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Abstract
Interactive image segmentation traditionally involves the

use of algorithms such as Graph Cuts or Random Walker.
Common concerns with using Graph Cuts are metrication
artifacts (blockiness) and the shrinking bias (bias towards
shorter boundaries). The Random Walker avoids these
problems, but suffers from the proximity bias (sensitivity to
location of pixels labeled by the user). In this work, we
introduce a new family of segmentation algorithms that in-
cludes Graph Cuts and Random Walker as special cases.
We explore image segmentation using continuous-valued
Markov Random Fields (MRFs) with probability distribu-
tions following the p-norm of the difference between con-
figurations of neighboring sites. For p=1 these MRFs may
be interpreted as the standard binary MRF used by Graph
Cuts, while for p=2 these MRFs may be viewed as Gaussian
MRFs employed by the Random Walker algorithm. By al-
lowing the probability distribution for neighboring sites to
take any arbitrary p-norm (p ≥ 1), we pave the path for hy-
brid extensions of these algorithms. Experiments show that
the use of a fractional p (1 < p < 2) can be used to resolve
the aforementioned drawbacks of these algorithms.

1. Introduction
Object segmentation is an important part of scene un-

derstanding and interpretation, which involves finding the
regions of the image that correspond to an object. Alterna-
tively, it can be posed as the problem of finding the bound-
aries of the object in the image. Object segmentation is an
intrinsically ill-posed problem, because a scene could con-
tain several objects. Hence, determining what constitutes an
object of interest could be ambigious. Such ambiguities can
be resolved by allowing the user to interact with the algo-
rithm and provide information about the object of interest.

In this work, we restrict our analysis to a subset of inter-
active segmentation algorithms that input a partial labeling
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of the pixels and produce a complete labeling of the pix-
els. More specifically, we consider seeded algorithms (i.e.,
a “scribble interface”) that input a set of pixels as belonging
to object and a disjoint set of pixels as belonging to back-
ground. The goal of the algorithm is to output a labeling of
every pixel into one of these two categories.
Prior work. A comprehensive review of the literature on
seeded segmentation algorithms is beyond the scope of this
paper. We will focus our review on the relevant, recent
seeded segmentation algorithms of Graph Cuts, Random
Walker and shortest path. These methods typically con-
struct a graph such that each node in the graph corresponds
to a pixel in the image. Neighboring nodes are connected
by edges that are assigned non-negative weights. These
weights are decreasing functions of the difference between
the intensities, colors or other features of the nodes (pixels)
connected by the edges. The labels are then estimated by
minimizing an energy function defined on this graph, sub-
ject to the constraints enforced by the scribble.

The Graph Cuts algorithm initially introduced in [5], es-
timates the labeling by finding the minimum cut between
the foreground and background seeds via a maximum flow
computation. Two concerns in the literature about the orig-
inal Graph Cuts algorithm are metrication error (blocki-
ness) and the shrinking bias (bias towards shorter bound-
aries). Subsequent work has addressed the metrication error
[6, 3, 22] and the shrinking bias [3, 23], but at the expense
of additional parameters, memory or computation.

The Random Walker algorithm introduced in [10], as-
signs each unlabeled pixel to the seed for which there is a
minimum diffusion distance. This segmentation principle
has also been interpreted as an interactive version of nor-
malized cuts [18, 11]. The benefit of using the diffusion
distance for labeling is that weak or noisy boundaries do not
cause bleeding of the segmentation. Also, the use of this
distance does not result in a shrinking bias. However, the
negative aspect in comparison to Graph Cuts is that the seg-
mentation boundary is more strongly affected by the seed
location [20]. We term this effect as the proximity bias.



Shortest path algorithms assigns each pixel to the fore-
ground if there is a shorter path on the weighted graph from
that pixel to a foreground seed than to any background seed.
This approach was recently popularized by [4], but variants
of this idea have appeared in several sources [8, 1, 2]. The
primary advantage of the shortest paths algorithm is speed
and prevention of a shrinking bias. However, the disad-
vantage of such methods is that a single good path is suf-
ficient for connectivity. Consequently, as shown in [20],
these algorithms exhibit much stronger proximity bias than
the Random Walker and Graph Cuts, and are more likely
to leak through weak boundaries. Shortest path algorithms
also exhibit metrication artifacts on a 4-connected lattice.

The aforementioned segmentation strategies were re-
cently shown to be special cases of a single more general
algorithm [20]. This general algorithm attempts to find a
potential function with a minimum spatial gradient, subject
to Dirichlet boundary conditions given at the seeds. The
algorithm proceeds by minimizing the p-norm of the gra-
dient and it was shown that p = 1 gives the Graph Cuts
algorithm, p = 2 gives the Random Walker algorithm and
p = ∞ gives the shortest path algorithm. In [20], it was
assumed that each of these three values for p could be mini-
mized using specialized algorithms (e.g., max-flow, linear
equation solver and Dijsktra’s algorithm). This assump-
tion precluded the ability to merge algorithms or employ
the generalized algorithm with a p value not equal to 1, 2
or ∞, since no algorithm is given for minimizing an arbi-
trary p-norm. However, when p ≥ 1, the objective energy
is convex and we therefore expect to find a global optimum.
Paper contributions. In this paper, we explore minimiz-
ing the cost function of [20] for 1 < p < 2, to see if an
amenable trade off can be achieved between Graph Cuts
and the Random Walker. We focus on these two algorithms
since their properties complement each other, as discussed
above. Specifically, we propose a new cost function for
interactive image segmentation and an efficient solver for
minimizing this function. The proposed cost function gen-
eralizes that in [20] by allowing the use of different norms
for the spatial gradients at different nodes in the constructed
graph. Hence, our framework admits hybrid combinations
of algorithms such as Graph Cuts and the Random Walker.

We use Iterative Reweighted Least Squares (IRLS) tech-
niques to find the global minimizer of our proposed cost
function by solving a series of `2 optimizations. We show
that IRLS gives an elegant yet effective solution for image
segmentation. Consequently, we provide new solvers for
the algorithms of [5] and [20]. Finally, we present experi-
ments on synthetic images and an extensive database of 50
real images. We illustrate the advantage of our proposed
framework, and show that use of a hybrid algorithm allows
us to keep the benefits of both algorithms while simultane-
ously addressing their individual drawbacks.

2. Continuous Valued MRFs for Image Seg-
mentation

In this section, we formalize the construction of the com-
binatorial graph and define an energy function on this graph,
the minimization of which gives us the required segmenta-
tion. Finally, we show how our framework corresponds to
finding the MAP estimate of a continuous valued MRF.

We define a weighted undirected combinatorial graph
G as a pair G = (V, E) with nodes i ∈ V and edges
eij ∈ E . An edge that spans two vertices i and j is de-
noted by eij . We assign to each edge eij a non-negative
value wij that is referred to as its weight and we assume
that ∀eij ∈E : wij =wji. The neighborhood of a node i is
given by all the nodes that it shares an edge with and is de-
noted by Ni. The nodes on the graph typically correspond
to pixels in the image and we employ a 4 connected grid
in all our experiments. Also, we focus on intensity based
segmentation and consequently define the edge weights as
wij = exp(−β‖Ii − Ij‖2), where β > 0 and Ii is the
grayscale intensity or RGB color of the node i. One can
also use other suitable node-specific image features in order
to to define the edge weights.

Our algorithm requires that the foreground/background
seed nodes be given interactively or automatically. The set
M⊂ V contains the locations of the nodes marked as seeds
and the set U ⊂ V contains the locations of the unmarked
nodes. We split the setM into the sets O⊂M and B⊂M
that contain the locations of the seeds for the object and the
background, respectively. By construction, (a)M∩U =∅,
(b)M∪U=V , (c) O ∩ B=∅, and (d) O ∪ B=M.

Each node i ∈ V is associated with a membership
xi ∈ [0, 1]. The nodes labelled by the user are assigned
membership as ∀i ∈ O, xi = 1 and ∀i ∈ B, xi = 0. For
the sake of convenience, we define a membership vector
x ∈ R|V|, whose ith entry is given by xi. We also define
vectors xU = {xi}i∈U and xM = {xi}i∈M that contain
the memberships of the unmarked nodes and the marked
nodes, respectively. Now, for the purpose of image seg-
mentation, we define an energy EP(x) on the graph G as

EP(x) =
∑

eij∈E
wij |xi − xj |pij , (1)

where ∀eij ∈ E , 1 ≤ pij < ∞ and P = {pij}. Note
that this energy function contains terms for pairwise inter-
action between nodes. However, unary terms can also be
accounted for by introducing auxiliary nodes in the graph
for the seed nodes and modeling the unary terms as pairwise
interactions with these auxiliary nodes. Now given EP(x),
we propose to estimate the memberships of the pixels as

x=argmin
x

EP(x)s.t. xi=1, if i∈O and xi=0, if i∈B.
(2)



Observe that if ∀eij ∈ E , pij = p ∈ [1,∞), the function
EP(x) reduces to the cost function proposed by [20]. Con-
sequently, our framework is a true generalization of [20],
where we allow different norms for different edges rather
than a common norm for all the edges1. Since we are con-
sidering the case of arbitrary p ≥ 1 values, we will refer to
the algorithm that solves (2) as the p-brush algorithm.

It is useful to interpret the potential field produced by
the p-brush algorithm as the MAP estimate of a Markov
Random Field with continuous valued variables, which are
given by the memberships xi of the nodes in the graph. The
variables at the marked pixels are treated as observed vari-
ables such that ∀i ∈ O, xi = 1 and ∀i ∈ B, xi = 0 We
define the probability for any configuration x to be given as

p(x) =
1
Z

exp

− ∑
eij∈E

wij |xi − xj |pij
 , (3)

where Z is the partition constant. Since Z does not depend
on x, the MAP estimate of this MRF is given by (2). It is
interesting that Graph Cuts may now also be viewed as op-
timizing a continuous valued MRF, as opposed to the tradi-
tional view of minimization of a binary MRF [9, 5]. Also,
for pij = 2, our formulation corresponds to optimizing a
Gaussian MRF [21], as done by the Random Walker.

Now, note that for the MAP estimate, the membership xi
of an unmarked node i ∈ U takes the value

xi = argmin
x

∑
j∈Ni

wij |x− xj |pij
 . (4)

This allows us to appreciate the relationship between vari-
ables at one node with the variables at neighboring nodes.
The fact that the configuration of a node is dependent only
on the configuration of the neighboring nodes, implies that
our formulation satisfies the Markovian property.

Now, if we assume that ∀eij , wij = 1 and pij = p then
the membership xi of an unmarked node i will take the p-
average of its neighbors. Specifically, when p = 0, 1, 2
or ∞, then xi will take the mode, median, mean or mini-
max value of its neighbors, respectively. If the weights are
nonuniform, then the weighted equivalents of these quan-
tities will be determined by each xi. The interpretation of
Graph Cuts, Random Walker and shortest paths in terms of
the metric average of the potential function of its neighbor
allows us to interpret the shrinking bias as the outlier re-
moval of the median (where seeds comprise the outliers)
and proximity bias by the oversmoothness of the mean and
minimax norms. Therefore, fractional values of p (such as
p = 1.5) may be interpreted as the use of a robust norm to
prevent oversmoothness while preventing the shrinking bias
by allowing the outliers (seeds) to have stronger influence.

1Note that in contrast to [20], we follow the notation of using pij for
the exponent in the term |xi − xj |pij , as opposed to q.

3. Properties of the Solutions
We note that by construction EP(x) is a convex contin-

uous function of x, since ∀eij ∈ E , pij ≥ 1. Therefore, any
solution x∗ of (2) must be a global minimizer of EP(x). In
this section, we characterize the nature of these minimizers.
Specifically, we generalize the maximum (minimum) prin-
ciple governing elliptical equations in physics to show that
x∗ must satisfy the property ∀i ∈ U , x∗i ∈ [0, 1].

Theorem 1 (Intermediate Value Theorem) Let x∗ be a
solution to the minimization problem in (2). The member-
ship x∗i of each unmarked node i ∈ U is bounded by the
maximum and minimum of the memberships x∗j of the neigh-
boring nodes j ∈ Ni.

Proof. We prove the result by contradiction. Assume that
for the given solution x∗, there exists an unmarked node
i ∈ U such that ∀j ∈ Ni, x∗i > x∗j . We define a new vector
y∗ ∈ R|V| as y∗k = x∗k, if k 6= i and y∗i = max

j∈Ni
xj . Now,

EP(y∗)−EP(x∗)=
∑
j∈Ni

wij
(
(y∗i −x∗j )pij−(x∗i−x∗j )pij

)
< 0,

since y∗i < x∗i and ∀j ∈ Ni, pij ≥ 1. This contradicts the
fact that x∗ is a global minimizer of EP(x), hence proving
that the value of x∗i is bounded above by the maximum of
the memberships x∗j of the neighboring nodes j ∈ Ni. By a
similar argument, we can prove the lower bound of x∗i .

Note that Theorem 1 provides local bounds on the mem-
bership of a node based on the memberships of the neigh-
boring nodes. However, Corollary 1 gives a more powerful
result which helps us determine global bounds on the mem-
berships of all the nodes in the graph.

Corollary 1 (Extremum Value Property) Let x∗ be a so-
lution to the minimization problem in (2). The membership
x∗i of each node i ∈ V satisfies the property:

∀i ∈ V, min
j∈M

x∗j ≤ x∗i ≤ max
j∈M

x∗j . (5)

Proof. Let us assume that the maximum of the member-
ships {x∗i } is achieved at an unmarked node j ∈ U , i.e.
∀i ∈ V, x∗j ≥ x∗i . We now use the following recursive con-
struction to sketch our proof.

1. Define a set M = {j}. This set will be updated recur-
sively to include the nodes i ∈ V that satisfy x∗i = x∗j .

2. Check if a marked node k is contained inM . The proof
is complete if k ∈M , for some k ∈M, since we have
shown that the maximum value of the memberships is
achieved at a marked node. If not, proceed to step 3.



3. Define a setNM as the neighborhood of all the nodes i
contained in M , i.e.NM = (∪i∈MNi)\M . There ex-
ists at least one node k ∈ NM such that x∗k = x∗j .
If not, then by an argument similar to the proof of
Theorem 1, we can construct a new vector y∗ from
x∗, such that ∀k ∈ M,y∗k = max

i∈NM
x∗i < x∗j . Then

EP(y∗) < EP(x∗) contradicts the hypothesis that x∗

is a global minimizer of the cost function EP(x).

4. Append the set M with the node k obtained from step
2 as M = M ∪ {k}, and go to step 2.

Note that since ∀eij ∈ E , wij > 0, we can find a path
between any pair of nodes in the graph defined using a 4-
connected neighborhood. Therefore, we are assured of that
fact that M ∩M 6= ∅ at some step of our described search
strategy. A negation of this statement would imply that the
search terminates in a setM ⊂ U that satisfies (a) (U\M)∩
NM = ∅, since otherwise an unmarked node from this set
would be appended in step 3, and (b) U ∩ NM = ∅, since
we assumed our search strategy terminated without finding
any marked node inM . These conditions imply that the sets
M and (U \M) ∪M are disconnected, contradicting the
fully connectedness hypothesis. Similarly, we can prove the
result for the minimum value of the memberships too.

Since by construction we have ∀i ∈ O, xi = 1 and
∀i ∈ B, xi = 0, we conclude from Corollary 1 that the
membership xi of each unmarked node i ∈ U takes values
in [0, 1]. As a result, the set of solutions for the potentials
at the unmarked nodes xU is [0, 1]|U| which is a compact
and convex set. This result coupled with the fact that the
energy function EP(x) is convex in x, allows us to adopt
any descent algorithm in order to estimate the minimizer
of EP(x). Since the estimated membership xi of each un-
marked node i ∈ U lies in [0, 1], we estimate the segmenta-
tion by placing a decision threshold at x = 0.5.

Now, we derive a result which will assist us in the con-
vergence analysis of our proposed iterative solver for x∗.

Theorem 2 (Right continuity in the norms P = {pij})
Define x∗P+ε as a minimizer of EP+ε(x), where
P + ε = {pij + ε}eij∈E , ε ≥ 0. Then x∗P+ε is right
continuous in the entries of P , i.e.

lim
ε→0

x∗P+ε = x∗P . (6)

Proof. By definition, we have that EP(x∗P) ≤ EP(x∗P+ε)
and EP+ε(x∗P+ε) ≤ EP+ε(x∗P). For the sake of notational
convenience, we use a∗ = x∗P and b∗ = x∗P+ε. Now, from
Corollary 1, we know that ∀i ∈ V, 0 ≤ a∗i ≤ 1. Therefore,
we conclude that ∀eij ∈ E , |a∗i − a∗j | ∈ [0, 1], and hence
∀ε ≥ 0,∀eij ∈ E , |a∗i − a∗j |pij+ε ≤ |a∗i − a∗j |pij . As a con-
sequence, we have the result that EP+ε(x∗P) ≤ EP(x∗P).

The above results give us the relationship

EP+ε(x∗P+ε) ≤ EP+ε(x∗P) ≤ EP(x∗P) ≤ EP(x∗P+ε). (7)

Note that the term EP+ε(x∗P+ε) − EP(x∗P+ε) =∑
eij∈E wij |b

∗
i −b∗j |pij (1−|b∗i −b∗j |ε) is non-negative as per

(7). In what follows, we attain an upper bound for this term,
by finding the upper bound of zp−zp+ε, p ≥ 1, ε ≥ 0 under
the constraint that z ≥ 0. In particular, we find a z∗ > 0 at
which the derivative of zp − zp+ε vanishes.

∂(zp − zp+ε)
∂z

∣∣
z=z∗

= pz∗p−1 − (p+ ε)z∗p+ε−1 = 0

=⇒ z∗ =
(

p

p+ ε

) 1
ε

∈ (0, 1).
(8)

It can be checked that the second derivative at z = z∗ is
negative, therefore establishing that zp − zp+ε attains its

maximum value of ε
p+ε

(
p
p+ε

) p
ε

< ε at z = z∗ (given by
(8)). This implies that 0 ≤ EP+ε(x∗P+ε) − EP(x∗P+ε) =∑

eij∈E wij [|b
∗
i − b∗j |pij − |b∗i − b∗j |p+ε] ≤ ε

∑
eij∈E wij . It

is important to observe that this is only a weak bound, but
suffices for the purpose of our proof.

Therefore as ε → 0, we have that(
EP+ε(x∗P+ε)− EP(x∗P+ε)

)
→ 0, and hence by (7),(

EP(x∗P+ε)− EP(x∗P+ε)
)
→ 0. Since EP(x) is continu-

ous in x, we conclude that as ε → 0,
(
x∗P+ε − x∗P

)
→ 0,

and hence the required result.

4. Energy Minimization Via IRLS
In this section, we propose our iterative solver for the

optimization problem of (2). We propose to use Iterative
Reweighted Least Squares techniques that have been em-
ployed traditionally to minimize energy cost functions sim-
ilar to EP when ∀eij ∈ E , pij = p ≥ 1. In what follows,
we outline the steps of our algorithm and then discuss the
convergence properties of the proposed algorithm.

Before we proceed, we formally define some terms that
shall be used in our algorithm. Given the weights {wij}
for a graph G, we define a weights matrix W ∈ R|V|×|V|,
whose (i, j) entry is given by wij if eij ∈ E and 0 oth-
erwise. The matrix W can be used to define a diagonal
matrix D ∈ R|V|×|V|, whose ith diagonal entry is given by∑|V|
j=1 wij . Finally, we define a Laplacian matrix L(W ) ∈

R|V|×|V| as L(W ) = D −W . Note that by construction of
L(W ), we have that for any vector x ∈ R|V|,x>L(W )x =∑

eij∈E wij(xi − xj)
2. Therefore, if ∀eij ∈ E , wij > 0,

then L(W ) is a positive-semi definite matrix with the only
null vector being the vector with all entries equal to 1. We
also decompose the matrix L(W ) into matrices such that

x>L(W )x =
[
xU xM

] [LU (W ) B(W )
B>(W ) LM (W )

] [
xU
xM

]
. (9)



Algorithm 1 (Numerical Scheme for Minimizing EP(x)).

1. Set n = 0 and choose a value α > 0.

2. Set the values of the potentials xM at the marked nodes
as xi = 1, if i ∈ O and xi = 0, if i ∈ B. Initialize
the values of the potentials at the unmarked nodes by
setting them to 0, i.e. x

(0)
U = 0.

3. Construct the weight matrix W (n) as

W
(n)
ij =


pijwij |x(n)

i − x(n)
j |pij−2 if eij ∈ E , x(n)

i 6= x
(n)
j ,

αpij−2 if eij ∈ E , xi = xj ,

0 otherwise.
(10)

4. Estimate x
(n+1)
U as the minimizer of x>L(W (n))x,

that is given by x
(n+1)
U =−L−1

U (W (n))B(W (n))xM

5. If |x(n+1)
U −x

(n)
U |>δ, update n=n+1and go to step 2.

6. Assign pixels i with potential x(n+1)
i > 0.5 to the ob-

ject, and the remaining to background.

Given these definitions, we propose to minimize EP(x)
subject to the user specified constraints by using Algo-
rithm 1. We shall now show that this iterative scheme de-
scends the energy function, therefore outlining a proof of
convergence. We separate our analysis into the cases (a)
∀eij ∈ E , pij > 1 and (b) ∀eij ∈ E , pij ≥ 1. The reason for
separating our analysis in this case is that for case (a), the
function EP(x) is differentiable and hence we can prove
that our algorithm follows a framework similar to Newton
descent. For the case (b), EP(x) might not be differen-
tiable. However, it is equivalent to the limit of the solutions
given by a series of several algorithms that descend EP(x).

Case (a): ∀eij ∈ E, pij > 1: Note that the gradient of
EP(x) exists and is given as

∂EP(x)
∂xU

= LU (W )xU +B(W )xM . (11)

Observe that the update vector at the nth step in Algo-
rithm 1 is∆x

(n)
U =x

(n+1)
U −x

(n)
U , which can be rewritten as

∆x
(n)
U = −L−1

U (W (n))B(W (n))xM − x
(n)
U

= −L−1
U (W (n))[LU (W (n))x(n)

U +B(W (n))xM ]

= −L−1
U (W (n))

∂EP(x(n))
∂xU

.

(12)

Also, since ∀eij ∈ E ,W (n)
ij > 0, we can conclude that

LU (W (n)) is a positive definite matrix [19]. Therefore,
∆x

(n)
U is a descent direction at xU = x

(n)
U , since ∆x

(n)
U =

−H ∂EP(x(n))
∂xU

is a descent direction for any positive defi-
nite H . Note that if ∀eij ∈ E , pij = p > 1, then LU (W )
corresponds to the the Hessian of EP(x). In this case, our
method is equivalent to a Newton descent algorithm. If the
norms vary across the edges, the matrix LU (W ) is not equal
to the Hessian of EP(x), then the update is a descent direc-
tion different from the Newton descent direction.

Case (b): ∀eij ∈ E, pij ≥ 1: Recall from Theorem 2 that
the minimizers of EP(x) are right continuous with respect
to the norms inP . Now, consider an energy functionEP(x)
such that for some edges eij ∈ E , the associated norm
pij = 1. We propose to estimate the minimizer of EP+ε(x)
using Algorithm 1, which as shown in case (a), provably
converges to the minimizer x∗P+ε. Therefore, by choosing ε
as small as possible, we can estimate x∗P with desired accu-
racy. As a result, the minimization can be seen as the limit
of the results of several descent algorithms.

Note that in (10), we define the weight W (n)
ij = α

pij−2
ij

when xi = xj . This is in order to ensure that the inversion
of LU (W (n)) in step 4 of Algorithm 1 is well-conditioned.
In all our experiments, we used α = 10−6. Smaller values
of α can result in the inversion still being ill-conditioned.
Larger values of α do not accurately represent the condition
xi = xj and can hence result in slow convergence.

5. Results
In this section, we first present results on synthetic and

real images to illustrate that an interpolated hybrid algo-
rithm can be used to strike a desirable tradeoff between
Graph Cuts and the Random Walker.

5.1. Testing on Synthetic Images

We test variants of our algorithm on the “diagonal
line” image shown in Figure 1, to illustrate various posi-
tive/negative aspects of the different algorithms. We first
examine the effect of an increasing p value on the metri-
cation (pixelation) error. When p = 1, the minimum cut
is degenerate in this synthetic image. Traditional maximum
flow algorithms typically find a “squared off” cut. However,
our iterative method can instead choose the desired diago-
nal cut, where thresholding of the potential field shown in
Figure 1, permits any of the degenerate boundaries.

If we break the degeneracy by modifying the image to in-
clude a single speck in the ambiguous region, the “squared
off” metrication effect is seen once again. These results are
exhibited in Figure 2. The Random Walker (p = 2) still
finds the smoother diagonal cut. We increase the value of p
to observe the transition between the blocky p = 1 case and
the smooth p = 2 case. We see that the metrication error
disappears for values of p ≥ 1.5. When p is pushed above
p = 2, the solution begins to resemble the distance-based
boundary for the p =∞ case, as predicted in [20].



(a) “diagonal line” image (b)Potentials obtained for p=1

Figure 1. Unlike traditional max-flow solutions for the p = 1 case,
our method gives continuous values which may be thresholded at
0.5 to produce the desired smooth, diagonal cut.

Now, we examine the effect of p on the proximity bias
known to occur for Random Walker (p = 2). In this case,
it is known previously that for Graph Cuts (p = 1), there
should be no dependency on seed location within either the
upper or lower region. In Figure 3, we examine how inter-
mediate values of p effect this bias. We see that the “bulge”
problem of the Random Walker is avoided for p ≤ 1.5,.

Finally, we probe the shrinking bias for various p val-
ues. Given a single seed and a weak boundary, Graph Cuts
produces a segmentation that minimally surrounds the seed
while the Random Walker algorithm will avoid this prob-
lem. We need to address the question: At what value of p
does the shrinking bias disappear? Figure 4 shows the seg-
mentations obtained for various values of p. We see that the
shrinking bias is removed quickly as p increases, and in this
case, is gone after p ≥ 1.2. The shrinking bias is further
illustrated in Figure 5, on an image with concentric circles.
Since Graph Cuts has a bias towards segmentation bound-
aries of shorter length, it places the boundary at the inner-
most circle. As we increase the value of p, the segmenta-
tion boundary moves towards the outer circle. Interestingly,
even when we increase the value of p ≥ 3, we are unable
to produce the segmentation boundary beyond the midpoint
circle since the solution approaches the shortest paths solu-
tion, which depends only on the number of circles necessary
to cross over to the foreground from the background.

In conclusion, these tests on synthetic examples motivate
the fact that that the problems of Graph Cuts (shrinking bias
and metrication) and Random Walker (proximity bias) can
both be avoided by using an intermediate value of p, such
as 1.25 ≤ p ≤ 1.5, which produces a hybrid algorithm that
does not suffer from the problems of either algorithm.

5.2. Testing on Real Images

In this section we applied algorithms with varying p to
the set of images in the Microsoft “GrabCut” database used
in [17] .The database contains ground truth segmentations
for 50 color images corresponding to indoor as well as out-
door scenes. We use a 4-connected lattice and use the Eu-
clidean distances of the RGB values of these color images

to set image weights. No unary (data) terms were used. In
our experiments, we use two different seeding strategies.
In the first case, we use the seeds provided in the database
itself, obtained by eroding the ground truth segmentation.
Since such scribbles are favorable for distance based seg-
mentation schemes, we also consider a new set of scribbles.
The scribbles for the background are taken as the rectangu-
lar bounding boxes provided by the database. We dilate the
object’s skeleton and use it as a scribble for the object.

We estimate the segmentation using different values of p,
where we use exactly the same graph/weights for all values
of p. Note that the p = 1 case was produced using a Graph
Cuts implementation rather than our IRLS algorithm. We
quantify the error in the results using four different stan-
dard segmentation measures used in [25] , namely Bound-
ary Error (BE), Rand Index (RI), Global Consistency Error
(GCE), and Variation of Information (VoI). Good segmenta-
tion quality is marked by low BE, high RI, low GCE and low
VoI. Results of this test of segmentation quality are given in
Tables 1 and 2. From these segmentation measures, we pro-
duce a rank for each p value with respect to its performance
for each metric, and compute an average rank (Avg. rank)
by taking the average of the ranks for different metrics.

Figures 6 and 7 show typical results obtained in this anal-
ysis. The seeds are marked in red and green for the fore-
ground and background respectively. As expected, we see
that the first seeding scenario (native to the database), re-
sults in segmentation errors that improve as we increase the
value of p. This is due to the fact that proximity bias tends to
increase with the value of p. In the second seeding scheme,
we see that the results are better for lower values of p be-
cause the seed locations are extremely poor indicators of the
desired segmentation boundary. However, we notice that
across both seeding schemes, the quality score of p = 1.5
indicates a desirable tradeoff between Graph Cuts (p = 1)
and Random Walker (p = 2). One can always choose Graph
Cuts or the Random Walker if one is aware of the seeding
schemes that are going to be employed in a particular ap-
plication. However, from the point of a general interactive
segmentation algorithm, the p-brush algorithm with p = 1.5
has the best rank on average across seeding strategies.

6. Comments

In this paper, we have described a family of segmentation
algorithms dependent on a parameter p≥ 1, that has Graph
Cuts and Random Walker as special cases (p=1 and p=2,
respectively). We provide a solver for arbitrary values of p
and show that an intermediate value between 1.25≤p≤1.5
provides a segmentation algorithm that avoids the known
problems of Graph Cuts and Random Walker. The solver
is provably convergent only for 1<p< 3 [15], but conver-
gence issues for p ≥ 3 can be resolved by taking adaptive
step sizes as opposed to a fixed step size (1 in our case).



(a) p = 1.05 boundary (b) p = 1.1 potentials (c) p = 1.5 potentials (d) p = 2.0 potentials (e) p = 3.0 potentials

Figure 2. In this experiment, we vary p between 1 and 3 in order to determine when the metrication problem disappears. The foreground
and background seeds are indicated in green and red, respectively. The segmentation boundary estimated by the algorithm is shown in blue.

(a) p = 1.05 boundary (b) p=1.25 boundary (c) p = 1.5 boundary (d) p = 2.0 boundary (e) p = 3.0 boundary

Figure 3. In this experiment, we vary p between 1 and 3 to study of the effects of p on proximity bias.The foreground and background
seeds are indicated in green and red, respectively. The estimated segmentation boundary is shown in blue.

(a) p = 1.0 boundary (b) p = 1.1 boundary (c) p = 1.2 boundary (d) p = 1.5 boundary (e) p = 1.75 boundary (f) p = 2.0 boundary

Figure 4. In this experiment, we vary p between 1 and 2 in order to determine when the shrinking bias disappears. The foreground and
background seeds are indicated in green and red, respectively. The segmentation boundary estimated by the algorithm is shown in blue.

(a) Image + seeds (b) p = 1 boundary (c) p = 1.5 boundary (d) p = 2 boundary (e) p = 2.9 boundary

Figure 5. In this experiment, we further probe the shrinking bias. The foreground and background seeds are shown in green and red,
respectively. The segmentation boundary is overlaid in blue. Since the shrinking bias is largest for smaller values of p, the boundary is
placed at the inner most circle for p = 1. As we increase p, the shrinking bias reduces and the segmentation boundary moves outwards.

Note that we did not compare our framework with
[17, 14, 24, 4], since these methods have an an elaborate
pipeline for segmentation, with an intermediate step which
uses schemes such as Graph Cuts, Random Walker or short-
est paths for MAP-MRF. Hence, our analysis and algo-
rithm is relevant to improving the properties/performance of
the MAP-MRF submodule in such intermediate steps, and
should not be unfairly compared to the entire algorithms.
Specifically, [17] employs Graph Cuts, while [14, 24] use
a quadratic (p = 2) optimization with the Laplacian ma-
trix which may be interpreted as Random Walker with spe-

cial weights. Similarly, [4] employ shortest paths for MAP-
MRF, which is equivalent to p→∞ in our framework.

Also, despite the recent popularity of higher order MRFs
[16, 12, 13], we feel that pairwise MRFs are still used ubiq-
uitously in the computer vision literature and any improve-
ment to these models can have a broad impact. Recent
progress in Graph Cut based approaches for higher order
MRFs [16, 12, 13] has dealt with representing a class of
higher order MRFs by an equivalent construction of pair-
wise MRFs. Therefore, our analysis could be applied to this
equivalent pairwise reduction of higher order MRF models.



p BE RI GCE VoI Avg. rank
1. 3.276 0.970 0.028 0.196 5
1.25 3.241 0.971 0.028 0.193 4
1.5 3.214 0.972 0.027 0.189 3
1.75 3.206 0.972 0.027 0.187 2
2 3.206 0.972 0.026 0.185 1

Table 1. Mean errors using the eroded ground truth as scribbles

p BE RI GCE VoI Avg. rank
1 8.713 0.916 0.393 0.068 1.25
1.25 11.184 0.908 0.408 0.067 2.5
1.5 11.487 0.907 0.406 0.067 2.25
1.75 12.292 0.904 0.417 0.069 4
2 12.727 0.900 0.432 0.071 5

Table 2. Mean errors using the rectangle/skeleton as scribbles
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Figure 6. Example of testing using the native GrabCut seeds. The
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Figure 7. Example of testing using the second seeding strategy.
The segmentation boundaries are marked in red. The Random
Walker (p = 2) is sensitive to the scribble near the woman’s leg.
This is not so for the cases of p = 1 (Graph Cuts) and p = 1.5.
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