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Abstract. This paper presents an endoscopic vision framework for model-
based 3D guidance of surgical instruments used in robotized laparoscopic
surgery. In order to develop such a system, a variety of challenging seg-
mentation, tracking and reconstruction problems must be solved. With
this minimally invasive surgical technique, every single instrument has
to pass through an insertion point in the abdominal wall and is mounted
on the end-effector of a surgical robot which can be controlled by au-
tomatic visual feedback. The motion of any laparoscopic instrument is
then constrained and the goal of the automated task is to safety bring
instruments at desired locations while avoiding undesirable contact with
internal organs. For this ”eye-to-hands” configuration with a stationary
camera, most control strategies require the knowledge of the out-of-field
of view insertion points location and we demonstrate it can be achieved
in vivo thanks to a sequence of (instrument) motions without markers
and without the need of an external measurement device. In so doing,
we firstly present a real-time region-based color segmentation which in-
tegrates this motion constraint to initiate the search for region seeds.
Secondly, a novel pose algorithm for the wide class of cylindrical-shaped
instruments is developed which can handle partial occlusions as it is of-
ten the case in the abdominal cavity. The foreseen application is a good
training ground to evaluate the robustness of segmentation algorithms
and positioning techniques since main difficulties came from the scene
understanding and its dynamical variations. Experiments in the lab and
in real surgical conditions have been conducted. The experimental vali-
dation is demonstrated through the 3D positioning of instruments’ axes
(4 DOFs) which must lead to motionless insertion points disturbed by
the breathing motion.
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1 Introduction

One may observe since few years a growing spectrum of computer vision applica-
tions to surgery, particularly to intra-operative guidance [1, 2]. On the one hand
computer vision techniques bring a lot of improvements and gain in reliability
in the use of visual information, on the other hand medical robots provide a
significant help in surgery, particularly for the minimally invasive surgery, as it
is for the laparoscopic surgery. Minimally invasive surgery is a very attractive
technique since it provides position accuracy, it avoids surgical opening and then
it reduces the recovery time for the patient. In counterpart, motions of surgical
instruments are constrained to by the insertion point locations in the abdominal
wall, reducing the dexterity since only four degrees of freedom are available.
Our research in this field aims at expanding the potentialities of such robotic
systems by developping visual tracking and servoing techniques to realize semi-
autonomous tasks [3, 4]. Endoscopic vision systems are used for that purpose,
however many obstacles remain to be overcome to achieve an accurate position-
ing of laparoscopic instruments inside the abdominal cavity by visual feedback.
Many difficulties are emanating from the scene understanding, the time-varying
lighting conditions, the presence of specularities and bloodstained parts, and a
non-uniform and moving background due to patient breathing and heart beat-
ing. But, for this ”eye-to-hands” robotic vision system, one of the most tricky
problem is the unknown relative position/orientation of robot arms holding the
instruments w.r.t. the camera frame [3]. This transformation mainly depends
on the insertion points location which must be recovered to express the relative
velocity screw in the appropriate frame.
The outline of the paper is as follows. In the next section, we review some ex-
isting endoscopic vision systems used in robotized laparoscopy. In section three,
we describe the fast region-based color segmentation of surgical instruments. We
present the laparoscopic kinematic constraint together with the 3D pose estima-
tion of surgical instruments in section four. Throughout the paper, results are
provided and a conclusion is given in section five.

2 Related Work on Vision-based Robotic Guidance for

Minimally Invasive Abdominal Surgery

Prior researches have been conducted to process laparoscopic images for the de-
velopment of 3D navigation systems in the human body. One of the pioneered
work was that of Casals et al. [5] which used a TV camera microoptics mounted
on a 4 DOFs industrial robot (with 2 passive joints) to realize a 2D tracking of
a surgical instrument with markers. Projections of markers were approximated
by straight lines in the image segmentation process and the tracking task was to
keep the imaged markers close to the image center. This guidance system worked
at a sampling rate of 5 Hz with the aid of an assistant. Wei et al. [1] have used
a stereoscopic laparoscope mounted on a robot arm and have designed a color
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marker to realize a tracking task. By means of a color histogram, the color bin
with the lowest value is selected to mark the instrument. This spectral mark
was then utilized to control the robot motion at a sampling rate of 15 Hz. An
interesting feature of the proposed technique is the choice of HSV color space for
segmentation, leading to a good robustness with respect to lighting variations.
Wang et al. [6] have proposed to enhance laparoscope manoeuvering capabil-
ities. In so doing, they have conceived a general framework that uses visual
modelling and servoing methods to assist the surgeon in manipulating a laparo-
scope mounted on a robot end-effector. Color signatures are used in a Bayesian
classifier to segment endoscopic images into two classes (organ and markerless
instrument). Finally, this framework has been applied to the instrument local-
ization (the 2D position of the imaged tip of instrument) and 2D tracking with 3
DOFs of the AESOP robot in a way to follow the laparoscope. Like for the two
previous related works, it’s a visual tracking system with active vision guidance
in order to keep the instrument close to the image center, that is there is no
need to the estimate of the 3D motion of the instrument.
For these related works, it is assumed that the endoscopic camera is mounted on
a robot (eye-in-hand). Other more recent works are rather related to the tracking
of free-hand or robotized instruments with respect to the internal organs with
the aid of a stationary camera. Hayashibe et al. [7] have designed an active scan-
ning system with structured lighting for the reconstruction of 3D intraoperative
local geometry of pointed organs. With a 2D galvano scanner and two cameras
(one of the two is a high speed one), a real-time registration of the scene of inter-
est is performed via the triangulation principle in order to alleviate the surgeon
to mentally estimating the depth. An external device equipped with leds (the
Optotrak system from Northern Digital Inc.) was used to calibrate the laser and
the cameras coordinate frames. The authors have reported a total measuring
time of 0.5 s to provide the 3D geometry of the liver under laparoscopic surgery
conditions and have realized non-master-slave operation for the AESOP surgical
robot guided by the surgeon.
A robot vision system that automatically positions a single laparoscopic instru-
ment with a stationary camera is described by Krupa et al. [3]. Laser pointers
are designed to emit markers on the organ. A visual servoing algorithm is car-
ried out to position a marked instrument by combining pixel coordinates of the
laser spots and the estimated distance between the pointed organ surface and
the tip of the instrument thanks to the projective invariance of the cross-ratio.
Successful experiments using this system were done on living pigs. In this work,
3 DOFs of the instrument were tracked (pan/tilt/penetration depth) thanks
to a two-stage visual servoing scheme that partly decouple the control of the
pointed direction (given in the image) and the control of the depth. It is worth
noticing that a on-line identification of the Jacobian matrix for pan/tilt control
(first stage) was realized with appropriate robot joint motions to directly get
expressions of the velocity screw components in the instrument frame. At the
Center for Computer Integrated Surgical Systems and Technology (CISST), sev-
eral techniques for assisting surgeons in manipulating the 3D space within the
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human body have been developed not only for the abdominal cavity but also
for eye, sinus and thoracic surgery. Some of them involve (mono- and stereo-)
vision-based robot control and articulated instruments [2] and in order to obtain
the robot(fixed frame)-to-camera transformation, the Optrotrak system is used
in a preliminary setup. Burschka et al. have noticed an offset of approximately
5 mm (compared to the stereovision tracking) which is due to an error in the
cameras-Optotrak calibration because of the difficulty of segmenting led centers.

Our objectives are to bring solutions of the previously mentioned problems in
this complex environment including dynamical changes, with landmark-free ap-
proaches. No previous work is directly related to the 3D location recovery of
insertion points with respect to the endoscopic camera. However, some solutions
have been provided by Krupa et al. [3] and also by Ortmaier et al. [8] but with re-
spect to the robot frame, which inherently introduces errors of the robot model.
Moreover, these methods need markers on the instruments. Robotic tasks may
require interactions with tissues, instruments must be autoclavable before a sur-
gical operation and since several one may alternatively be used (depending on the
subtask addressed), it is not convenient to always use artificial landmarks placed
on endoscopic tools. In this paper, techniques related to image processing and
computer vision have been specially designed so as to be dedicated to the inter-
pretation of visual data coming from the abdominal cavity for robotic purposes.
In particular, we investigate the on-line localization recovery of the out-of-field
of view insertion points in the abdominal wall which is useful for image regions
classification and for the temporal consistency of instruments motion.

3 Segmentation inside the Abdominal Cavity

For applications involving robots, image segmentation as well as classification
and recognition must be fast and fully automatized. Moreover, since we deal
with color images, it’s suitable to analyze the multispectral aspect of the in-
formation to identify regions of interest. In laparoscopic surgery, many surgical
instruments have cylindrical metallic parts leading to grey regions with many
specularities in the image. In [9], the detection of a single laparoscopic instrument
has achieved by means of the Hough transform but it requires the knowledge of
the 3D position of insertion point while in Doignon et al. [10], we addressed the
detection of boundaries of grey regions in color endoscopic images accounting
for laparoscopic instruments. It was based on a recursive thresholding of his-
tograms of color purity attribute S (saturation) and it works at half the video
rate. The color image segmentation we designed here is based on chromatic HS
(Hue-Saturation) color attributes when HSI is chosen as the color space repre-
sentation. The joint color feature H = S H from which the first derivative is
closely related to the shadow-shading-specular quasi-invariant |Hc

x| = S ·Hx [11]
seems to be an appropriate discriminant cue and is shown in Fig. 1 (right)).
Hx denotes the spatial differentiation of hue H (a change of H may also oc-
cur with a change of the color purity S). A well-known drawback of hue is its
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Fig. 1. The results of the region-based color (hue-saturation) segmentation for frames
74 (the 4 top images) and 578 (bottom). In right, the H (filtered) images and the
selected (coloured) image regions. The apparent contour of instruments is delineated
with a pair of straight lines (in green).

undefinedness for achromatic pixels, i.e., for small S and small changes round
the grey axis result in large changes of the direction of that quasi-invariant and
therefore the derivative of hue is unbounded. However, van de Weijer et al [11]
have shown that the norm of Hc

x remains bounded. It follows that its integral is
also bounded, and hence, H is bounded. As noticed by van de Weijer et al, the
discriminance of this quasi-invariant of photometric color feature is efficient and
suitable to deal with specularities. To get out an oversegmentation, a fast Sigma
filter algorithm has been performed on the H image. This is a non-linear filtering
which has the capability to either smooth pixel attributes inside region and to
equally preserve the topological properties of edges. Results are very similar to
the well-known anisotropic diffusion process [12]. However, it is very fast and in
[13], we have presented the real-time implementation of this filtering.
We have followed a region-based segmentation approach, and, since any instru-
ment is constrained to pass through the insertion point, the automatic detection
of seeds to initiate the region growing process is reduced to a one-dimensional
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search of low H values along the image boundaries. Once regions have been
segmented, the region boundaries are ordered and used to perform a robust
two-class line fitting. It first consists in a contour classification algorithm which
determines the farthest edge from the seed in the list of boundaries as a dis-
criminant class separator. Then, a least-median of squares method is carried out
to each class for modelling the apparent contour with a pair of line parameters,
l+ and l−, or to reject the region if the euclidean distance between pixels and
corresponding line is too large (see for example the red and lightblue labeled
regions in Fig. 1). Nevertheless, it is yet possible that a region which does not
correspond to an instrument may be selected with this method. Then, we will
see in the next section how the motion constraint can help to solve this problem.

4 Model-based Pose Approach with Motion Constraint

The aim of this section is to formalize the motion constraint. First of all, a scene
structure from motion approach is developed to get the location of the insertion
points. For this purpose, a two-step algorithm with closed-form solution of the
pose parameters is presented.

4.1 The Motion Constraint in Minimally Invasive Surgery

As previously mentioned, any laparoscopic instrument is constrained to pass
through the incision point. Usually, the structure of the scene from motion in-
volves multiple views and the well-known factorization method exploits geomet-
ric constraints between views acquired by one or several cameras, in motion (e.g.
see [14–17]). In opposite, the main feature of the multiview approach presented
here is that it properly exploits existing motion constraints of the robotized in-
struments observed by a stationary camera.
At a first approximation, let consider the patient breathing being no impact on
the abdominal wall deformation, that is any insertion point is assumed to be mo-
tionless. We denote with (Rc) = (C,xc,yc, zc) the reference frame attached to
the camera with projection centre C, (RI) = (OI ,xI ,yI , zI ) the reference frame
attached to a laparoscopic instrument with an arbitrary origin OI . Without loss
of generality, we assume vector zI with the same orientation as the instrument
axis. The small incision area in the abdominal wall for an instrument is repre-
sented with a geometrical point I and that of the endoscope with the geometrical
point E. Under these assumptions and with these notations, the position vector
EI is constant, and for a stationary camera, vector CI is also constant. If the
position and orientation of the intrument frame (RI) are respectively the vector
t and the rotation matrix R = (r1, r2, r3) expressed in the camera frame (Rc), it
comes:

CI = t + R OII = t + λ R

[
0 0 1

]T

= t + λ r3 , λ ∈ R (1)

Since most instruments exhibit a surface of revolution (SOR), with few excep-
tions, the attitude of the axis of revolution may conveniently be represented with
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the Plücker coordinates as it is for any 3D straight line. Plücker coordinates are
a couple of algebraically dependent vectors (v, w) such that w = v × t. They
may alternatively be gathered in the following matrix L or its dual L?:

L =

[
[w]× −v

vT 0

]

, L
? =

[
[v]× −w

wT 0

]

. (2)

This is a suitable representation since one may easily deal with geometrical
transformations [18] including the perspective projection [19]. This (4 × 4) ma-
trix is defined up to a scale, skew-symmetric, singular and the rank value (2) is
expressing the orthogonality constraint between the two vectors v and w. With
this representation, the laparoscopic kinematic constraint may be expressed for
v = r3 as the common intersection of multiple convergent lines. Since any (ho-
mogeneous) point X is on L if L?X = 0, given n displacements {D1,D2,...,Dn}
corresponding to the set of dual Plücker matrices {L?

1, L
?
2, ..., L

?
n}, a unique inter-

section of lines is obtained with a rank-3 (4n× 4) matrix G
T

n such that

Gn = [L?
1, L

?
2, ..., L

?
n] . (3)

That is, the null-space of GT

n must be a one-dimensional subspace and the inter-
section may be computed with n (n ≥ 2) 3D displacements of the instrument.
By computing the SVD of GT

n, one obtains the common intersection by taking
the singular vector associated with the null singular value (or the smallest one
in presence of noisy data). The sign ambiguity of the solution is dispelled as the
only valid one is corresponding to an intersection I = (Ix, Iy, Iz) occuring in
front of the camera (Iz > 0).
The perspective projection of the 3D line Lj is the image line lj defined by

[lj ]× = K
c
P

c
Lj (Kc

P
c)T = [(Kc)−T wj ]× (4)

where K
c is the matrix of camera parameters, Pc is the (3× 4) projection matrix

and [l]× is the skew-symmetric matrix of vector l. Since the intersection is pre-
served by projective transformation, the n corresponding convergent image lines
l1, l2, ..., ln must satisfy

(
l1 l2 . . . ln

)T

i =
(
w1 w2 . . . wn

)T

︸ ︷︷ ︸

Wn

(Kc)−1 i = 0 (5)

where i is the image of the insertion point I . It follows that a set of n 3D straight
lines is projecting to n convergent image lines if the above (n× 3) matrix Wn is
of rank 2. It’s only a necessary condition which does not ensure the convergence
of the 3D lines, but which makes so important the accurate estimation of the
imaged axis of revolution (any line lj) which requires the recovery of the Plücker
coordinates presented in the next paragraph. Once the pose estimation is done
with the measurements (l−p , l

+
p )) of a putative image region p, the following

criterion is used as a discriminant classification parameter

min
j

|lTp ij | < τ , for j = 1, ...,m (6)

to attach the region to one of the m insertion points, otherwise it is rejected.
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4.2 Pose computation of a right circular cylinder

We present a novel algorithm for the pose estimation of a cylinder. As a close
related work, Wong et al. [20] exploit the invariance of surfaces of revolution
(SOR) to harmonic homology and have proposed an algorithm which is able to
recover the orientation and the depth (or the focal length of the lens) while an
image rectification is performed to coincide the imaged revolution axis of a SOR
with one image axis and when the image of a latitude circle is available (assuming
that the principal point is located at the image center and that the camera
has unit aspect ratio) from the resulting silhouette which exhibits a bilateral
symmetry after a rectification which brings the revolution axis to coincide with
one image axis. With this method, an initial guess of the imaged symmetry
axis is found by numerical minimization of a cost function. and if the image
of a latitude circle in the SOR is also available, the depth can be estimated.
The method we propose here is especially designed for cylindrical objects. It’s
a direct method (all components are computed in one stage), it does not need
any image transformation and no latitude circle, hence it can deal with partial
occlusion of the apparent contour as it is for this application area.

Given the matrix K
c, the cylinder radius rc and the image of its contour

generator (the apparent contour), we look for the determination of the Plücker
coordinates (r,w) of the cylinder’s rotation axis satisfying the non-linear equa-
tion rTw = 0. It can be easily shown (from [21]) that the apparent contour is a
set of two straight lines represented with the pair of vectors l− and l+ satisfying

(l−)T m ≡ {(Kc)−T (I− α[r]×) w}T m = 0

(l+)T m ≡ {(Kc)−T (I + α[r]×) w}T m = 0 , (7)

for any point m lying on the apparent contour and α = rc/
√

‖w‖2 − r2c .
To compute the pose parameters, we define the three vectors y = α[r]× w,
ρ
− = K

c l− and ρ
+ = K

c l+. With these notations, (7) can be written as follows

µ1 ρ
− = w − y ; µ2 ρ

+ = w + y (8)

where µ1 and µ2 are two non-null scale factors. Vectors y and w are algebraically
dependent (but not linearly) since they satisfy yTw = 0 and ‖y‖ = |α| ‖w‖.
The latter one is developed so as to take into account the expression for α

r2c (‖w‖2 + ‖y‖2) = ‖w‖2 ‖y‖2 (9)

To summarize, what we have to do is to solve the following homogeneous deficient-
rank system

[
−I I − ρ

− 0

I I 0 −ρ
+

]







y

w

µ1

µ2







= A6×8 x = 0 (10)

for the unkwown vector x = (yT,wT, µ1, µ2)
T, subject to yTw = 0 and (9). Since

A6×8 has a rank equal to 6, the SVD U6×8 D (v1, · · · ,v8)
T has two null singular
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Fig. 2. Results of the pose for two frames picked up from the sequence. Blue curves
are the perspective projections of the contour generator of the cylindrical-shaped in-
strument with the estimated pose, whereas blue ones are those corresponding to the
two-class fitting of the apparent contour. (right) magnification of left images.

values and the null-space of A6×8 is spanned by the right singular vectors v7 and
v8 and provides a 2-parameter family of solutions as a linear combination of the
two last columns of V as

x = λ v7 + τ v8 , for λ, τ ∈ R. (11)

The second step consists in the introduction of non-linear constraints. Sub-
stituting y = (x1, x2, x3)

T and w = (x4, x5, x6)
T from (11) in yT w = 0 gives

the following homogeneous quadratic equation in λ and τ

a1 λ
2 + a2 λτ + a3 τ

2 = 0 (12)

where ai are scalar functions of v7 and v8. Two real solutions for s = τ/λ, s−

and s+, can be computed from (12). Then, reporting these solutions in (9) with
substitutions from (11) gives an homogeneous quadratic equation in τ 2:

c1(s) τ
2 + c2(s) τ

4 = 0 (13)

and the solutions are τ = 0 (double) and τ = ±
√

− c1(s)
c2(s)

. The two null solu-

tions for τ are those corresponding to the trivial solution x = 0 since yT w = 0
and (9) are both satisfied with null vectors. Moreover, the sign of the non-null
solutions for τ can not be determined since both x and −x are solutions. As one
can notice, since τ = s λ with s− = −1/s+, the solution for the pair of vectors
(y,w) with s+ is also the solution for the pair of vectors (−w,−y) with s−.

4.3 Experimental results

Results concerning the pose are shown (sketched) in Fig. 2. In this figure, blue
curves are the perspective projections of the contour generator of the cylindrical-
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Fig. 3. (a) Image of the laparoscope with blue markers. (b-f) Comparison of the
markers-based Haralick’s method and the method based on apparent contours of a right
circular cylinder for the 4 DOFs: angles (b-d) and orthogonal distances (e). Whereas
the orientation of the cylinder should be equal with and without markers, the norm of
the vector w − wh must be equal to the radius of the cylinder rc = 5 mm (f).

shaped instrument with the estimated pose, whereas blue ones are those corre-
sponding to the two-class fitting of the apparent contour. With the proposed
method, the curves should be perfectly superimposed, however the small resid-
ual error (1.2 pixels in average) is probably due to a mis-identification of lens
distortion parameters. A cylindrical laparoscope with blue markers sticked on
its surface has been used for primary experiments. Centroids of these markers
are such that we get a set of 5 collinear object points in the axis direction. A
set of endoscopic images has been captured with 30 viewpoints (see Fig. 3-a).
With this equipment, we have compared the pose computation from apparent
contours of the cylinder (r,w) with the proposed method and the Haralick’s
method for the pose of a set of collinear points [22]. The latter method deter-
mines the orientation rh of the straight line supporting the points as well as a
position vector th (given the interpoint distances and an arbitrary origin for the
points reference). We then compute the following cross-product wh = rh × th

to get the Plücker coordinates. Due to the relative position of these markers
w.r.t. the cylinder axis, vectors r and rh should coincide whereas the Euclidean
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Fig. 4. Experiments in the lab to validate the proposed method. (a-c) Three endoscopic
images with the segmentation of a single surgical instrument. The image lines resulting
from the two-class fitting of the apparent contours are drawn in green. (d) A training
box is used together with the endoscope fixed onto a monoCCD camera. The instru-
ment is mounted onto the end-effector of the AESOP3000 surgical robot. (e) Temporal
variations of i1 coordinates in the image plane while moving the surgical instrument
in front of the camera. (f) The dual parameter space of convergent lines (θ, ρ) (imaged
instrument axis), ”points” (blue bullet) must be collinear with a perfectly motionless
insertion point.

norm of vector δw = w −wh should be equal to the cylinder radius rc = 5 mm
whatever is the camera viewpoint. This experimental validation is depicted in
Fig. 3-b:c for the orientation (angles φ and ψ) of the rotation axis, in Fig. 3-d
for the inclination of the interpretation plane w.r.t. to the optical axis (angle
θ) and in Fig. 3-e for the orthogonal distances w.r.t. camera centre. The results
show a good agreement and consistency for the orientation of the instrument
axis. However, results about relative distance error are not as good as expected.
This error is 3.1 % in average, but for several viewpoints, there are significant
differences (up to 7.6 %) between ‖w −wh‖ and the cylinder radius (Fig. 3-f).

With a training box at the lab and a motionless insertion point (I1) , displace-
ments and pose estimation of a surgical instrument has carried out (see Fig. 4)
with the AESOP surgical robot. During the guidance of the instrument, we no-
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Fig. 5. (a) The Aesop surgical robot in the operating room. Trocars are inserted to
incision points to guide the laparoscopic instruments or to hold the stationary camera.
(b) The (Ix, Iy) coordinates of the convergent point I1 during the guidance of an
instrument. (c) Temporal variations of the perspective projection of I1 (i1) as the
intersection of imaged symmetric axes l for a sequence of 52 images.

ticed some small temporal variations of the image (i1) of the insertion point due
to error in the overall segmentation (Fig. 4-e) and pose estimation. In Fig. 4-f,
we have reported the dual parameter space of convergent lines (distance from
the origin versus angle of line direction), since a unique intersection of lines must
lead to perfectly collinear points (blue bullets).
We have depicted in Fig. 5-a the experimental setup used in the operating room
and we have also reported the first two coordinates of the first insertion point
I1 = (304; 88; 224) found with the proposed method in Fig. 5-b. The precision
of the imaged point i1 = (157.5; 154.2) (Fig. 5-c) is given by the standard devia-
tions which are σu = 10.4 and σv = 1.2 pixels respectively in the horizontal and
vertical directions, and with 52 images (about 2 s). Results exhibit a significantly
better precision found in the vertical direction. This can be explained either by
the breathing motion or by a no sufficient spread of orientation motions in one
direction while the robot is guiding the instrument. Another experimentation
has been done to validate the convergence of the imaged instrument axes of
cylindrical instruments. Fig. 6 shows the location of the insertion point location
in the image with the least mean square method (Fig. 6-a:b) and with a robust
(least median of squares) estimation method (Fig. 6-c:d). The latter method is
able to cope with outliers, that is it keep only the salient endoscopic views with
the more accurate 3D pose estimations.

5 Conclusion

In this paper, we have tackled a set of problems to solve for the 3D guidance of
surgical instruments in minimally invasive surgery inside the abdomen. For this
complex environment with dynamical changes, we have presented the automatic
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Fig. 6. (a) The convergent imaged symmetric axes and the estimated image of the
insertion point i1 at (593.4; 105.5) (black cross) computed with the least mean squares
during the guidance of an instrument. (b) In the dual parameter space of convergent
lines (θ, ρ), ”points” (blue bullet) must be collinear. (c) The estimated image of the
insertion point i1 at (615.5; 103.9) (black cross) and the parameter space (d) with the
robust estimation when 50 % of data (outliers) are rejected.

detection and positioning of cylindrical-shaped objects with endoscopic views of
the human body and we have brought some solutions especially in the context
of the robotized laparoscopic surgery. Then, in the first part of the paper, we
briefly present a fast segmentation of grey regions and, in the second part, the
3D pose and constrained motion of surgical instruments is described with de-
tails. With this article, we have addressed some issues with a non-uniform and
moving background with time-varying lighting conditions, offer some generic
and context-based solutions with landmark-free approaches. The representation
of the instrument axis motion with the Plücker coordinates (4 DOFs) has been
shown to be suited to deal with partial occlusions and also for the decoupling of
the pan/tilt control, the penetration depth and the rotation axis of instruments.
This is an important practical contribution for the achievement of vision-based
semi-autonomous tasks with robots in minimally invasive surgery. In particu-
lar, the on-line localization of out-of-field of view insertion points (and their
images) is an important issue to drive the image segmentation, the regions se-
lection process and finally to improve the reliability while tracking the surgical
instruments.
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