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Abstract. We present a novel method for the detection of motion bouesian

a video sequence based on differential properties of thiosfgamporal domain.
Regarding the video sequence as a 3D spatio-temporal fumetie consider the
second moment matrix of its gradients (averaged over a \eicalow), and show
that the eigenvalues of this matrix can be used to detectisiceis and motion
discontinuities. Since these cannot always be determioedly (due to false
corners and the aperture problem), a scale-space appaskd for extracting
the location of motion boundaries. A closed contour is themstructed from the
most salient boundary fragments, to provide the final se¢gmtien. The method
is shown to give good results on pairs of real images takeeiel motion. We
use synthetic data to show its robustness to high levelsisérand illumination
changes; we also include cases where no intensity edge exite location of
the motion boundary, or when no parametric motion model esaribe the data.

1 Introduction

Motion-based segmentation involves the partitioning aigres in a video sequence into
segments of coherent motion. There are two main approachmastion segmentation:
one may assume a global parametric motion model and seghgeintage according to
the parameters of the model (e.g., [5,14, 15, 20]), or oneasayme piecewise smooth
motion and identify the boundaries along motion discorities (e.g., [1, 6, 13,19]).

In this work we focus on the extraction of motion boundarigkich are defined
locally as boundaries between different motions (since many relalovsequences do
not obey any global motion model). In addition, we restrigtslves to solutions which
do not rely on the existence of color or texture boundari¢a&en the moving object
and the background while computing motion boundaries (bat for example, [2, 6,
18]). This is motivated by humans’ ability to segment olgdebm motion alone (e.g.,
in random dot stereograms), and by the need to avoid ovenasgtion of objects
whose appearance includes varying color and texturesliysing only consider local
properties of the motion profile, in order to be able to de#h\airs of frames or stereo
pairs (but see, for example, [17]).

Motion boundaries can be computed by clustering a prewotminputed motion
field (e.qg., [15, 20]). The problem is that motion disconiii@s are found on exactly
those locations where the motion field computation is leakble: since all optical
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flow algorithms rely on the analysis of a region around a p@wén if only to compute
first order derivatives), the optical flow must be continuaithin the region to support
reliable computation. This chicken-and-egg problem, Whgc characteristic (though
to a lesser extent) of the computation of intensity edgessamde related problems,
makes motion segmentation particularly challenging. @matter hand, the successful
computation of motion discontinuities can be useful for anber of applications, in-
cluding motion computation (by highlighting those areagwmethe computation should
be considered unreliable) and object segmentation frontipleitues.

In our approach we start by considering the video sequeneesastio-temporal
intensity function, where the goal is to extract informatioom this spatio-temporal
structure. Video sequences have highly regular tempatadtsire, with regions of co-
herent motion forming continuous tube-like structurese§enstructures break where
there is occlusion, creating spatio-temporal corner{éatures. Using a differential
operator that detects such features, we develop an alguttitt extracts motion bound-
aries.

Specifically, our algorithm is based on the occlusion detedscribed in Section 2.
This operator is used to extract a motion boundary at anyngieale, as described in
Section 3. Since different scales may be appropriate féergifit parts of the image,
a cross-scale optimal boundary is computed, based on tpenss of the detector.
Finally, a closed contour is built along the most salientrimtary fragments to provide
the final segmentation. In Section 4 we analyze the beha¥itheodetector. Some
experimental results are described in Section 5 using tvadleriging sequences of
real images (see, e.g., Fig. 8). We include a number of syinteamples which are
particularly difficult for some commonly used algorithms,drder to demonstrate the
robustness of our method. Results from other algorithmssehmplementation was
made available by the authors, are provided for comparison.

2 Occlusion Detector

Regarding the video sequence as a spatio-temporal intdnsittion, let/(z, y, t) de-
note the intensity at pixdl:, y) in framet. We refer to the average of the second mo-
ment matrix over a neighborhoadaround a pixel as th&radient Structure Tensor
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This matrix has been invoked before in the analysis of lotralcture properties.
In [7], eigenvalues ofz were used for detecting spatio-temporal interest pointgl 2]
it was suggested that the eigenvalue®tan indicate spatio-temporal properties of
the video sequence and can be used for motion segmentatierid&a behind this is
reminiscent of the Harris corner detector [3], as it det@fs‘corners” and “edges”
in the spatio-temporal domain. Here we take a closer lookdavelop this idea into a
motion segmentation algorithm.
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Fig. 1. Random dots example. A shape is moving sideways, where betshape and the back-
ground are covered by a random pattern of black and white Hassimpossible to identify the
moving object from each of the two frames (a) and (b) (a stpeg alone. The occlusion de-
tector (c) (higher values of are darker) shows the outline of the object very clearly. Gara to
the ground truth (d).

Specifically, if the optical flow inv is (v, v,) and the brightness constancy as-
sumption [4] holds, then

G- (vz,v,, )T =0 (2)

Hence is an eigenvalue ofx. SinceG is positive-semidefinite, we can use the small-
est eigenvalue dofx as a measure of deviation from the assumptions above, wéncis |
to the following definition:

Definition 1. Let A(z,y,t) denote the smallest eigenvalue of Beadient Structure
TensorG (x,y,t). The operator\ is theocclusion detecto¥

We do not normalize\ with respect to the other eigenvalues@f(as in [12]), since it
may amplify noise.

In order to provide rotational symmetry and avoid aliasing do the summation
over the neighborhoagd, we definev to denote a Gaussian window, and the operation
> . in (1) stands for the convolution with a Gaussian. Since wealoassume tem-
poral coherence of motion, the Gaussian window is resttittig¢he spatial domain, as
explained in Section 3.

Figure 1 demonstrates the detector results on a simple etymgxample. In this
example there are no intensity or texture cues to indica&dtundaries of the moving
object, and it can only be detected using motion cues. Thewal\, shown in Fig. 1c,
is low in regions of smooth motion and high values\ofiescribe the boundary of the
moving object accurately.

2.1 Velocity-Adapted Detector

The values ofVI, and hence of\, are invariant to translation transformations hn
Additionally, for any rotation matriR,,

ML - G| = |R||M - G|[RT| = |\ - Z(RVI)(RVI)T|

w

! Note that the values of at each pixel can be evaluated directly using Cardano’sdtam
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Fig. 2. False) response. The same example as in Fig. 1: (a) 26tk white noise; (b) with illu-
mination change of 5%; (c) with the object rotating by’ 2@) with both object and background
patterns deformed smoothly.

(I is the identity matrix) and therefore the values\adire also invariant to the rotation
of I. The issue of scale invariance will be discussed in Section 3

While rotational invariance is desirable in the spatial dagmnon-spatial rotations
in the spatio-temporal domain have no physical meaning.gtéferable to have invari-
ance to spatially-fixed shear transformations, which spoad to 2D relative transla-
tional motion between the camera and the scene. As suggad®@dy the reference
of Galilean diagonalizationone can use the velocity-adapted maigiven by

G11 G2 0
G= |Gn G 0 | where A= s &)
0 0 Ap et(G*)

(G;; denote the entries ofx, and G* denotes the x 2 upper-left submatrix olG
containing only spatial information).

Definition 2. The operator\r is thevelocity-adapted occlusion detector

To justify this definition, observe tha is also invariant to translation and spatial
rotation. The entn\r is an eigenvalue of%, and it has been suggested that it encodes
the temporal variation, being the “residue” unexplaineghbye-spatial information.

In practice A gives results similar ta, though it has certain advantages, as dis-
cussed in Section 4. In the remainder of the paper we\usedenote either operator,
unless stated otherwise.

2.2 Detector Effectiveness

High values of\ indicate significant deviation from (2), which is often doethe exis-
tence of a motion boundary. Other sources of large devigifioclude changes in illu-
mination (violation of the brightness constancy assunmjtior when the motion varies
spatially (motion is not constant in). However, often these events lead to smaler
values as compared to motion boundaries (see Fig. 2), inhndaise the boundary re-
sponse can be distinguished from a false response by thd@sino

Low values of\ do not necessarily indicate that the motion.iris uniform. The
rank of G is affected by spatial structure as well as temporal strecspo\ may be
low even at motion boundaries, when certain spatial degeies exist. Specifically,
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Fig. 3. Areas where the\ detector is likely to give low values despite the existenta tocal
motion boundary.

this occurs when there is local ambiguity, i.e., when thetexice of a motion boundary
cannot be determined locally. This includes areas wher@tbkiding object and its
background are of the same color, areas where the backgi®ohdniform color, and
areas where the background texture is uniform in the doeatf the motion (Fig. 3).

In the first case the rank @& is 0, and in the other cases the rank@fmay bel or

2, depending on the appearance of the occluding object (rizdithe A detector is
high when the rank o6 is 3). In these cases, the background may be interpreted as
part of the moving object, since no features in the backgi@ppear to vanish due to
occlusion.

The response ok to occlusion occurs only where some background features be-
come occluded. Clearly boundary location cannot alwaysnferred based on local
information alone, and it is therefore necessary to integirformation across larger
areas of the image. This is done using scale-space teclsnmudiscussed in Section 3.

2.3 Temporal Aliasing

Since real video data is discrete, the partial derivativethé definition ofA must be
estimated. This is done by convolvidgvith the partial derivatives of a 3-dimensional
Gaussian. Rotational invariance implies that the spataibnce in theX andY di-
rections should be the same, and the kernel is thereforelipaodtial Gaussian with
spatial variance,, and temporal variancg. Due to the distortion introduced by the
convolution, it is desirable that these values be small.

Estimating the temporal partial derivative from video s a severe aliasing
problem. Since video frames represent data accumulatédgdsinort and sparse ex-
posure periods, and since a feature may move several pigglebn two consecutive
frames, data is aliased in the temporal domain significantlye than in the spatial do-
main. We overcome this problem by taking advantage of théaspemporal structure
of video, as described next.

Suppose that the velocity in a certain regiom is- (v, v, ), and therefore

I(z,y,t) = I(x — vpt, y — vyt,0) (4)
The temporal derivative ih= 0 is given by

I = —v Iy — vy, (5)



In discrete video/], can be estimated by convolution in tledirection, which, due
to (4), is the same as convolution in thedirection of a subsample df(z, y,0) at
intervals of sizdv|. In order to avoid aliasing due to undersampling while eating
I, the Sampling Theorem requirégo be band-limited, so that its Fourier transform
vanishes beyonekﬁ. This can be achieved by smoothing with a spatial Gaussian.
However, smoothing poses a notable drawback, as it digtoetémage data, causing
features to disappear, merge and blur.

An alternative approach, closely related to the conceptnafrping” (e.g., [10]),
would be to take advantage of prior estimates of the optioal fif a point is estimated
to move at velocityy = (uz,u,), We can use the convolution dfin the direction of
(uz, uy, 1) to estimate the directional derivativg and apply

I = I, — ugly — uyly, (6)

The convolution that yieldd,, is equivalent to subsampling in the direction of
v — u, and thus the estimate éfis unaliased if the Fourier transform vanishes beyond
im. This occurs when either the estimated velocitig close to the real velocity
v, or the region is smooth. This is particularly importanttlas estimation of optical
flow in smooth regions is often inaccurate. Also note thastbegial smoothness afis
not required.

Note that temporal smoothing has no effect on the aliasinglpm, and it is desir-
able to have as little temporal smoothing as possible.

3 Extraction of Motion Boundaries and Scale-Space Structus

Recall from Section 2.2 that does not respond to motion boundaries when the bound-
ary cannot be inferred locally (e.g., when the object and#ekground are of the same
color locally). While there may be no cues to indicate theatmm of the boundary in
a fine scale, in a coarser scale (i.e., in a larger neighbaddhtbere may be enough
information and\ may respond. Thus we incorporate multi-scale componentin o
algorithm, in order to detect motion boundaries that aredetgctable at fine scales.

In order to define the notion of scale in our algorithm, note tihe evaluation of
A involves Gaussian convolutions in two different stages rindpthe estimation of the
partial derivatives, and when taking the average over tighberhoodv. In both cases,
larger Gaussians lead to coarser structures, and we steataehe size of the Gaussian
as thescale In this work we will only consider the spatial scale.

The notion of scale has been studied extensively for festsueh as edges and
blobs. As with these features, different structures carobead at different scales. The
response o to noise, which can occur in finer scales, is suppressed irseoscales.
On the other hand, localization is poor at coarse scales aabmboundaries may
break and merge.

Figure 4 illustrates this idea — at fine scale (Fig. 4byesponds only at discrete
locations, because the background consists of regionsoeitktant color, and the oc-
clusion can be detected only where there are color varigiiothe background. In the
coarser scale (Fig. 4c), the neighborhood of every bourngaint contains gradients in
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Fig. 4. Checkerboard example: (a) A frame from the sequence; (bY@rghow the response of
A at fine ;4 = 1) and coarses;, = 10) scales respectively. At the fine scalepnly responds
at intensity edges (which appear like discrete “burstshilevthe entire contour is visible at the
coarse scale, alas with considerable distortion. (d) shibe/éinal contour selected by integrating
over scales.

several directions and the boundary is detected contipdnSection 3.2 we describe
a method to combine data from multiple scales.

Image features, such as edges, typically shift and becosterttid at coarse scales.
The scale space structure of motion boundary edges (andtiayar ourocclusion de-
tecton has its own particular biases in coarse scales. As disgdussgection 4, motion
boundaries at coarse scales are shifted towards the odddige i.e., the occluding ob-
jects becomes “thicker”. In addition, it can be shown thatlifas is stronger when there
is a large intensity difference between the object and tldraund, and it increases
with scale.

3.1 Scale Normalization

One problem with multi-scale analysis is that derivativesrdase with scale. Indeed, if
0<1I<1,then
1
L], |1y £ —— (7)

27 Sy
when smoothing with a Gaussian of variangg. This well-known problem can be

handled by scale normalization, as proposed in [8]. Scatenalization is done by
defining thescale-normalizegartial derivatives

0 0
IJSSIU) = \/Szy - %(gsw x«I) and IZSSIU) = \/Szy - 8—y(gsmy xI) (8)

whereg;,, * stands for convolution with a Gaussian with variangg ThusZ™) and

If“’) are used in the evaluation afinstead off,, and,. Note that scale normalization
does not violate the assumptions leading to the definitioxiofSection 2.

One important property of scale normalization is théiiecomes invariant to spatial
scaling ofl. This means that gives comparable values for a video sequence in different
resolutions.

To see this, let us scaleby «, and define

J(x,y,t) = I(z/a,y/at) (9)



Substituting (9) into (8) yields
(10)

Let s, denote the variance of the Gaussian windeyvand letG (s=»-5~)[I] denote
the second moment matrix defined in (1), with the scales édmdihtiation and averag-
ing s, ands,,, respectively. From (10) it follows that

(o) ey = (G o 3

That is to say, ifJ is a scaling by of I, then the value oA at (x,y,t) in I at scales
Szy, S Will be the same as at the corresponding point iat scalesﬁsxy, a?s,,.

For our purpose of computing a goodclusion detectorit follows from (11) that
as long as our computation scans all scales in scale spaaesthlt does not depend on
the image resolution.

Note that in order for\ to be scale-invariant, it follows from (11) that, must be
proportional tos,,, as in [7]. In our implementation we use= s,, = s.,, which
defines a single scale We denote the evaluated at scaleas\(®).

3.2 Boundary Extraction in Scale-Space

Since)\ is computed by taking the average over a neighborhood sporese is diffuse.
We wish to extract a ridge curve whekeis strongest. This can be defined locally as
points where\ is maximal in the direction of the maximal principal curvauwhich
can be expressed as

Aoy(AZ = AD) = Aady Aoz — Ayy) =0
()‘m + )‘yy) ’ (()‘m - )‘yy)()‘:% - )‘32;) + 4)‘I)‘y)‘wy) <0 (12)
A2hyy — 20 Ay Aay + A2Aae < 0

Thus, at every scalg, the values of\ and its derivatives are computed, and the ridge
can be extracted. For reasons of numerical stability, at saales the derivatives of
A\(5) are computed with the same Gaussian smoothing

Different boundaries are extracted at different scalefinasscale boundaries may
often split because of the absence of local information caradse-scale boundaries may
disappear or merge. Since these may occur at different phtte image at different
scales, we wish to select different scales for boundangaetitn at different localities
(as in [8]). Considering the multi-scale boundary surfasehee union of all ridges in
A&) for s € (0,00), we wish to find a cross-scale boundary whafe is maximal.
This can be expressed as

As =0
{ Ass <0 (13)

using the scale-derivatives af

Combining (12) and (13) defines the fiabss-scale motion boundaryis a curve
in the three-dimensional spade-Y —S, defined by the intersection of the two surfaces
defined respectively by these 2 sets of equations.
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Fig. 5. Saliency measure. (a) All boundaries extracted from thdaandots example with illu-
mination changes (Fig. 2b); intensity codesesponse. (b) The most salient closed contour.

3.3 Segmentation

As stated above) also has some false responses which lead to the selectiafsef f
boundary fragments. It is therefore necessary to defineiensgl criterion, which is
used to select the most interesting boundaries. Since veeda@s a measure of local
boundary strength, for each connected set of boundarypuiatdefine thesaliency
measureto be the sum of the value of along the boundary, as in [8]. This measure
may be sensitive to fragmentation of the boundary, so inmmptéementation we tolerate
small gaps.

Finally, segmentation is achieved by searching for closediaurs with high saliency
and small gaps. We employ a simple greedy heuristic to cdrtheenotion boundary
fragments into a continuous boundary with maximal saliesrog minimal gaps. Since
the extracted boundaries are usually almost completehthisistic gives good results
(see Fig. 5).

4 Analysis

In order to analyze the performance of the proposed tecknige consider a video of
two moving layers?, i2, where w.l.0.g/? partially occludesg®. A frame in the video
sequence can be written as

I='(1-a)+1? a (14)

whereq is thematting map

We assume w.l.0.g. that the occlusion edge is perpenditutae X axis and that
at framet = 0 itis atz = 0. We further assume that the occlusion edge is a Gaussian-
smoothed line, sa is of the forma,, (z) = [*_ gs,(u)du (we denote the Gaussian
function with variance asgs).

If the motions of/' andi* are (v, v,) and (v2,v;) respectively, then the video
volume is given by

I(z,y,t) = 1" (z—vlt, y—v;t)-(l—a(m—vit)) + P (z—?t, y—vit)-a(x—fufct) (15)

Note that the motion af is the same as the motion & since it is the occluding layer.
Denoting the video volume of each layer&sz, y, t) = I*(x — vjit,y — vft), the
gradient of the video volume is given by

Vi=(1-a) - VI'+a -VI*?+(I?-1") - g5, 'n (16)
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wheren = (1,0, —v2)T. Note thatn is perpendicular in space-time to the occlusion
edge(0,1,0)” and to the motion vector* = (vZ,v;,1)", i.e.,n is the normal of the
plane in the video space formed by the motion of the occlusie.

Therefore,VI is composed of the matting 6¥ 7', VI?, and a component that
depends on? — I'. Note thatVI! is perpendicular tos!, while both VI? andn
are perpendicular te?. This means tha¥’I is composed of two components that are
related to the occluding layer and only one that is relateti¢mccluded layer.

For scale-space analysis we use the approximation

g*(f-a)=(gxf) (g*a) (7)

whereg is a Gaussian function and is an integral of a Gaussian as defined above.
Eq. (17) is an equality whefi is constant, and it provides a good approximation when
f does not change rapidly near= 0 (in each layer separately).

Applying (17), the gradient estimated at scalelenoted byvI1(*) = V (g, * I), is

VI®) x~ (1—agyrs)  VIN ag 1o VIO 4 (128 —11)) g v oon (18)

4.1 Velocity-Adapted Occlusion Detectot\r-

We assume the 2D gradients in each layer are distributesoally, in the sense that
the mean gradient is. Furthermore, we assume that they are uncorrelated. Thing u
(16) and (17), we can write the gradient structure tensonddfin (1) as

G =g, * (1—a)’VINVI)T + >V (VD) + (IP~1")? - g2, - on")

~hy-M' 4 hy-M? + hs -nn” (19)
where
1 0 —k hy =ct (1 — asisors,)?
M= 0 1 —uk and hy=c?-a?,, ., (20)
vy —vy (vF)® + (vp)? h3 = € Gy, 4 (s+50)/2

The constantg® = var(||Vi¥||)/2 andc = var(i> — I1)//47(s + so) describe the
distribution of intensities in the layers.

Then, the velocity-adapted occlusion detector from (3)lm@shown to be
I N (et

1/hy +1/(ha + h3)  1/hy +1/hs
From the expression above, we can draw the following corarhgs

AT (21)

— A7 has a single local maximum.

— Inthe special case wheté = ¢? (i.e., both layers have the same intensity variance)
andc — 0 (i.e., both layers have similar intensities); is maximal atz = 0.

— Inthe limite — 0, Ay is maximal wheny(z) = V¢l /(¥ + V/¢2), which means
that the detected edge location is biased towards the laiterlgwer intensity
variance. The magnitude of the bias is proportiona}/to+ so + s.,.

— Ifonly ¢* = ¢? is assumed, thef>Z (z = 0) < 0, therefore\r is maximal at
a negativer, which means that the detected edge location is biased devthe
occluded layer.
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4.2 Occlusion Detectom\

Behavior analysis of the smallest eigenvalués harder. Thus we make the further
assumption that' = 2 along the edge. Then we can omit the last term in (19) and get

G =1 —a)®M! + 2a*M? (22)
Calculating the eigenvalue of (22), the following can bevehio
— The smallest eigenvalue 6 is given by

a = 1—0(261 Vl 2+a202 v2 2
A A e

N e
A= (a “ 4b) where b= (1-a)?a?ct?|vi —v

— )X has a single local maximum.

— If c¢t|v!]|? = ¢2||v?||?, then)\ is maximal atz = 0 — where the edge is located.
— If ¢t|v!]]? > ¢?|v?||?, then) is maximal at some > 0, and vice-versa; in other
words, the detected edge location is biased towards the \Vejfe lower intensity

variance and smaller absolute motion.

The biasing effect of the occlusion relation is not evideme ¢b the particular as-
sumption we have made, although it was observed in our arpets. Note thah is
affected by absolute velocity, unlike the velocity-adaeerator .

5 Experimental Results

In our experiments we compared our algorithm with the mostinent motion seg-
mentation approaches, wherever code was available. To béthi, we establish the
baseline result by segmenting the optical flow. Such a setatien lies at the heart of
some more elaborate segmentation methods, such as [15k&tleauobust and reliable
implementation of the Lucas-Kanade algorithm [10], and potad segmented it using
a variety of edge operators, including Canny and variousadrdgpic diffusion methods
and clustering methods (e.qg., [20]), presenting the besitefor each example.

One influential motion segmentation approach relies ontgcaips [6] (and is there-
fore related to the more traditional regularization baggareaches [11]). Code for two
variants of this approach is available on the web by the &s@eauthors [6,18], and we
could therefore use their code to establish credible coismas. We note, however, that
in both cases the publicly available code can only work wéttified images. There-
fore, in order to obtain fair comparisons, we compared osuilts to the results of these
algorithms only with rectified image pairs, when possible.

Figure 6 demonstrates our algorithm on a stereo pair. The salient motion
boundary is shown in Fig. 6b superimposed on the first inpagien Fig. 6c illustrates
the baseline result - the edges of the optical flow. Althoadgghhighly unstable in some
textureless areas, this does not affect our algorithm'sopmance, as it is tolerant to
poor estimation of optical flow in such regions. Fig. 6d ithases the best MRF-based
segmentation using graph cuts [18]. See also results irvFig.

Figure 8 shows our algorithm’s performance on a video secpi@nith non-rigid
motion and illumination changes. The octopus and the rdefibeave similar color and
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(b) (d)

Fig. 6. Cup example. (a) The left image of a stereo pair. (b) Mosesakdge detected by our
algorithm. (c) Edges in the horizontal component of theagbtilow. (d) Edges from a graph cuts
segmentation algorithm [6].

@) (b) (© (d)

Fig. 7. Flower example. (a) The left image of a stereo pair. (b) Masient closed contour de-
tected by our algorithm. (c) Edges in the optical flow. (d) Eslfrom a graph cuts segmentation
algorithm [6].

(@) )

Fig. 8. Octopus example. (a) A frame from the sequence. (b) The nadisins closed contour
detected by our algorithm. (c) Edges in the optical flow.

texture, and thus spatial coherence is unreliable (notauitiqular the triangle-shaped
projection near the octopus’ head, which is in fact a badkgdofeature). Although
optical flow is inaccurate at motion edges (Fig. 8c), thissoet affect the quality of
the boundary extracted by our algorithm which uses it (Fig. 8

The tolerance to poor optical flow estimation is further destmted in Figure 9,
where a large amount of noise was added to the synthetic elswkrd sequence, caus-
ing numerous optical flow estimation errors. The magnituidh® flow estimation er-
ror is often greater than the true flow (Fig. 9b), particylantound the centers of the
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Fig. 9. Checkerboard example witts% white noise. (a) One of the frames; (b) Lucas-Kanade
optical flow magnitude; (c) Segmentation using graph cutsThe most salient contour found
by our algorithm.

(b) (d)

Fig. 10.Random dots example (see Fig. 1). W2th% white noise: (a) Segmentation using graph
cuts; (b) The most salient contour found by our algorithmth/gimooth non-linear deformation:
(c) Segmentation assuming affine motion using an implentientaf [20]; (d) The most salient
contour found by our algorithm.

squares, making segmentation based directly on the ofitealmpossible. Results of
the MRF-based method are also shown.

The main weakness of many MRF-based methods is the absespatail coher-
ence. This is demonstrated on the random dots example il Gagb where such meth-
ods have no spatial support and therefore fail.

Fig. 10c,d demonstrates our algorithm’s advantage whenatmamotion model
can be assumed. In this example, the texture of both the mmbfect and the back-
ground undergo smooth non-linear deformation. The resfiépplying [20] show that
when motion varies smoothly within an object, global modetimods fail.

6 Discussion

The occlusion detector we have presented is useful for @kttamotion boundaries.
Since we do not make any assumption regarding the color tureeproperties of ob-
jects, or about the geometric properties of the motion, dgwridhm works well on
natural video sequences where these assumptions cannaidee m

Although our algorithm uses precomputed optical flow, iti$yaised for estimating
the derivatives, and motion properties are not inferredchfio The algorithm is there-
fore not sensitive to the quality of the optical flow estiroati especially in textureless
regions where optical flow estimation is hard.

The algorithm relies mainly on background features whictappear and reappear
as a result of occlusion. These features may be sparse dndditiate the location of
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motion boundaries, as the algorithm processes the dataltipfawscales. As opposed
to algorithms that rely on motion estimation, our algorithsually does not require any
texture on the occluding object.

Since occlusion is the main cue used by our algorithm, it waevkll when velocity
differences between moving objects are small, since featwill still disappear due to
occlusion. Algorithms that rely on motion differences maydfit hard to distinguish
between different objects in such cases.
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