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Abstract. We propose an algorithm for recursive estimation of struc-
ture and motion in rigid body perspective dynamic systems, based on
the novel concept of continuous-differential matching constraints for the
estimation of the velocity parameters. The parameter estimation proce-
dure is fused with a continuous-discrete extended Kalman filter for the
state estimation. Also, the structure and motion estimation processes
are connected by a reprojection error constraint, where feedback of the
structure estimates is used to recursively obtain corrections to the mo-
tion parameters, leading to more accurate estimates and a more robust
performance of the method. The main advantages of the presented al-
gorithm are that after initialization, only three observed object point
correspondences between consecutive pairs of views are required for the
sequential motion estimation, and that both the parameter update and
the correction step are performed using linear constraints only. Simu-
lated experiments are provided to demonstrate the performance of the
method.

1 Introduction

Structure from motion is one of the central problems in computer vision and has
been extensively studied during the last decade. Given a sequence of 2-D images
obtained using a single moving camera, the objective is to compute the motion
of the camera and a 3-D model of the observed scene. The standard method is
to first estimate the motion of the camera, based on matching tensors, obtained
from point correspondences in a discrete image sequence. Then, given the motion
of the camera, the structure of the scene is obtained as a sparse set of 3-D points,
which can be used as a starting point for surface estimation or texture mapping,
c.f. [2].

The most common method for estimation of the matching constraints is
based on a discrete setting, where e.g. the fundamental (or essential) matrix
is estimated between an initial view and another view obtained later in the
sequence, c.f. [4]. Another approach, closely related to optical flow, is to use
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a continuous setting and estimate the motion parameters from continuous time
matching constraints based on image point positions and velocities, c.f. [5,11,13].

A large class of algorithms utilizes a dynamic systems formulation for the
purpose of estimation. The quantities to be estimated are then expressed as
states or parameters of a dynamic system, and the estimation task is posed as a
problem of state or parameter estimation. The resulting estimation algorithms
typically perform recursive estimation, where the estimated variables are up-
dated each time a new image is processed. The use of dynamic systems theory
for estimation of motion is described e.g. in [6, 10]. Estimation of structure us-
ing dynamic systems is described e.g. in [9], which contains results regarding
observability, and also presents algorithms and experimental results.

Attempts has been made to combine the discrete and the continuous meth-
ods. In [12], a number of differential matching constraints were derived and
an algorithm for updating the fundamental matrix along an image sequence was
outlined. However, no experimental evidence or details about the algorithm were
given. In this work we derive and utilize a novel matching constraint, called the
continuous-differential epipolar constraint (CDEC), for the estimation of mo-
tion parameters. The CDEC is here fused with a continuous-discrete extended
Kalman filter for the state estimation, in order to construct an algorithm for
recursive estimation of both structure and motion in a rigid body perspective
system. The system is here formulated as a set of ordinary differential equations
describing the motion of an object, combined with a measurement equation in
the form of perspective observations given at discrete time instants. We also
introduce a linear reprojection error constraint, where feedback of the structure
estimates is used to recursively obtain corrections to the motion estimates. This
constraint connects the structure and motion estimation processes in a consis-
tent way, and is shown by simulations to significantly improve the performance
of the method.

The main advantages of the CDEC-based method is that three image cor-
respondences between consecutive image pairs are sufficient for the motion pa-
rameter estimation, and that the update, as well as the parameter refinement
step, are performed using linear constraints only. This is clearly an advantage
e.g in real time applications, where computational speed and memory size might
be important performance factors.

2 Perspective system

2.1 Motion models

We consider two coordinate frames. One coordinate frame, the inertial world
coordinate frame, is considered fixed, while the other frame is assumed to be
attached to a moving camera, with its origin located at the camera center and
its third coordinate axis aligned with the optical axis. Without loss of generality,
the moving camera frame can be assumed to coincide with the inertial frame at
some initial time instant t0.



The relative motion between two camera positions is assumed to be described
by a rigid body transformation, obtained using a rotation matrix R ∈ SO(3) and
a translation vector b ∈ R3. Then, given a 3-D point on an observed object, its
inertial coordinates Xt0 and Xt relative to the camera positions at time t0 and
t respectively, are related by

Xt = RtXt0 + bt . (1)

Assuming R and b to be sufficiently smooth as functions of time, the same rela-
tion can be described in the continuous case using a dynamic systems formulation
as

Ẋ(t) = ŵ(t)X(t) + ν(t) , X(t0) = Xt0 , (2)

where ν ∈ R3×1 is defined by the relation

ν(t) = ḃ(t)− ŵ(t)b(t) , b(t0) = bt0 , (3)

and ŵ ∈ so(3) is the skew-symmetric matrix

ŵ = ṘRT , (4)

parameterized by the vector w = (w1 w2 w3)T according to

ŵ =




0 −w3 w2

w3 0 −w1

−w2 w1 0


 . (5)

Note that, for a constant w, we get by (4) that Rt = e bwtRt0 , where Rt0 is
the initial configuration. Also, if we let Rt1 denote the rotation between times
t0 and t1, and let R∆t denote the rotation between times t1 and t2, then the
rotation Rt2 between times t0 and t2 is given by the composition Rt2 = R∆tRt1 .
Further note that the exponential matrix e bwt can be efficiently computed using
Rodrigues’ formula [8].

In (2), w(t) can be interpreted as the angular velocity of the camera in the
inertial coordinates. The additive component ν(t) on the other hand, describes
the translational velocity of an imaginary point attached to the moving camera
frame, traveling through the origin of the inertial system at time t, c.f. [8].

Note that since we normally are able to observe only the relative motion
between the object and the camera, the system (2) can also be interpreted as
describing the motion of a point attached to a moving rigid body, as viewed from
an inertial coordinate frame located at the center of a fixed camera.

2.2 Image acquisition models

Assuming a calibrated standard pinhole camera model [2], homogenous image
coordinates xti of an observed object point X = Xt0 , obtained at discrete time
instants ti, can be described using the relation

λtixti = RtiX + bti , i = 0, 1, 2, . . . (6)



were λti
is a scale factor. We will assume that the object coordinate system has

been chosen such that Rt0 = I and bt0 = 0.
In the dynamic system formulation corresponding to (2), the images, again

assumed to be obtained at discrete time instants ti using a calibrated camera,
can be described by the relation

λti
xti

= Xti
, i = 0, 1, 2, . . . (7)

In the following we make the assumption of normalized homogenous image co-
ordinates. Thus λti

= X3,ti
, i.e. the scale factor λti

equals the point depth at
time ti.

Combining the continuous motion equations (2) with the discrete output
equation (7) results in one version of what is sometimes denoted a dynamic
perspective system [1].

In the following it is assumed without loss of generality that t0 = 0, and
that the discrete events are equally spaced in time, i.e. ti+1 − ti = ∆t, for
i = 0, 1, 2, . . . , and for some small number ∆t > 0.

2.3 Problem formulation

A structure and motion estimation problem can now be formulated as the task
of recursively estimating both the state X(t) and the motion parameters w(t)
and ν(t) of the system model (2) at the time t, given the set of perspective
measurements Mt = {xti | ∀i : ti ≤ t}. Or equivalently, given Mt, recover the
3-D position X of an observed point on a stationary object and the extrinsic
camera parameters Rt, bt in the model (1).

3 Matching constraints

3.1 The standard epipolar constraint

Discrete time matching constraints can be obtained using the relation (6), for
several different time instants ti, and eliminating the object point coordinates
X from the resulting system of equations. In this paper we limit ourselves to the
two-view constraint, which is thus obtained from

{
λ0x0 = X

λtxt = RtX + bt ,
(8)

where for simplicity of notation we use t = ti for some i ∈ {1, 2 . . .}. Eliminating
X from (8) gives the well known discrete epipolar constraint

xT
0 Rt

T b̂txt = 0 , (9)

where b̂ ∈ so(3) denotes the skew-symmetric matrix corresponding to the vector
b in the same way as ŵ is related to w by (5). The matrix Et

.= Rt
Tb̂t in (9) is

usually denoted the essential matrix.



If measurements are assumed to be continuously available, continuous time
matching constraints can be similarly derived using a continuous version of the
camera matrix equation (6) giving the continuous epipolar constraint

ẋT ν̂x + xT ŵν̂x = 0 , (10)

with ν and w as in (3) and (4), respectively. For details, see e.g. [6].

3.2 The continuous-differential epipolar constraint

We now introduce the continuous-differential epipolar constraint (CDEC), which
is one type of hybrid constraints, i.e. constraints combining continuous and dis-
crete elements, that can be used for matching constraint tracking.

Write down the camera matrix equations (6) for times t0 = 0, ti = t and
ti+1 = t + ∆t as follows





λ0x0 = X

λtxt = RtX + bt

λt+∆txt+∆t = Rt+∆tX + bt+∆t

(11)

To obtain first order approximations to the parameter matrices Rt+∆t and bt+∆t,
assume ŵ to be constant ŵ ≡ ŵt over the interval [t, t + ∆t]. Using (3) and (4)
then results in

bt+∆t ≈ bt + ḃt∆t = bt + (νt + ŵtbt)∆t . (12)

and
Rt+∆t ≈ Rt + Ṙt∆t = (I + ŵt∆t)Rt , (13)

Also, as a first order approximation to xt+∆t take

xt+∆t ≈ xt + ẋt∆t ≈ xt + ∆xt , (14)

where ∆xt is the image flow vector ∆xt = xt − xt−∆t. Note that the backward
difference, rather than the forward difference, is used here, since we intend to use
the resulting constraints for recursive parameter estimation, implying knowledge
of image data only up to the current time t.

Eliminating X in (11) using the first equation, expanding until first order in
∆t using (13) and (14), and assuming a normalization of the image coordinates
such that xt = (xt yt 1)T, and hence ∆xt = (∆xt ∆yt 0)T, results in

[
Rtx0 xt 03×1 bt

ŵtRtx0∆t ∆xt xt (νt + ŵtbt)∆t

]

︸ ︷︷ ︸
MCDEC




−λ0

λt

λt+∆t − λt

−1


 = 06×1 . (15)

The CDEC can thus be compactly expressed by the condition

rank [MCDEC] < 4 . (16)



4 Recursive structure and motion estimation

4.1 Motion estimation using CDEC

To perform recursive estimation of both state and parameters in the system
(2) given the perspective output (7), we intend to use the CDEC for sequential
velocity parameter update and recursively feed these updates to a separate state
estimator.

Expanding the minors of MCDEC in (15) and imposing the rank constraint
(16), gives the following different constraints in the motion parameters:

– Minors containing the first three rows give the standard epipolar constraint.
– Minors containing two rows out of the first three give linear constraints in

wt and νt, in total nine such linear constraints.
– Minors containing the three last rows give nonlinear constraints on the mo-

tion parameters.

For our purposes, only constraints of the second type are useful. It turns out
that there only exist two linearly independent constraints on the motion param-
eters from the nine constraints of the second type above. This implies that the
estimates of wt and νt can be updated using only three corresponding points
from a system of the type

Mt

[
wt

νt

]
= mt , (17)

with Mt = Mt(xk
0 ,xk

t ,∆xk
t , Rt, bt) ∈ R9×6 and mt = mt(xk

0 ,xk
t ,∆xk

t , Rt, bt) ∈
R9×1, for the point number index k ∈ {1, 2, 3}. Note that the structure of Mt

and mt may easily be set up in advance, and then evaluated for a given set of
measurements. There is thus no need to actually compute minors in each step
of the algorithm.

Given the new velocity parameter estimates wt and νt, approximate values for
Rt+∆t and bt+∆t can be computed using Rt+∆t = e bwt∆tRt and (12) respectively.

This method for motion recovery represents a huge improvement compared to
the standard discrete approaches, where five point correspondences give highly
nonlinear constraints, and at least eight point correspondences are needed to
obtain reasonably simple linear constraints.

Due to the local nature of the approximations employed in the CDEC, the
method requires fairly accurate initial values for the parameter estimates. An
effective initialization procedure is therefore desirable. In this work we utilize a
method based on the continuous epipolar constraint (10), leading to the con-
tinuous eight-point algorithm [6]. This means that for the very first step of the
estimation process, eight point correspondences are needed between the first two
images. But once the initial parameter estimates are obtained, only three point
correspondences between consecutive pairs of views are needed for subsequent
motion recovery.



4.2 State estimation using the continuous-discrete EKF

Given the motion parameters it is possible to employ a number of algorithms
for recursive structure recovery. Here we optionally select a continuous-discrete
extended Kalman (EKF) filter for the state estimation process [7].

It is suggested in [3] that in using an EKF for state estimation in perspective
systems, a coordinate transformation should be performed prior to filtering in
order to avoid adverse effects due to the nonlinearity in the measurement signal
(7). Defining X = ( X1 X2 X3 )T, the transformation used here for this purpose is

Z =
(

X1
X3

X2
X3

1
X3

)T

, (18)

which has the effect of linearizing the measurement equation and instead in-
troducing a multiplicative nonlinearity in the state equations. The transformed
system formulation employed in the state estimation part of the algorithm is
then obtained from (2) and (7), using (18) as

{
Ż = AZ + ζ + (ξTZ)Z , Z(0) = Z0

zti = CZti , i = 0, 1, 2 . . . ,
(19)

where A ∈ R3×3 and ζ, ξ ∈ R3×1 are new system matrices and vectors, parame-
terized by the velocity vectors w and ν according to

A =




0 −w3 ν1

w3 0 ν2

0 0 0


 , ζ =




w2

−w1

0


 , ξ =




w2

−w1

−ν3


 , (20)

and where we have also introduced the camera-type matrix

C =
[
1 0 0
0 1 0

]
. (21)

Introducing the estimation error covariance matrix P ∈ R3×3, and the EKF
parameter matrices Re ∈ R2×2 and Q ∈ R3×3, the discrete time measurement
filter algorithm can now be realized as the solution to two groups of equations.
At each ti, as a new measurement zti becomes available, the state estimate Z̃ is
updated according to

Kti = P−ti
CT

(
CP−ti

CT + Re

)−1
(22)

Z̃+
ti

= Z̃−ti
+ Kti(zti − CZ̃−ti

) (23)

P+
ti

= P−ti
−KtiCP−ti

, (24)

where superscripts − and + denote the value of the variable before and after
the update respectively. Between measurements the estimates are propagated
by integrating the deterministic set of differential equations

˙̃Z = AZ̃ + ζ + (ξTZ̃)Z̃ (25)

Ṗ = FP + PF T + Q (26)



from time ti to time ti + ∆t with initial values Z̃(ti) = Z̃+
ti

and P (ti) = P+
ti

respectively. Here F = F (t, Z̃) denotes the jacobian of (19), evaluated at Z̃, i.e.

F = A + (ξTZ̃)I + Z̃ξT . (27)

In a stochastic setting, the matrices Re and Q in the equations (22) and (26),
represent the covariance matrices of the image and the process noise vectors
respectively. Since we here deal with a purely deterministic system, Re and Q
can instead be considered as design parameters that can be tuned to improve
the estimation process.

4.3 Motion estimation refinement by reprojection constraints

For simplicity of notation, in this section we let t = ti denote one of the dis-
crete time instants when a new measurement becomes available. Given motion
estimates Rt and bt obtained using the CDEC through (17), the measurement
xt, and the transformed 3-D estimate Z̃−t from the EKF propagation equation
(25) between times t−∆t and t, we seek correction vectors α, β ∈ R3×1 of small
magnitude, such that improved motion estimates R+

t and b+
t are given by

R+
t = ebαRt , b+

t = bt + β . (28)

To determine the vectors α and β we intend to utilize a reprojection constraint.
Ideally, this implies that given the true initial 3-D position X0, we would like to
choose α and β such that the corrections (28) result in the true image xt as the
3-D point position at time t is reprojected onto the image plane by (6) according
to

λtxt = R+
t X0 + b+

t . (29)

A workable approximate version of the constraint for use in the current context
can be derived as follows. By (1) we have

X0 = RT

t (Xt − bt) . (30)

Combining this relation with (28) and (29), and expanding the rotation matrix
ebα to the first order in α̂ yields

λtxt = ebαXt + (I− ebα)bt + β ≈ (I + α̂)Xt + α̂bt + β

= Xt + α̂(Xt + bt) + β = Xt − ̂(Xt + bt)α + β .
(31)

Under the assumption of homogenous image coordinates, we have that λt = X3,t.
Further, since in the estimation process we do not have access to the true value for
Xt, we instead use the available estimate X̃−

t , obtained by inverse transformation
of the EKF estimate Z̃−t , which results in

X̃−
3,txt = X̃−

t − ̂(X̃−
t + bt)α + β , (32)



where everything except α and β can be considered known. Equation (32) can
also be expressed as

[
̂(X̃−
t + bt) −I

] [
α
β

]
= X̃−

t − X̃−
3,txt . (33)

Dividing through by X̃−
3,t, it is seen that the right hand side of (33) equals the

reprojection error x̃t − xt. Thus (33) constitutes a reprojection constraint on α
and β, and hence on the motion through (28).

It can be shown that for at least three different observed object point esti-
mates, the resulting systems corresponding to (33) will provide six independent
linear constraints on the six unknown parameters in α and β. Thus the desired
correction terms can be determined from the linear system




̂(X̃1−
t + bt) −I
̂(X̃2−
t + bt) −I

...
̂(X̃N−
t + bt) −I




︸ ︷︷ ︸
Mrepr

[
α
β

]
=




X̃1−
t − X̃1−

3,tx
1
t

X̃2−
t − X̃2−

3,tx
2
t

...
X̃N−

t − X̃N−
3,t xN

t


 , N ≥ 3 . (34)

It should be noted that (34) is consistent in the sense that if X̃k−
t = Xk

t for
k ∈ {1, 2, . . . N}, the right hand side will become the zero vector and, since Mrepr

has full rank, then also α = β = 0. Hence, according to (28), no correction of
the motion estimates will be made.

As will be exemplified in the simulation section, the inclusion of the repro-
jection constraint correction step significantly enhances the performance of the
estimation procedure, leading to more accurate and robust estimates of both
structure and motion.

4.4 Structure and motion algorithm

Using the results of the previous sections, the following algorithm can now be
employed for recursive structure and motion recovery:

1. Preparations

– Assume that images are obtained sequentially at time instants ti, i = 0, 1, 2 . . .,
equally spaced by ∆t. Also assume some initial values Z̃−t1 and P−t1 for the
state vector and the error covariance matrix respectively, as well as appro-
priate values for the other EKF tuning parameters.

– Given the images at times t0 = 0 and t1 = ∆t with at least eight point
correspondences, get initial parameter estimates w0 and ν0 using e.g. the
continuous eight-point algorithm.

– Compute Rt1 = e bw0∆t and bt1 = ν0∆t.



2. Estimation loop - for i = 1, 2 . . . do

– Using at least three point correspondences, set up the matching constraint
matrices Mt and mt of (17) at time ti from image points x0, xti , flow vectors
∆xti

and the parameter matrices Rti
and bti

.
– Solve the resulting linear system (17) for the new parameter estimates wti

and νti
and update the rotation matrix and the translation vector according

to Rti+∆t = e bwti
∆tRti and bti+∆t = bti + (νti + ŵtibti)∆t respectively.

– Apply the EKF update step at time ti to get the transformed state estimate
Z̃+

ti
, and the corresponding estimation error covariance matrix P+

ti
from the

equations (22)-(24)
– Using Z̃+

ti
and P+

ti
as local initial values, propagate Z̃(t) and P (t) according

to (25) and (26) over the time interval [ti, ti + ∆t], with the parameters wti

and νti

– Recover the 3-D position estimate X̃ from Z̃ on the time interval [ti, ti +∆t]
by inverse transformation.

– Find correction vectors α and β by the reprojection constraint (34), and
compute refined motion estimates according to (28).

Note that since we are estimating both structure and motion, the estimates are
inherently subjected to a scale ambiguity. In the above algorithm the scale issue
is resolved by assuming the translational velocity vector ν to be of unit length
in the initialization procedure. This together with the assumption of normalized
image coordinates fixes the scale for the subsequent parameter estimates through
(17).

5 Simulations

Since the initial parameter values obtained by the initialization process generally
can be assumed quite accurate, the truly interesting case will be when one or
both of the parameter vectors w and ν are time varying. The CDEC-based
method can then be evaluated by its ability to follow the time-variations in the
parameters, as well as by its ability to correctly recover the 3-D structure.

For purpose of illustration we simulate the system (2) for eight points in a
general configuration on a grid of stepsize δt = 10−4, and with the parameter
vectors

w(t) =
2
3

(
1, −1, 1

)
, ν(t) =

−1√
1.32

(
1, 0.4, −0.4

)T − 1
2

(−t, t, sin 4πt
)T

.

Perspective measurements were computed according to (7) at time instants sep-
arated by ∆t = 0.01. The true initial values for the three points used throughout
the estimation process were

X1
0 =

(
1.5, 0.5, 1.7

)T
, X2

0 =
(
1, 1.9, 2

)T
, X3

0 =
(
1, 1.2, 2.5

)T
.

The other points were used only in the eight-point algorithm employed in the
initialization step. The estimation process was conducted as outlined in Sect.
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Fig. 1. Estimation results: (a) True (solid) and estimated (dashed) translational veloc-
ity ν, (b) True (solid) and estimated (dashed) rotational velocity w, (c) 3-D estimation
errors for one of the observed object points.

4.4, with the initial transformed state estimates

Z̃1
0 =

(
0.5, 0.5, 0.5

)T
, Z̃2

0 =
(
1, 1, 0.5

)T
, Z̃3

0 =
(
1, 1, 1

)T
.

The EKF parameters were set to P0 = 100 · I, Q = 0.1 · I and Re = 0.01 · I, for
unity matrices I of suitable dimensions.

The estimates of the components of the rotational velocity w and the trans-
lational velocity ν together with the true values, are shown in Fig. 1(a) and
Fig. 1(b) respectively. The resulting 3-D estimation error for one of the observed
object points is shown in Fig. 1(c).

To illustrate the fact that the method is able to handle even abrupt changes
in the motion parameters, the same system was again simulated but now with
the time varying term in the expression for ν not turned on until t = 0.3 and
again turned off at t = 0.9. The estimation process was conducted using the
same parameters as before, and the results are shown in Fig. 2.
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Fig. 2. Estimation results for discontinuous motion parameter system: (a) True (solid)
and estimated (dashed) translational velocity ν, (b) True (solid) and estimated
(dashed) rotational velocity w, (c) 3-D estimation errors for one of the observed object
points.

To illustrate the effect of the motion estimate correction step described in
Sect. 4.3, the previous experiment was repeated, now without using the repro-
jection constraint. The results are shown in Fig. 3. It can be seen that although
the initial estimate in most cases is smoother, the motion estimation in general
is now less accurate, and the depth estimation exhibits a distinct bias.

6 Conclusion

We have proposed an algorithm for recursive estimation of structure and motion
from perspective measurements in a continuous-discrete setting, utilizing the
novel concept of the continuous-differential epipolar constraint for the estima-
tion of the velocity parameters, combined with a state estimator, here optionally
selected as the continuous-discrete EKF. The structure and motion estimation
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Fig. 3. Estimation results for discontinuous motion parameter system, obtained with-
out using the correction step: (a) True (solid) and estimated (dashed) translational
velocity ν, (b) True (solid) and estimated (dashed) rotational velocity w, (c) 3-D esti-
mation errors for one of the observed object points.

processes are connected by recursive feedback of the structure estimates, re-
sulting in reprojection error constraints used to obtain refined motion estimates.
Simulated experiments are included to illustrate the applicability of the concept.

An advantage of the presented method compared to the current state of the
art is that once the algorithm has been initialized, using e.g. the continuous
eight point algorithm, observations of only three object points are needed for
the sequential update and correction of the velocity parameter estimates. Fur-
ther, after initialization, both the parameter update and the correction step are
performed using linear constraints only. A possible drawback of the algorithm
is the use of image flow data, which might cause problems when dealing with
noisy images.

Note that it is not necessary that the same three points are tracked through-
out the whole image sequence. By the rigid body assumption, the motion pa-



rameters are common to all points on the observed object. Hence, the only
requirement is that three point correspondences are available long enough for
the EKF structure estimator to get past the initial transient phase. Then one or
all of the point correspondences could be replaced by new ones if necessary, and
the estimation process continued, with the appropriate changes made to (15)
and consequently to (17).

Future work includes the investigation of the possibility to construct provably
convergent adaptive structure and motion estimators based on the continuous-
differential matching constraints. Other desirable modifications are extensions
of the algorithm to the uncalibrated case, successful filtering of noisy image
data and the ability to automatically handle outliers and occlusions. As possible
solutions to these issues develop, experiments on real data sequences will be a
natural part of future research.
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