VI. CONCLUSION

Consensus algorithms constitute a valuable theoretical tool
for computing scalar averages across networks of intercon-
nected devices. Unfortunately, existing solutions are imprac-
tical when applied to wireless networks that naturally exhibit
asymmetric packet losses [26].

In this paper we present a novel corrective consensus
algorithm that enables the practical use of consensus in real-
life sensor networks. Through the addition of new variables
at each node and new corrective iterations, we prove that
the proposed method converges almost surely to the correct
average despite random and asymmetric link losses. Fur-
thermore, we compare the performance of corrective and
standard consensus algorithms both in terms of accuracy of
the results and convergence speed.

Selecting the optimal interval k for corrective iterations is
part of our future work. It is also interesting to investigate
the behavior of corrective consensus when the pij = pji
assumption is removed.

REFERENCES

[1] E. A. Akkoyunlu, K. Ekanadham, and R. V. Huber. Some constraints
and tradeoffs in the design of network communications. In SOSP
’75: Proceedings of the fifth ACM symposium on Operating systems
principles, pages 67–74, New York, NY, USA, 1975. ACM.

[2] S. Barbarossa and G. Scutari. Decentralized maximum-likelihood esti-
mation for sensor networks composed of nonlinearly coupled dynam-
ical systems. Signal Processing, IEEE Transactions on, 55(7):3456–
3470, 2007.

[3] Y. Chen, R. Tron, A. Terzis, and R. Vidal. On corrective consensus:
Converging to the exact average. Technical report, Computer Science
Department, Johns Hopkins University, Mar 2010.

[4] F. Fagnani and S. Zampieri. Average consensus with packet drop
communication. SIAM J. Control Optim., 48(1):102–133, 2009.

[5] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge Univ.
Press, 1987.

[6] Z. Jin, V. Gupta, and R. M. Murray. State estimation over packet
dropping networks using multiple description coding. Automatica,
42(9):1441–1452, 2006.

[7] S. Kar and J. M. F. Moura. Distributed consensus algorithms in sensor
networks with imperfect communication: link failures and channel
noise. Trans. Sig. Proc., 57(1):355–369, 2009.

[8] D. Kingston and R. Beard. Discrete-time average-consensus under
switching network topologies. In American Control Conference, page
6 pp., june 2006.

[9] T. Li and J.-F. Zhang. Consensus conditions of multi-agent systems
with time-varying topologies and stochastic communication noises.
Automatic Control, IEEE Transactions on, 55(9), 2010.

[10] M. Mehyar, D. Spanos, J. Pongsajapan, S. Low, and R. Murray.
Asynchronous distributed averaging on communication networks.
IEEE/ACM Transactions on Networking, 15(3):512–520, 2007.

[11] R. Olfati-Saber. Distributed kalman filtering for sensor networks. In
Decision and Control, 2007 46th IEEE Conference on, pages 5492–
5498, Dec. 2007.

[12] R. Olfati-Saber, J. Fax, and R. Murray. Consensus and cooperation in
networked multi-agent systems. Proceedings of the IEEE, 95(1):215–
233, Jan. 2007.

[13] R. Olfati-saber, E. Franco, E. Frazzoli, and J. S. Shamma. Belief
consensus and distributed hypothesis testing in sensor networks. In
Network Embedded Sensing and Control. (Proceedings of NESC’05
Worskhop), volume 331 of Lecture Notes in Control and Information
Sciences, pages 169–182. Springer Verlag, 2006.

[14] R. Olfati-Saber and R. Murray. Consensus problems in networks of
agents with switching topology and time-delays. Automatic Control,
IEEE Transactions on, 49(9):1520–1533, Sept. 2004.

[15] R. Rajagopal and M. J. Wainwright. Network-based consensus
averaging with general noisy channels. Technical report, Department
of Statistics, University of California, Berkeley, May 2008.

[16] T. S. Rappaport. Wireless Communications: Principles & Practices.
Prentice Hall, 1996.

[17] W. Ren, R. W. Beard, and E. M. Atkins. Information consensus in
multivehicle cooperative control. In IEEE Control Systems Magazine,
2007.

[18] I. Schizas, G. Giannakis, S. Roumeliotis, and A. Ribeiro. Consensus
in ad hoc wsns with noisy links—part ii: Distributed estimation and
smoothing of random signals. Signal Processing, IEEE Transactions
on, 56(4):1650–1666, April 2008.

[19] I. Schizas, A. Ribeiro, and G. Giannakis. Consensus in ad hoc
wsns with noisy links—part i: Distributed estimation of deterministic
signals. Signal Processing, IEEE Transactions on, 56(1):350–364, Jan.
2008.

[20] U. Schmid and C. Fetzer. Randomized asynchronous consensus
with imperfect communications. Reliable Distributed Systems, IEEE
Symposium on, 0:361, 2003.

[21] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan,
and S. S. Sastry. Kalman filtering with intermittent observations. IEEE
Transactions on Automatic Control, 49:1453–1464, 2004.

[22] A. Tahbaz-Salehi and A. Jadbabaie. On consensus over random
networks. In 44th Annu. Allerton Conf. Commun., Contr. Comput.,
pages 1315–1321, 2006.

[23] Texas Instruments. CC2420: 2.4 GHz IEEE 802.15.4 / ZigBee-ready
RF Transceiver. Available at Available at http://www.ti.com/
lit/gpn/cc2420, 2006.

[24] L. Xiao and S. Boyd. Fast linear iterations for distributed averaging.
In Decision and Control, 2003. Proceedings. 42nd IEEE Conference
on, volume 5, pages 4997–5002 Vol.5, Dec. 2003.

[25] L. Xiao, S. Boyd, and S. Lall. A scheme for robust distributed sensor
fusion based on average consensus. In IPSN ’05: Proceedings of
the 4th international symposium on Information processing in sensor
networks, page 9, Piscataway, NJ, USA, 2005. IEEE Press.

[26] J. Zhao and R. Govindan. Understanding Packet Delivery Performance
In Dense Wireless Sensor Networks. In Proceedings of the ACM
Sensys, Nov. 2003.

