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Abstract
A scene containing multiple independently moving, possibly
occluding, rigid objects is considered under the weak per-
spective camera model. We obtain a set of feature points
tracked across a number of frames and address the prob-
lem of 3D motion segmentation of the objects in presence
of measurement noise and outliers. We extend the robust
structure from motion (SfM) method [5] to 3D motion seg-
mentation and apply it to realistic, contaminated tracking
data with occlusion. A number of approaches to 3D motion
segmentation have already been proposed [3, 6, 14, 15].
However, most of them were not developed for, and tested
on, noisy and outlier-corrupted data that often occurs in
practice. Due to the consistent use of robust techniques at
all critical steps, our approach can cope with such data, as
demonstrated in a number of tests with synthetic and real
image sequences.

1. Introduction

The SfM problem has been addressed by the computer vi-
sion community since late eighties. The factorisation pro-
cedure of Tomasi and Kanade [10] calculates the three-
dimensional coordinates of an object from a sequence of
feature points tracked across a number of frames. Given
the 2D coordinates of the features, the output is the 3D co-
ordinates of the points and the base vectors of the camera
planes. The former is usually called the structure data, the
latter the motion information.

The Tomasi-Kanade method [10] is applicable to a sin-
gle (segmented) dynamic rigid object viewed under orthog-
raphy. More recent studies [2, 13] attempt extending the
theory to the nonrigid case. Other studies [7, 9] use the
para-perspective or the perspective camera models. A key
problem of the factorisation is, however, that of reliableseg-
mentation. The procedure [10] is not robust. In particular, it
fails if the input 2D data contains points of different moving
objects.

A number of methods for 3D motion segmentation of
feature points have already been proposed. (In this paper,
we only consider motion segmentation methods that ex-

plicitely use 3D information.) Most of the approaches work
with affine camera model. Costeira and Kanade [3] pre-
sented an algorithm based onrank estimationof the mea-
surement matrix. The matrix contains the 2D coordinates of
points tracked over all frames. A related algorithm was pro-
posed by Gear [4]. Kanatani [6] developed a subspace based
method that also needs rank estimation. Machline et al. [17]
published a segmentation method applicable to rigid objects
and to nonrigid objects that can be represented by linear
combinations of rigid objects. The method relies on motion
consistency that groups together pixels whose motion fol-
lows the same pattern over time. In this work, the measure-
ment matrix is the optic flow field matrix whose columns
are clustered based on rank estimation of sub-matrices.

The major drawback of the above algorithms is that they
are noise-sensitive because of rank estimation. There is no
universal, efficient rank estimation technique applicable to
matrices deteriorated by significant noise and outliers. Un-
fortunately, the 2D coordinates of feature points tracked by
standard trackers (e.g., [11]) in real sequences form very
noisy measurement matrices; the same applies to measure-
ment matrices based on optic flow.

For noise-free data, or in presence of small noise, the
rank estimation based algorithms work reasonably well.
They can segment an arbitrary number of independently
moving objects. However, the situation changes when real,
strongly contaminated tracking data is to be processed. This
is why some of the above studies (for example, [3, 6]) use
markers or manually selected feature points in their tests.

Torr et al. [12] proposed 3D motion segmentation meth-
ods based on the estimation offundamental matricesor tri-
focal tensors. These algorithms work with real perspective,
but compute robust statistics only from two or three images.
The segmentation is based on clustering of the tracked fea-
ture points according to fundamental matrices or trifocal
tensors. A weak point of these methods is handling rela-
tively small objects. When an object is represented by a
small portion of all feature points, it is difficult to segment
the points of the object by clustering, because too many
samples are needed to find the initial cluster. Otherwise,
the tests presented in [12] demonstrate that the methods can
cope with realistic data such as automatically tracked fea-
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ture points.
The epipolar constraint was generalised to the multibody

case by Vidal et al. [14] who use the multibody fundamental
matrix for SfM in case of multiple moving objects. How-
ever, this method needs many image pairs to obtain the
multibody fundamental matrix, and it relies on rank esti-
mation to calculate the number of objects. The epipolar
constraint was also applied for optical flow based segmenta-
tion under weak perspective [15]. The disadvantage of this
method is the sensitivity of fundamental matrix computa-
tion to noisy co-ordinates of the tracked points.

In this paper we propose a new robust method for 3D
motion segmentation. The proposed method is an exten-
sion of the weak-perspective SfM algorithm of Hajder et
al. [5] which is applicable to strongly contaminated track-
ing data, when the inlier ration is below50%. Due to the
use of robust techniques, our 3D motion segmentation ap-
proach can also handle such data. The advantage of our
method over the subspace based methods [3, 6] is in the use
of 3D motion coherence. Motion based segmentation under
weak perspective is a special type of subspace clustering.
The subspace methods do not consider constraints on 3D
motion of objects.

The structure of this paper is as follows. In section 2
we introduce basic notions and present formulas related to
structure from motion under orthography and weak perspec-
tive. We will need these equations later on in section 3,
where the proposed method is described. Experimental re-
sults are given in section 4, conclusions and outlook in sec-
tion 5.

2 SfM under weak perspective

Given P feature points of a rigid object tracked acrossF
frames,xfp = (ufp, vfp)T , f = 1, . . . , F , p = 1, . . . , P ,
the goal of SfM is to recover the structure of the object. For
orthogonal projection, the 2D coordinates are calculated as

xfp = Rfsp + tf , (1)
whereRf = [rf1, rf2]T is the orthogonal rotation matrix,
sp the 3D coordinates of the point andtf the offset. Under
the weak perspective model, the equation is

xfp = qfRfsp + tf , (2)
whereqf is the nonzero scale factor of weak perspective.
The offset vector is eliminated by placing the origin of 2D
coordinate system at the centroid of the feature points.

For all points in thef -th image, the above equations can
be rewritten as

Wf = (xf1 . . . xfP ) = Mf · S (3)
whereMf is called the motion matrix,S = (s1, . . . , sP )
the structure matrix. Under orthographyMf = Rf , under
weak respectiveMf = qfRf .

For allf , equations (3) formW = M · S, whereWT =
[WT

1 ,WT
2 , . . . ,WT

F ] andMT = [MT
1 ,MT

2 , . . . ,MT
F ]. The

task is to factorise the measurement matrixW and obtain
the structural informationS. This can be done in two steps.
In the first step the rank ofW is reduced to three by the
singular value decomposition (SVD), since the rank ofW
is at maximum three:W 2F×P = M̂2F×3 · Ŝ3×P . This
factorisation is determined only up to an affine transforma-
tion because an arbitrary3 × 3 non-singular matrixQ can
be inserted so thatW = M̂QQ−1Ŝ. ThereforeM̂ con-
tains the base vectors of the frames deformed by an affine
transformation. The matrixQ can be determined optimally
by least squares optimisation both for orthogonal [10] and
weak-perspective [16] case imposing the constraint on the
frame base vectors. The estimated motion vectors can be
written asR = M̂Q, whereR = [r11, r12, . . . , rF1, rF2]

T .

3. Proposed algorithm
The motion segmentation algorithm uses two basic assump-
tion: Each object is rigid, connected and does not contain
narrow parts (compactness).

The main idea of the algorithm is as follows. Select and
track as many feature points as possible. Divide the first
frame of the sequence into regions, for example, discs or
squares. The regions may overlap. (In our implementation,
we use non-overlapping squares.) A feature is identified by
its region in the first frame. Then apply the robust factori-
sation [5] to the tracked 2D features of each region sepa-
rately. Check if there is a correct dominant 3D motion in a
region. Select the correct region having the least motion er-
ror. Use this region as the seed and grow it by aggregating
in the neighbouring regions those points that have similar
3D motion. Stop at motion borders, remove the aggregated
features, then iterate the procedure until no more correct re-
gion is available.

The factorisation method of Hajder et al. [5] is a robust
procedure based on the Least Trimmed Squares [8]. It can
find dominant 3D motion in presence of noise and a large
amount of outliers, by detecting and discarding the outliers.
For the details, the reader is referred to the paper [5]. Details
of other parts of the proposed segmentation approach are
given below. In the end of this section, we summarise the
algorithm.

3.1. Selecting region with least motion error
The tracked points of a region are processed by the robust
SfM algorithm [5]; the outliers are detected and removed
from the measurement matrix. The remaining data can po-
tentially represent a correct 3D motion, but there is no guar-
antee for that. When the algorithm [5] has been applied to
every region of the first frame, we need a measure of motion
error to be able to compare the regions and select the most
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promising one. The motion error for a region is obtained as
follows:

1. Select randomly four points from the set of the region’s
features.

2. Calculate motion and structure by factorisation.
3. Normalise all base vectors. Replace the third element

of each base vector by its absolute value because of
reflection. Rotate the base vectors: let the base vectors
of the first frame be parallel to[1, 0, 0]T and[0, 1, 0]T

vectors.
4. Create a concatenated vector by concatenating the base

vectors of the camera planes.
5. Repeat steps 1–4.

Steps 1–5 yield two concatenated vectors.
6. Calculate the norm of the difference between the two

concatenated vectors. Divide the difference by the
number of the base vectors.

7. Repeat 20 times steps 1–6.
8. Calculate the error as the average of the 20 norms ob-

tained.

In [5], the above motion error is analysed both theoretically
and experimentally. An expression is derived for the mean
of the squared difference between two random vectors on
a semi-sphere. In this model, for infinitely large noise the
expected value of the error is 1.5. Tests on simulated data
with different levels of noise confirmed that the error tends
to 1.5 as noise grows. Figure 1 shows the plot of the average
square error versus the noise level. (The horizontal axis is
100r/R, whereR is the size of the synthesised moving ob-
ject, andr is the variance of the Gaussian noise.) As noise
grows, the error increases, then levels off at a value close
to 1.5. The motion data becomes random; the base vectors
of the frames spread randomly over a semi-sphere of unit
radius.

Figure 1: Errors of motion estimation versus 2D noise level.

In the proposed segmentation algorithm, we use the
above analysis to decide if the motion of a region iscor-
rect: If the motion error is below a thresholdTerr, the fea-
ture points belong to the same moving object. In the tests

below, we setTerr = 0.5. A motion error value is obtained
for each region, and the region with the smallest error is
selected as the seed.

3.2. Finding points with known motion

After a correct seed motion has been selected, we try to ex-
tend it to the points of the neighbouring regions. In this
section we show how to determine if a feature point is mov-
ing according to a known 3D motion. Due to the ambiguity
of factorisation, this problem is not trivial.

Given a measurement matrixW , factorisation yields a
3D motion matrix and a 3D structure matrix:

W = (M̂Q)(Q−1Ŝ), (4)

whereM = (M̂Q) represents the 3D motion andS =
(Q−1Ŝ) represents the 3D structure. The factorisation is
ambiguous: the formula described in section 2 provides a
correct result, but this result is not unique. If the coordinate
system of the structure is rotated by a matrixA, the mo-
tion vectors byAT , whereA is an Euclidean transforma-
tion matrix (AAT = I), thenW = (MAT )(AS) is also a
correct factorisation. It can be proved that ifrank(S) = 3,
then all possible factorisations can be written in the form of
W = (MA)(AT S). (See appendix A for a proof.)

We have a correct 3D motion matrixM and we would
like to separate the feature points with this motion from
other feature points. The segmentation process is based on
the error value of a feature. This error,εp, is different from
the motion error discussed in section 3.1. For better clar-
ity, we will call εp the incoherence value. It is defined as
follows.

Let wp be thepth column of the measurement matrix.
wp contains the tracked 2D coordinates of a feature point
over all frames. According to motionM , the 3D coordi-
nates of thepth point can be estimated by the least square
method: ŝp = M†wp. The 2D coordinates are given by
ŵp = MM†wp. The error valueεp is determined as

εp = ‖wp − ŵp‖ = ‖(E −MM†)wp‖ (5)

The incoherenceεp is essentially the reprojection error of
pointp for motionM . It has the beneficial property of being
invariant to Euclidean transformations of the motion matrix.
In appendix A, we prove that Tomasi-Kanade factorisation
is ambiguous up to an Euclidean transformation. Therefore,
if M is a correct motion matrix andA is orthogonal, then
M̃ = MA is also a correct motion matrix. The error value
ε̃p according to the transformed motion matrix̃M is equal
to εp:

ε̃p = ‖(E −MA(MA)†)wp‖ = εp, (6)

because(MA)† = AT M†, as shown in appendix B.
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3.3. Summary of proposed algorithm

The main steps of the proposed 3D motion segmentation
algorithm are as follows:

1. Tracking . Compute a dense feature point set and track
the features over the sequence. Divide the first frame
into regions. Identify each feature by its region in the
first frame.

2. Computing motion errors. For each region,

(a) detect outliers by the algorithm [5] and discard
them from the measurement matrix;

(b) calculate motion error according to section 3.1.

3. Selecting correct seed region. Select the region with
the minimal motion error. If this minimal error exceeds
a pre-defined limit (Terr = 0.5), stop the algorithm
and indicate that there is no more correct 3D motion in
the sequence. Otherwise, calculate the motion matrix
M for the points of the selected region.

4. Calculating incoherence values. For each region,

(a) detect outliers and discard them;

(b) for each point, calculate by (5) its incoherence
value with respect to the motion matrixM ;

(c) calculate the average incoherence for the region;

(d) create anincoherence mapwhose pixels repre-
sent the normalised incoherence values of the re-
gions.

5. Growing the seed region. Grow the seed in the inco-
herence map by aggregating the connected pixels with
similar incoherence values.

6. Iterating the procedure. Remove the feature points
of the segmented area from the initial dataset, then go
to step 2.

4. Experimental results

The proposed 3D motion segmentation algorithm was tested
both on synthetic and real video sequences. In all cases,
feature points were detected in the first frame by the well-
known KLT feature (corner) detector [11]. Then a simple
template matching method (shift-corrected SSD) was used
to track the points. When setting the parameters of the algo-
rithms, we tried to obtain as many tracks as possible, at the
expense of higher possibility of incorrect or lost tracks. This
was done for two reasons: (1) One needs dense features for
a good segmentation; (2) We wanted to test the robustness
of the method against a large number of outliers.

4.1. Test on synthetic sequence
The first test sequence consists of a cube and a sphere
moving (shifting and rotating) separately against a textured
background, all viewed with a moving camera. That is, the
background is dynamic. The first and the last frames of the
sequence are shown in figure 2. The animation was gener-
ated by the PovRay ray-tracer software with a resolution of
1000×800 pixels. The sequence consists of 10 frames. The
sphere occludes the cube in all frames of the sequence.

Figure 2: First and last frames of synthetic sequence.

Figure 3 shows the 3D motion errors of the regions, com-
puted in step 2 of the algorithm: the brighter the pixel, the
larger the error. If a pixel is white, motion error cannot be
computed because of the lack of features in the region. The
locations of the cube and the sphere in the first frame are
visible. The error is high at the occlusion border because
the motion data of the objects are mixed in the measurement
matrix of the factorisation. The motion error is larger at the
background than at the objects because the camera motion
is smaller than the motion of the cube and the sphere.

Figure 3: Motion errors for synthetic sequence.

Note that in this case the error map itself could be used
to segment the objects. However, the result improves after
using the incoherence map. Figure 4 displays the incoher-
ence maps w.r.t. the motion matrices of the cube and the
sphere, respectively. The segmented regions are shown in
figures 5 and 6.

4.2. Test on real sequences
The segmentation method was also tested on two real image
sequences. The ‘Bear’ sequence (figure 7) was acquired
by a 2Mpixel digital camera. The sequence has 15 frames.
Both the camera and the object are moving. The resolution
is relatively high:800 × 600 pixels. The segmented region
of the Bear is shown in figure 8.
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Figure 4: Incoherence maps for two detected motions. Left:
w.r.t. cube motion. Right: w.r.t. sphere motion.

Figure 5: Segmentations of incoherence maps.

The ‘Car’ video (figure 9) shows a car taking a bend.
The quality of the sequence is poor, the resolution is only
320 × 200 pixels, and the images are noisy. Despite the
low quality of the video, the segmentation algorithm can
separate the feature points of the car from the points of the
moving background, as demonstrated in figure 10.

5. Summary and conclusions
We have presented a novel method for 3D motion segmenta-
tion of a sequence showing multiple moving objects. Com-
pared to the previous methods using rank estimation, our
method has the advantage of being robust and applicable
to real tracking data in presence of significant noise and a
large number of outliers. Compared to the methods by Torr
et al. [12], our method has the advantage of being capable
to handle relatively small objects as well. Another positive
feature is that the algorithm has a small number of parame-
ters that are easy to interpret and set.

In particular, we have developed principled methods for
estimating and thresholding the motion error of a region
and for determining, in an invariant way, the feature points
whose motion is consistent with a given motion matrix.

Figure 6: Segmented regions of cube (left) and sphe-
re (right).

Figure 7: First and last frames of ‘Bear’ sequence.

Figure 8: Segmented region of Bear.

The robustness of the proposed method is due to: (1) ro-
bust seed selection (searching regions containing correct 3D
motion); (2) robust coherence measure that provides a map
which is segmented by region growing.

The property of robustness does not come at no cost.
Since the robust techniques used at all critical steps of our
approach require multiple testing of the data, the method
needs a significant computational effort; however, this ef-
fort is prohibitive neither for testing nor for application.

We are currently working on quantitative, comparative
performance evaluation of the proposed method. At
the same time, we would like to extend the method to
articulated, non-rigid objects.

Acknowledgment. This work was supported by the EU
Network of Excellence MUSCLE (FP6-507752).

References
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A. Ambiguity of factorisation
The Tomasi-Kanade factorisation method factorises the
measurement matrixW into a motion matrixM and a struc-
ture matrixS: W = MS, whereM = [MT

1 MT
2 ...MT

F ]T

represent the motion data andS contains the 3D coordinates
of the object.Ml is the motion information of thelth frame:
MT

l = [iTl , jTl ]. il andjl are 3D base vectors of thekth im-
age plane. Motion submatrices can be completed with the
third base vector perpendicular to the fist two base vectors
il andjl: M̃l = [iTl , jTl ,kT

l ], wherekl = il × jl andM̃ is
an orthogonal matrix.

The factorisation of the measurement matrixW is am-
biguous. Let us assume that we have a valid factorisation
W = MS. All valid factorisation ofW can be written
in the form of W = (MA)(A−1S), if rank(S) = 3.
SinceMA is a motion matrix, it must the fulfil the mo-
tion constraints. LetMA be denoted byN = MA =
[NT

1 NT
2 ...NT

F ]T . Ñl denotes the completed new motion
matrix of thelth image of the sequence. It is known that
Nl = MlA andÑl = M̃lA. Ñl is orthogonal, so we have
ÑT

l Ñl = AT M̃T M̃A = I. This is true if and only if
AT A = I, because the original completed motion matrix is
orthogonal.

The following conclusion is drawn: The Tomasi-Kanade
factorisation is ambiguous up to an arbitrary orthonormal
transformation.

B. Pseudoinverse of matrix product
Given a matrixM , its Moore-Penrose pseudoinverseM†

and an orthogonal matrix A, the task is to determine the
pseudoinverse ofMA. It is known [1] that the pseudoin-
verse ofM can be written as

M† = V (V T V )−1(UT U)−1V T , (7)

whereM = UV T is a minimal dyadic decomposition ma-
trix M . The dyadic decomposition ofMA is

MA = U(V T A) (8)

The Moore-Penrose pseudoinverse based on dyades can be
written as follows:

(MA)† = AT V (V T AAT V )−1(UT U)−1V T = AT M†,
(9)

becauseAT A = I.
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