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Abstract

A dynamic texture is a generative model for video that
treats the video as a sample from spatio-temporal stochas-
tic process. One problem associated with the dynamic tex-
ture is that it cannot model video where there are regions
of motion with different dynamics, e.g. a scene with smoke
and fire. In this work, we introduce the layered dynamic tex-
ture model, which addresses this problem by introducing a
separate state process for each region of motion. We derive
the EM algorithm for learning the parameters of the model,
and demonstrate the efficacy of the proposed model for the
tasks of segmentation and synthesis of video.

1. Introduction

Traditional motion representations, based on optic flow,
are inherently local and have significant difficulties when
faced with aperture problems and noise. The classical solu-
tion to this problem is to regularize the optical flow field [1–
4], but this introduces undesirable smoothing across mo-
tion edges or regions where the motion is, by definition,
not smooth (e.g. vegetation in outdoors scenes). More re-
cently, there have been various attempts to model video as
a superposition of layers subject to homogeneous motion.
While layered representations exhibited significant promise
in terms of combining the advantages of regularization (use
of global cues to determine local motion) with the flexibility
of local representations (little undue smoothing), this poten-
tial has so far not fully materialized. One of the main lim-
itations is their dependence on parametric motion models,
such as affine transforms, which assume a piece-wise pla-
nar world that rarely holds in practice [5, 6]. In fact, layers
are usually formulated as “cardboard” models of the world
that are warped by such transformations and then stitched
to form the frames in a video stream [5]. This severely lim-
its the types of video that can be synthesized: while lay-
ers showed most promise as models for scenes composed
of ensembles of objects subject to homogeneous motion
(e.g. leaves blowing in the wind, a flock of birds, a picket
fence, or highway traffic), very little progress has so far

been demonstrated in actually modeling such scenes.

Recently, there has been more success in modeling
complex scenes asdynamic texturesor, more precisely,
samples from stochastic processes defined over space and
time [7–10]. This work has demonstrated that modeling
both the dynamics and appearance of video as stochas-
tic quantities leads to a much more powerful generative
model for video than that of a “cardboard” figure subject
to parametric motion. In fact, the dynamic texture model
has shown a surprising ability to abstract a wide variety
of complex patterns of motion and appearance into asim-
ple spatio-temporal model. One major current limitation
of the dynamic texture framework, however, is its inability
to account for visual processes consisting ofmultiple, co-
occurring, dynamic textures. For example, a flock of birds
flying in front of a water fountain, highway traffic moving
at different speeds, video containing both trees in the back-
ground and people in the foreground, and so forth. In such
cases, the existing dynamic texture model is inherently in-
correct, since it must represent multiple motion fields with
a single dynamic process.

In this work, we address this limitation by introducing
a new generative model for video, which we denote by the
layered dynamic texture(LDT). This consists of augment-
ing the dynamic texture with a discretehiddenvariable, that
enables the assignment of different dynamics to different
regions of the video. Conditioned on the state of this hid-
den variable, the video is then modeled as a simple dynamic
texture. By introducing a shared dynamic representation for
all the pixels in the same region, the new model is a lay-
ered representation. When compared with traditional lay-
ered models, it replaces the process of layer formation based
on “warping of cardboard figures” with one based on sam-
pling from the generative model (for both dynamics and ap-
pearance) provided by the dynamic texture. This enables a
much richer video representation. Since each layer is a dy-
namic texture, the model can also be seen as a multi-state
dynamic texture, which is capable of assigning different dy-
namics and appearance to different image regions.

Recently, some of the limitations of the dynamic tex-
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Figure 1. (a) The graphical model for the dynamic texture.xt is the hidden state at timet, andyt is the observed frame at timet; (b) The
graphical model for the layered dynamic texture.yi is an observed pixel process andx(j) is a hidden state process.Z is the collection of layer
assignment variableszi that assigns each pixels to one of the state processes, and ismodeled as an MRF; (c) An example of a4 × 4 MRF used for
layer assignment.

ture were also addressed in [11]. The layered formulation
now proposed has various differences with respect to this
work. First, it enables probabilistic pixel assignments, as
opposed to the hard assignments of [11]. Second, the learn-
ing method of [11] is exact only when the noise term of the
appearance component of the dynamic texture is zero. As
usual in computer vision, allowing this term to be different
than zero is important not only because it enables the pro-
cessing of video with noise, but also because it introduces
flexibility with respect to model mismatches. Finally, the
model of [11] does not enforce spatial consistency of the
assignments of pixels to regions. We show that this can be
naturally done with the layered dynamic texture model, and
can lead to significant improvements of segmentation accu-
racy when the different regions have similar dynamics.

The paper is organized as follows. In Section 2, we in-
troduce the layered dynamic texture model. In Section 3
we present the EM algorithm for learning the model from
training data. Finally, in Section 4 we present an experi-
mental evaluation in the context of segmentation and video
synthesis.

2. Layered dynamic textures

We start with a brief review of dynamic textures, and
then introduce the layered dynamic texture model.

2.1. Dynamic texture

A dynamic texture [7] is a generative model for video,
which treats the video as a sample from a linear dynami-
cal system. The model, shown in Figure 1 (a), separates
the visual component and the underlying dynamics into two
stochastic processes. The dynamics of the video are repre-
sented as a time-evolving state processxt ∈ R

n, and the
appearance of the frameyt ∈ R

m is a linear function of the
current state vector with some observation noise. Formally,
the system is described by

{

xt = Axt−1 +Bvt

yt = Cxt +
√
rwt

(1)

whereA ∈ R
n×n is a transition matrix,C ∈ R

m×n a
transformation matrix,Bvt ∼iid N (0, Q,) and

√
rwt ∼iid

N (0, rIm) the state and observation noise processes param-
eterized byB ∈ R

n×n and r ∈ R, and the initial state
x0 ∈ R

n is a constant. One interpretation of the dynamic
texture model is that the columns ofC are the principal
components of the video frames, and the state vectors are
the PCA coefficients for each video frame. This is the case
when the model is learned with the method of [7].

An alternative interpretation considers a single pixel as
it evolves over time. Each coordinate of the state vector
xt defines a one-dimensional random trajectory in time. A
pixel is then represented as a weighted sum of random tra-
jectories, where the weighting coefficients are contained in
the corresponding row ofC. This is analogous to the dis-
crete Fourier transform in signal processing, where a signal
is represented as a weighted sum of complex exponentials
although, for the dynamic texture, the trajectories are not
necessarily orthogonal. This interpretation illustratesthe
ability of the dynamic texture to model the same motion
under different intensity levels (e.g. cars moving from the
shade into sunlight) by simply scaling the rows ofC. Re-
gardless of interpretation, the simple dynamic texture model
has only one state process, which restricts the efficacy of the
model to video where the motion is homogenous.

2.2. Layered dynamic textures

We now introduce thelayered dynamic texture(LDT),
which is shown in Figure 1 (b). The model addresses the
limitations of the dynamic texture by relying on a set of
state processesX = {x(j)}K

j=1 to model different video
dynamics. The layer assignment variablezi assigns pixelyi

to one of the state processes (layers), and conditioned on the
layer assignments, the pixels in the same layer are modeled
as a dynamic texture. In addition, the collection of layer
assignmentsZ = {zi}N

i=1 is modeled as a Markov random
field (MRF) to ensure spatial layer consistency (an example
is shown in Figure 1 (c)). The linear system equations for



the layered dynamic texture are
{

x
(j)
t = A(j)x

(j)
t−1 +B(j)v

(j)
t j ∈ {1, · · · ,K}

yi,t = C
(zi)
i x

(zi)
t +

√
r(zi)wi,t i ∈ {1, · · · , N}

(2)

whereC(j)
i ∈ R

1×n is the transformation from the hid-
den state to the observed pixel domain for each pixelyi and
each layerj, the noise parameters areB(j) ∈ R

n×n and
r(j) ∈ R, the iid noise processes arewi,t ∼iid N (0, 1) and

v
(j)
t ∼iid N (0, In), and the initial states are drawn from

x
(j)
1 ∼ N (µ(j), S(j)).

As a generative model, the layered dynamic texture as-
sumes that the state processesX and the layer assignments
Z are independent, i.e. the layer motion is independent of
layer location, and vice versa. Given the layer assignments,
the LDT is a collection of dynamic textures over different
regions of the video. As a result, learning the LDT reduces
to learning several dynamic textures, when given the seg-
mentation of the video into regions of distinct motion. For
the more general case, the segmentation and the dynamics
can be learned simultaneously using the EM algorithm.

2.3. Modeling layer assignments

An MRF is used to model the layer assignments to en-
sure spatial consistency of the layer (see Figure 1 (c) for an
example of the grid). The MRF has the following distribu-
tion

p(Z) =
1

Z
∏

i

ψi(zi)
∏

(i,j)∈E

ψi,j(zi, zj) (3)

whereE is the set of edges in the MRF grid,Z a normaliza-
tion constant (partition function), andψi andψi,j potential
functions of the form

ψi(zi) =











α1 , zi = 1
...

...
αK , zi = K

(4)

ψi,j(zi, zj) =

{

γ1 , zi = zj

γ2 , zi 6= zj
(5)

The potential functionψi defines a prior likelihood for each
layer, whileψi,j attributes higher probability to configura-
tions where neighboring pixels are in the same layer. Rather
than learn the parameters of the potential functions for each
model, we will treat the MRF as a prior onZ that regular-
izes the smoothness of the layers.

3. Parameter estimation using EM

The parameters of the layered dynamic texture are
learned using the Expectation-Maximization (EM) algo-
rithm [12], which iterates between estimating hidden state

N number of pixels in a frame
τ length of the observed video sequence
K number of state processes
i index over the pixel sequences
j index over the state processes
t time index of a sequence
yi the ith pixel sequence
yi,t the observation at timet of yi

x(j) the jth state sequence

x
(j)
t the state at timet of x(j)

zi the layer assignment variable foryi

z
(j)
i the indicator variable thatyi is labeledj

Table 1. Notation for EM for layered dynamic textures

variablesX and hidden layer assignmentsZ from the cur-
rent parameters, and updating the parameters given the cur-
rent hidden variable estimates. One iteration of the EM al-
gorithm contains the following two steps

• E-Step:Q(Θ; Θ̂) = E
X,Z|Y ;Θ̂(log p(X,Y, Z; Θ))

• M-Step:Θ̂∗ = argmaxΘ Q(Θ; Θ̂)

In the remainder of this section, we derive the joint log-
likelihood of the model, followed by the derivations of the
E-step and M-step of the learning algorithm. See Table 1
for notation.

3.1. Log-likelihood

The state processesX and layer assignmentsZ are inde-
pendent, and hence the joint log-likelihood factors as

ℓ(X,Y, Z) = log p(X,Y, Z) (6)

= log p(Y |X,Z) + log p(X) + log p(Z) (7)

=
∑

i,j

z
(j)
i log p(yi|x(j), zi = j) (8)

+
∑

j

log p(x(j)) + log p(Z)

=
∑

i,j

z
(j)
i

τ
∑

t=1

log p(yi,t|x(j)
t , zi = j) (9)

+
∑

j

(

τ
∑

t=2

log p(x
(j)
t |x(j)

t−1) + log p(x
(j)
1 )

)

+ log p(Z)

wherez(j)
i is the indicator variable thatzi = j. Substituting

for the probability distributions and dropping the constant
terms yields the log-likelihood given in (20).



3.2. E-Step

Taking the conditional expectation of (20), the E-step re-
quires the computation of the following terms:

x̂
(j)
t = EX|Y (x

(j)
t ) (10)

x̂
(j)
i,t = EZ,X|Y (z

(j)
i x

(j)
t )

P̂
(j)
t,t = EX|Y (x

(j)
t (x

(j)
t )T )

P̂
(j)
i|t,t = EZ,X|Y (z

(j)
i x

(j)
t (x

(j)
t )T )

P̂
(j)
t,t−1 = EX|Y (x

(j)
t (x

(j)
t−1)

T )

ẑ
(j)
i = EZ|Y (z

(j)
i ) = p(zi = j|Y )

These expectations are intractable to compute in closed-
form since it is not known to which state process each of the
pixelsyi is assigned, and hence it is necessary to marginal-
ize over all configurations ofZ. This problem also appears
for the computation of the posterior layer assignment prob-
ability p(zi = j|Y ). While other inference approximation
methods, e.g. variational methods or belief propagation,
could be used, the current method that we adopt for approx-
imating these expectations is to simply average over draws
from the posteriorp(X,Z|Y ) using a Gibbs sampler (see
Appendix for details).

3.3. M-Step

The optimization in the M-Step is obtained by taking the
partial derivative of theQ function with respect to each of
the parameters. For convenience, we first define the follow-
ing quantities,

φ
(j)
1 =

∑τ−1
t=1 P̂

(j)
t,t φ

(j)
2 =

∑τ

t=2 P̂
(j)
t,t

Φ(j) =
∑τ

t=1 P̂
(j)
t,t Φ

(j)
i =

∑τ

t=1 P̂
(j)
i|t,t

ψ(j) =
∑τ

t=2 P̂
(j)
t,t−1 Γ

(j)
i =

∑τ

t=1 yi,tx̂
(j)
i,t

N̂j =
∑

i ẑ
(j)
i Λ

(j)
i =

∑τ

t=1 ẑ
(j)
i y2

i,t

(11)

Taking the partial derivative with respect to each parameter
and setting to zero yields the parameter updates:

A(j)∗ = ψ(j)(φ
(j)
1 )−1 (12)

Q(j)∗ =
1

τ − 1
(φ

(j)
2 −A(j)∗(ψ(j))T )

µ(j)∗ = x̂
(j)
1

S(j)∗ = P̂
(j)
1,1 − µ(j)∗(µ(j)∗)T

C
(j)∗
i = (Γ

(j)
i )T (Φ

(j)
i )−1

r(j)∗ =
1

τN̂j

N
∑

i=1

(Λ
(j)
i − C

(j)∗
i Γ

(j)
i )

The M-step parameter updates are analogous to those re-
quired to learn a regular linear dynamical system [13, 14],
with minor modifications for transformation matrices and
observation noise.

4. Experiments

In this section, we show the efficacy of the proposed
model for segmentation and synthesis of several videos with
multiple regions of distinct motion. Figure 2 (a) shows the
three video sequences used in testing. The first (top) is a
composite of three distinct video textures of water, smoke,
and fire. The second (middle) is of laundry spinning in a
dryer. The laundry in the bottom left of the video is spin-
ning in place in a circular motion, and the laundry around
the outside is spinning faster. The final video (bottom) is of
a highway [15] where the traffic in each lane is traveling at
a different speed. The first, second and fourth lanes (from
left to right) move faster than the third and fifth. All three
videos have multiple regions of motion and are therefore
properly modeled by the models proposed in this paper, but
not by a regular dynamic texture.

A layered dynamic texture (LDT) was fit to each of the
three videos. For comparison, a layered dynamic texture
with the layer assignmentszi distributed as iid multinomi-
als (LDT-iid) was also learned. In all the experiments, the
dimension of the state space wasn = 10. The MRF grid
was based on the eight-neighbor system (with cliques of
size 2), and the parameters of the potential functions were
γ1 = 0.99, γ2 = 0.01, andαj = 1/K. The expectations re-
quired by the EM algorithm were approximated using Gibbs
sampling. We first present segmentation results, to show
that the models can effectively separate layers with different
dynamics, and then discuss results relative to video synthe-
sis from the learned models.

4.1. Segmentation

The videos were segmented by assigning each of the pix-
els to the most probable layer conditioned on the observed
video, i.e.z∗i = argmaxj p(zi = j|Y ). Another possibility
would be to assign the pixels by maximizing the posterior
of all the pixelsp(Z|Y ). While this maximizes the true pos-
terior, in practice we obtained similar results with the two
methods. The former method was chosen because the indi-
vidual posterior distributions are already computed during
the E-step of EM.

Figures 2 (b) and (c) show the segmentation results ob-
tained using the LDT and LDT-iid models, respectively.
The segmented video is also available at [16]. From the
segmentations produced by LDT-iid, it can be concluded
that the laundry video can be reasonably well segmented
without the MRF prior. The segmentation of the composite
video using LDT-iid is slightly worse, and contains several
regions of noise. Nonetheless, this confirms the intuition
that the various video regions contain very distinct dynam-
ics that can only be modeled with separate state processes.
Otherwise, the pixels should be either randomly assigned
among the various layers, or uniformly assigned to one of



them. The segmentations of the traffic video using LDT-
iid are poor. While the dynamics are different, the differ-
ences are significantly more subtle, and segmentation re-
quires stronger enforcement of layer consistency. As ex-
pected, the introduction of the MRF prior improves the seg-
mentations for all three videos. For example, in the compos-
ite sequence all erroneous segments in the water region are
removed, and in the traffic sequence, most of the speckled
segmentation also disappears.

In terms of the overall segmentation quality, the LDT is
able to segment the composite video perfectly. The seg-
mentation of the laundry video is plausible, as the laundry
tumbling around the edge of the dryer moves faster than
that spinning in place. The model also produces a reason-
able segmentation of the traffic video, with the segments
roughly corresponding to the different lanes of traffic. Much
of the errors correspond to regions that either contain inter-
mittent motion (e.g. the region between the lanes) or almost
no motion (e.g. truck in the upper-right corner and flat-bed
truck in the third lane). Some of these errors could be elim-
inated by filtering the video before segmentation, but we
have attempted no pre or post-processing. Finally, we note
that the laundry and traffic videos are not trivial to segment
with standard computer vision techniques, namely methods
based on optical flow. This is particularly true in the case
of the traffic video where the abundance of straight lines
and flat regions makes computing the correct optical flow
difficult due to the aperture problem.

4.2. Synthesis

The layered dynamic texture is a generative model, and
hence a video can be synthesized by drawing a sample from
the learned model. A synthesized composite video compar-
ing the LDT and the normal dynamic texture can be found
at [16]. When modeling a video with multiple motions,
the regular dynamic texture will average different dynam-
ics. This is noticeable in the synthesized video, where the
fire region does not flicker at the same speed as in the origi-
nal video. Furthermore, the motions in different regions are
coupled, e.g. when the fire begins to flicker faster, the wa-
ter region ceases to move smoothly. In contrast, the video
synthesized from the layered dynamic texture is more real-
istic, as the fire region flickers at the correct speed, and the
different regions follow their own motion patterns.

5. Conclusions and Future Work

In this paper we have introduced a new model, the lay-
ered dynamic texture, that can model video that contains
regions of motion with different dynamics. For this class of
video, we showed that the layered dynamic texture is more
appropriate for synthesis than the regular dynamic texture.
In addition, the model provides a natural framework for seg-
menting video into regions of motion. One disadvantage of

the model is that the current implementation of the E-step
in the learning algorithm requires sampling methods, which
are computationally intensive. Future work will be directed
towards faster approximation methods, such as variational
approximation or belief propagation.

Appendix

A sample from the layered dynamic texture can be ob-
tained using the Gibbs sampler [17], which is a method for
sampling from complicated probability distributions. Not-
ing that it is much easier to sample conditionally from
the collection of variablesX andZ than on any individ-
ual x(j) or z(j)

i , the Gibbs sampler is first initialized with
X ∼ p(X), followed by alternating between sampling from
Z ∼ p(Z|X,Y ) and sampling fromX ∼ p(X |Y, Z).

The layer assignment distributionp(Z|X,Y ) is given by

p(Z|X,Y ) =
p(Y |X,Z)p(X |Z)p(Z)

p(Y |X)p(X)
(13)

∝ p(Y |X,Z)p(Z) (14)

∝ p(Z)
∏

i

p(yi|X, zi)) (15)

If the zi are modeled as independent multinomials, then
samplingzi involves sampling from the posterior of the
multinomialp(zi|X, yi) ∝ p(yi|X, zi)p(zi). If Z is mod-
eled as an MRF, then thep(yi|X, zi) terms are absorbed into
the self potentialsψi of the MRF, and sampling can be done
using the MCMC algorithm [18].

The state processes are independent of each other when
conditioned on the video and the pixel assignments, i.e.

p(X |Y, Z) =
∏

j

p(x(j)|Y, Z) =
∏

j

p(x(j)|Yj) (16)

whereYj = {yi|zi = j} are all the pixels that are assigned
to layerj. Using the Markovian structure of the state pro-
cess, the joint probability factors into the conditionals prob-
abilities,

p(x
(j)
1 , · · · , x(j)

τ |Yj) = p(x
(j)
1 |Yj)

τ
∏

t=2

p(x
(j)
t |x(j)

t−1, Yj) (17)

The parameters of each conditional Gaussian is obtained
with the conditional Gaussian theorem [19],

E(x
(j)
t |x(j)

t−1, Yj) = (18)

µ
(j)
t + Σ

(j)
t,t−1(Σ

(j)
t−1,t−1)

−1(x
(j)
t−1 − µ

(j)
t−1)

cov(x
(j)
t |x(j)

t−1, Yj) = (19)

Σ
(j)
t,t − Σ

(j)
t,t−1(Σ

(j)
t−1,t−1)

−1Σ
(j)
t−1,t

where the marginal mean, marginal covariance, and
one-step covariance areµ(j)

t = E(x
(j)
t |Yj), Σ

(j)
t,t =



ℓ(X,Y, Z) = −1

2

∑

i,j

z
(j)
i

τ
∑

t=1

1

r(j)

(

y2
i,t − 2C

(j)
i x

(j)
t yi,t + tr

(

C
(j)
i x

(j)
t (x

(j)
t )T (C

(j)
i )T

))

(20)

− 1

2

∑

j

tr
(

(S(j))−1
(

x
(j)
1 (x

(j)
1 )T − x

(j)
1 (µ(j))T − µ(j)(x

(j)
1 )T + µ(j)(µ(j))T

))

− 1

2

∑

j

τ
∑

t=2

tr
(

(Q(j))−1
(

x
(j)
t (x

(j)
t )T − x

(j)
t (x

(j)
t−1)

T (A(j))T −A(j)x
(j)
t−1(x

(j)
t )T +A(j)x

(j)
t−1(x

(j)
t−1)

T (A(j))T
))

− τ

2

∑

i,j

z
(j)
i log r(j) − τ − 1

2

∑

j

log
∣

∣

∣
Q(j)

∣

∣

∣
− 1

2

∑

j

log
∣

∣

∣
S(j)

∣

∣

∣
+ p(Z)

(a) (b) (c)

Figure 2. Frames from the test video sequences (a): (top) composite ofwater, smoke, and fire video textures; (middle) spinning laundry in a
dryer; and (bottom) highway traffic with lanes traveling at different speeds. Segmentation results for each of the test videos using: (b) the layered
dynamic texture, and (c) the layered dynamic texture without MRF.

cov(x
(j)
t |Yj), andΣ

(j)
t,t−1 = cov(x

(j)
t , x

(j)
t−1|Yj), which can

be obtained using the Kalman smoothing filter [13,14]. The
sequencex(j)|Yj is then sampled by drawingx(j)

1 |Yj , fol-

lowed by drawingx(j)
2 |x(j)

1 , Yj , and so on.
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