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Abstract

A novel hybrid region-based and contour-based multi-
ple object tracking model using optical flow based elas-
tic matching is proposed. The proposed elastic matching
model is general in two significant ways. First, it is suitable
for tracking of both, rigid and deformable objects. Sec-
ond, it is suitable for tracking using both, fixed cameras
and moving cameras since the model does not rely on back-
ground subtraction. The elastic matching algorithm exploits
both, the spectral features and contour-based features of the
tracked objects, making it more robust and general in the
context of object tracking. The proposed elastic matching
algorithm uses a multiscale optical flow technique to com-
pute the velocity field. This prevents the multiscale elas-
tic matching algorithm from being trapped in a local opti-
mum unlike conventional elastic matching algorithms that
use a heuristic search procedure in the matching process.
The proposed elastic matching based tracking framework
is combined with Kalman filter in our current experiments.
The multiscale elastic matching algorithm is used to com-
pute the velocity field which is then approximated using B-
spline surfaces. The control points of the B-spline surfaces
are used directly as the tracking variables in a Kalman fil-
tering model. The B-spline approximation of the velocity
field is used to update the spectral features of the tracked
objects in the Kalman filter model. The dynamic nature
of these spectral features are subsequently used to reason
about occlusion. Experimental results on tracking of multi-
ple objects in real-time video are presented.

1 Introduction and Background

Multiple object tracking in dynamic scenes is challeng-
ing in several aspects. The first challenge arises from occlu-
sions, which includes mutual occlusion between foreground
objects and occlusion caused by background objects. When
occlusion occurs, some objects are partially or totally invis-
ible. This makes it difficult to accurately localize the oc-
cluded object and track it continuously over several image

frames. The second challenge is the formulation of an ob-
ject model that is capable of handling object deformation.
The object model should be able to capture the most impor-
tant and relevant information about the object and facilitate
fast and reliable tracking. The ability to deal with occlusion
depends, to a great extent, on the object model. The third
challenge is to meet the real time constraints of most track-
ing applications in the real world. Fast and accurate object
localization over time is the ultimate objective of a tracking
system.

Generally speaking, there exist three broad categories
of object models in the context of tracking: contour-based
models [1], [5], [7], [8], [23], region-based models [2], [3],
[4], and feature point-based models [9], [10], [22]. The
contour-based model does not encode any color or edge in-
formation within the interior of the object. The contour in-
formation by itself is not enough to handle general instances
of occlusion. In the absence of any spectral information,
feature point-based tracking methods are easily distracted
by noisy feature points in the background and are, by their
very nature, limited to objects rich in feature points. A
region-based object model is more suitable when occlusion
is present since it encodes spectral information.

Occlusion handling is another important issue that arises
in multiple object tracking systems and is closely inter-
twined with the choice of the object model. In the case
of contour-based models, the robustness of the occlusion
reasoning is highly dependent on the quality of object seg-
mentation and typically, only simple cases are well handled.
Koller et al. [7] propose a depth-based occlusion reasoning
scheme based on a geometric model which computes the
projection of the moving object in the 3-D world onto the
image plane. However, their method is only applicable in
situations where the object moves in the vertical direction
in the image plane and hence not valid for more general
tracking scenarios. Also, region-based object models that
rely primarily on color/gray level histograms of the mov-
ing regions are not well suited to handle occlusion since no
object shape information is available. McKennaet al. [3]
use simple correspondence analysis to do tracking when the
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tracked objects are independent of each other. In the event
of occlusion, their technique can only compute a statistical
probability that a pixel of a given color belongs to a specific
object which is not useful for the purpose of accurate object
localization.

Elastic matching has been used widely for deformable
object recognition [6] and tracking [15]. Elastic matching
is potentially well suited for tracking of deformable objects.
Since elastic matching exploits both, the spectral informa-
tion within and the spatial coherence constraint amongst the
object pixels, it can be easily integrated with a region-based
object model. Another advantage of elastic matching is that
the tracking results are not dependent on the accuracy of the
background subtraction used to extract the moving objects.
This makes it possible to track moving objects with a mov-
ing camera. However, most existing elastic matching meth-
ods use a heuristic search algorithm within the matching
procedure [6, 15, 16, 17] and are hence prone to get trapped
in a local optimum. Optical flow methods exploit the image
gradient information to compute the velocity field, mak-
ing it possible to avoid a local optimum within the elastic
matching procedure. However, most optical flow methods
use only gray scale images and the velocities at each im-
age pixel are computed independently, thus resulting in a
noisy velocity field. In a homogeneous image region, the
image gradient value is a constant (close to zero) resulting
in ambiguous values for the velocity field. Also, most op-
tical flow algorithms ensure only local consistency of the
velocity field since the image gradient is computed within a
local window.

Very few optical flow algorithms using multiple-channel
(multi-spectral) images have been reported in the research
literature. Markandeyet al. [19] and Gollandet al. [18]
have proposed optical flow algorithms that use images with
2 and 3 channels respectively. In this paper, the optical flow
algorithm is generalized to use images with an arbitrary
number of channels. The generalized optical flow computa-
tion procedure is used within a hybrid region- and contour-
based elastic matching scheme. Since the spatial coherence
constraint is imposed in the elastic matching procedure, the
ambiguities in the computation of the velocity field in a lo-
cally homogenous region of the image is resolved. In order
to increase the range of consistency of the optical flow algo-
rithm, two schemes are adopted. The first scheme employs
an iterative multiscale Lucas-Kanade algorithm for optical
flow computation using a pyramidal image structure. The
second scheme uses a Kalman filtering algorithm to predict
the velocity field which is subsequently refined by perform-
ing a search in the neighborhood of the predicted location.
The incorporation of multiscale elastic matching within the
Kalman filtering framework has two advantages: (a) the in-
herent limitation of the linear Kalman filter which assumes
that the tracking variables have Gaussian distributions isad-

Figure 1. The tracking scheme

dresed, and (b) changes in object size in the image (scale
changes) are effectively dealt with.

The overall system is depicted in Figure 1. Given an
initial object position and its velocity field, the Kalman fil-
tering algorithm predicts the new velocity field for the next
stage. An iterative elastic matching algorithm uses the pre-
dicted initial velocity and the computed optical flow to de-
termine the new velocity field for the object. The iterative
elastic matching algorithm first maps the predicted veloc-
ity field to a manually chosen levell in the pyramid, and
determines the actual velocity at levell using elastic match-
ing. Then the velocity computed at levell is mapped to
level l − 1 and used as the initial velocity at levell − 1.
This procedure is performed iteratively until the velocityat
level0 is obtained. An occlusion reasoning and local tuning
procedure is performed at each level to generate and verify
the occlusion hypothesis at each pixel location and refine
the velocity field. The new velocity field is then used to
update the contour template and object model. The new ve-
locity field is approximated using B-spline surfaces, which
are then used to update the status of the Kalman filter. The
updated Kalman filter is used to predict the velocity field for
the new stage.

2 The Multiscale and Multiresolution Object
Model

In order to compute a multiscale representation of the
moving objects, each of the original images is encoded as
L levels of Gaussian pyramid and Laplacian pyramid. The
image at levell in the Gaussian pyramid is denoted byI l.
The Gaussian pyramid image at levell + 1 is computed as
I l+1(x, y) = G(x, y;σ) ◦ I l(2x, 2y), whereG(x, y;σ) is
the Gaussian smoothing operator,◦ is the convolution oper-
ator andσ is the scale parameter (σ = 1 is used in our case).
This procedure, termed as the REDUCE function [21],
smoothly samples the original image with a sampling in-
terval of length 2 along the x axis and y axis. Its inverse
function, defined aŝI l(x, y) = G(x, y;σ)◦I l+1(x/2, y/2),
samples the image at levell + 1 back tol. The Laplacian
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pyramid image at levell is given byP l = I l− Î l. The pyra-
mid image at the first level(l = 0) has the same size as the
original image. If the size of the original image is(W,H),
whereW is the image width andH the image height, the
image size at levell in the pyramid is(W/2l,H/2l). An
RGB color image is encoded as a six-channel image at each
level, where three of the images (R,G and B) are obtained
from the Gaussian pyramid and the other three images (R,G
and B) are obtained from the Laplacian pyramid.

Object Ol(i) at level l is represented by a network of
pointsOl(i) = ({X l

j},K
l, Ll, {T l

j}), where1 ≤ j ≤ N l

andN l is the number of points used to represent the ob-
ject. Kl is the connectivity matrix with dimensionN l ×N l

such thatkl
ij = 1 if points X l

i andX l
j are connected, and

kl
ij = 0 otherwise. In practice,kl

ij = 1 if point X l
i is one of

the neighboring points of pointX l
j . The matrixKl is sym-

metric andkl
ii

△
= 0. Ll is the connectivity matrix for the

boundary points. IfX l
i andX l

j are contour points and are
connected to each other within a window of predetermined
size, thenllij = 1, elsellij = 0. The matrixLl is also sym-
metric. {T l

j} is the object contour template at levell. Each
contour point in{X l

j} has one and only one corresponding
point in contour template{T l

j}, andT l
j is not valid if X l

j

is not a contour point. In our current work, the boundary
template model is obtained using B-spline contour fitting as
described in Section 3.

For each pointX l
j , cl

j = c(X l
j) represents the feature

vector associated with pointX l
j and(Σ2

j )
l = Σ2(X l

j) rep-
resents the covariance matrix of the feature vector at point
X l

j . Sincecl
j is a vector comprising of the values from each

of the six channels and it is 6-dimensional. Bothcl
j and

(Σ2
j )

l are temporally varying values and are updated on-
line. When there is insufficient temporal information for a
point, (Σ2

j )
l is initialized to a default value(Σ2

0)
l. An on-

line updating scheme forcl
j and(Σ2

j )
l is given in Section

4.4. V l = {vl
j} is the velocity field associated with the ob-

ject wherevl
j = (vx(X l

j), vy(X l
j)) is the velocity at point

X l
j .

Instead of computing the velocity for each point of the
object, the designed object model dynamically adjusts the
sampling intervals of the points used for velocity computa-
tion in order to balance the computational load. GivenN0,
the desired number of points used for computation, andN ,
the total number of points belonging to the object, the sam-
pling interval used to obtain the points for velocity compu-
tation is determined asmax(

√

N/N0, 1). Simple interpo-
lation is used to determine the velocity for the points which
are not sampled. The contour templateT l

j is used to guide
the search process.

3 Contour Template

The contour template is pre-trained for the purpose of
object tracking. Note that the object contour is implicitly
included in the object model. Given the contour training
set{Ci}, each contourCi is first normalized to a specified
size (eg. 100 × 100 for face tracking) as shown in Fig-
ure 2(a)(1). The contours in the training set are obtained
manually from the training videos. The spatial distribution
of contour points is equalized using interpolation such that
the resulting contour points are uniformly distributed along
the contour. The starting point on the contour is chosen
to be aligned with centroid point of the contour, as shown
in Figure 2(a)(2) whereO is the centroid point andS is
the chosen staring point. LetC′

i = (ci,0, ..., ci,N−1) be
the contour obtained fromCi after normalization, equal-
ization and alignment. A vector of B-spline control points
{Ti} = (ti,0, ..., ti,M−1) is obtained for each contourC′

i in
the training set as shown in Figure 2(a)(3) where the point
marked in red represents the first control point.M = 10
is used in the face tracking experiment. Figure 2(a)(4) de-
picts the contour restored using the B-spline control points.
The control point vectors{Ti} are modeled as a mixture of
K Gaussian distributions for a predetermined value ofK.
The correspondingK clusters of control points are deter-
mined using theK-means algorithm. The distance between
the control point vectorsTi andTj is measured using the
Euclidean metricd(Ti, Tj) = ‖Ti −Tj‖. As shown in Fig-
ure 2(b), 352 faces are randomly extracted from the video
data for training in the face tracking experiment. The con-
trol points obtained from the normalized faces are shown
in Figure 2(b)(1). With theK-means algorithm, 3 clus-
ters are obtained from the 352 control point vectors. The
3 contours generated from the3 cluster centers of the con-
trol point vectors are shown in Figure 2(b) (2) (3) and (4)
where the number within each contour represents the clus-
ter cardinality. Each cluster is represented as a Gaussian
distributionN (Tk,Σk).

Given an object contourC obtained via elastic matching,
its contour template is determined using the following pro-
cedure. The contourC is first normalized, equalized and
aligned, and its B-spline control point vectorT is deter-
mined using the training procedure described above.Q con-
trol point vectors are randomly generated from each of the
K clusters resulting in a total ofKQ control point vectors.
The random generation function uses the Gaussian distribu-
tion of each cluster. Among theKQ control point vectors,
the one at minimum distance toT is chosen as the contour
template. The control value for each point inC is computed
and used to compute its corresponding points with the con-
tour template. These points are scaled back to their original
size and used in the elastic matching algorithm in the next
step.
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(a) The B-spline contour

(b) Contour clustering

Figure 2. Contour template

4 Pyramidal Elastic Matching Model

Inspired by the pyramidal implementation of Lucas-
Kanade image registration algorithm [20], a multiple scale
elastic matching model is designed for region-based track-
ing. However, in the original algorithm [20] only grayscale
images are used, each feature point is tracked indepen-
dently and image interpolation is used for velocity compu-
tation, which incurs high computation load. In the proposed
scheme, the original algorithm is generalized to use images
with any number of channels. In particular, 6-channel im-
ages are used as described in the object model. The im-
position of the spatial coherence constraint suppresses the
random noise in the velocity field computation, and the use
of multiple scales ensures that an optimal velocity field can
be obtained. Instead of using image interpolation, a local
tuning algorithm is used to obtain sub-pixel accuracy.

The pyramidal elastic matching algorithm can be gener-
alized as follows. Given objectOl(t) at timet and levell, its
initial velocity field(V0)l, and the new imageI l(x, y; t+1),
the objective of elastic matching algorithm is to refine the
velocity field Vl of the tracked object(s), such that the en-
ergy function defined in equation (1) is minimized.

E
l

=

Nl
∑

i=1

ǫ
l
(v

l
i) (1)

in which

ǫ
l
(v

l
i) = g

l
i

∑

Xl
j
∈O(Xl

i
)

[c
l
j − I

l
(X

l
j + (v

0
i )

l
+ v

l
i)]

2

︸ ︷︷ ︸

feature matching

+ γ

Nl
∑

j=1

l
l
ij‖(X

l
i + (v

0
i )

l
+ v

l
i − T

l
i ) − (X

l
j + (v

0
j )

l
+ v

l
j − T

l
j )‖

2

︸ ︷︷ ︸

contour constraints

+ β
Nl
∑

j=1

k
l
ij‖(v

0
i )

l
+ v

l
i − (v

0
j )

l
− v

l
j‖

2

︸ ︷︷ ︸

velocity constraints

(2)

wheregl
i = g(X l

i) is the occlusion hypothesis for point
X l

i of the given object such thatgl
i = 0 if X l

i is occluded,
andgl

i = 1 otherwise, and(v0
j )l = (v0

xj
, v0

yj
)l is the initial

velocity at pointX l
j . In order to avoid the need for im-

age interpolation, each value in the initial velocity(V0)l

is actually its nearest integer value.O(xl
i) is the set of

pixels in a window centered at pointX l
i andvl

j is the in-
cremental velocity. The first part in equation (2) measures
the feature match of each point of the object with the new
image, which requires that the corresponding image point
has a similar feature vector in order to minimize the energy
function. The second part in equation (2) defines the con-
tour constraint, which requires that the neighboring contour
points have similar displacement values from the contour
template in order to minimize the energy function. In cases
where the contour template is not available,T l

j can be sim-
ply set to(0, 0) for all j, which is equivalent to a smoothness
constraint imposed on the object contour. The third part
in equation (2) imposes spatial coherence on the velocity
field, which requires the velocity of neighboring pixels to
be close to each other in order to minimize the energy func-
tion. The parameterβ controls the elasticity of the object.
Equation (1) is minimized when∂El/∂(Vl)τ = 0, which
is equivalent to:

∂El

∂(vl
i
)τ

= −2g
l
i

∑

Xl
j
∈O(Xl

i
)

[c
l
j − I

l
(X

l
j + (v

0
i )

l
+ v

l
i)]

∂Il(Xl
j + (v0

i )l + vl
i)

∂(vl
i
)τ

+ 4γ
Nl
∑

j=1

l
l
ij(X

l
i − X

l
j + T

l
i − T

l
j + (v

0
i )

l
− (v

0
j )

l
+ v

l
i − v

l
j)

τ

+ 4β

Nl
∑

j=1

k
l
ij(v

l
i − v

l
j + (v

0
i )

l
− (v

0
j )

l
)
τ (3)

Note that the above equation is obtained under the as-
sumption thatKl andLl are symmetric. By using Taylor
expansion,

I
l
(X

l
j + (v

0
i )

l
+ v

l
) ≈ I

l
(X

l
j + (v

0
i )

l
) + I

l
vj

(v
l
)
τ (4)

in which, I l
vj

= (I l
xj

, I l
yj

) is the gradient vector at loca-
tion X l

j + (v0
i )l. I l

x = [I l(x + 1, y) − I l(x − 1, y)]/2 and
I l
y = [I l(x, y + 1)− I l(x, y − 1)]/2. Based on these gradi-

ent equations, the Taylor expansion in equation (4) is valid
when|vl

x| ≤ 1 and|vl
y| ≤ 1.

For convenience, letδI l
j = cl

j − I l(X l
j + (v0

i )l). Equa-
tion (3) can be rewritten as:

∂El

∂(vl
i
)τ

= g
l
i

∑

Xl
j
∈O(Xl

i
)

(I
l
vj

)
τ

I
l
vj

(v
l
i)

τ
− g

l
i

∑

Xl
j
∈O(Xl

i
)

δI
l
j(I

l
vj

)
τ

+ 2γ

Nl
∑

j=1

l
l
ij(X

l
i − X

l
j + T

l
i − T

l
j + ((v

0
i )

l
− (v

0
j )

l
+ v

l
i − v

l
j)

τ

+ 2β

Nl
∑

j=1

k
l
ij((v

l
i)

τ
− (v

l
j)

τ
+ ((v

0
i )

l
)
τ

− ((v
0
j )

l
)
τ
) (5)

The derivation of equation (5) takes advantage of the
fact that ∂I l(Xj + v0

i + vi)/∂(vl
i)

τ = (I l
vj

)τ and
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I l
vj

(vl
i)

τ (I l
vj

)τ = (I l
vj

)τI l
vj

(vl
i)

τ . Equation (5) is equiva-
lent to equation (6) and equation (7) given below:
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I
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v
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0
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0
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)
l
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By letting all ∂El/∂vl
xi

= 0 and∂El/∂vl
yi

= 0, a system
of linear equations describing the incremental velocity field
Vl can be obtained in the form ofA(Vl)τ = b, which can
be solved with the LU decomposition method. The matrix
A is given by:






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(Il
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)τ (Il
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1 0
0 1

)
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j kij andlli =
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The velocity fieldVl
0 is initialized under one of the fol-

lowing situations: when the object tracking procedure is ini-
tialized, the velocity field is assumed to be all 0. The pyra-
midal elastic matching algorithm starts at a given level (eg.
l = 2) in the pyramid to compute the velocity field. When
the velocity level at levell is known, it can be mapped to
level l − 1. The velocityv at point (x, y) maps to point
(2x, 2y) and its value at levell − 1 is 2v. The third situa-
tion is when the velocity field in previous frames (t ≤ t0)
is known, in which case the Kalman filter is used to predict
the velocity field at timet0 + 1.

4.1 Using Images with Any Number of Channels

The aforementioned pyramidal elastic matching algo-
rithm assumes that a single channel image is used. It is easy
to show that it can be extended to input images with any
number of channels. Suppose the multiple channel image is
given byIl(x, y) = (i1(x, y), ..., iD(x, y)), whereD is the
number of channels. For a simple grayscale image,D = 1.
In the case of anRGB image,D = 3. As mentioned in
the description of the proposed object model, we use fea-
ture images withD = 6 in our experiments. For multiple
channel images, equation (2) can be rewritten as:
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in which,αd is the coefficient of dimensiond. Its differen-
tial equation is given by:
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4.2 Local Tuning

Note that equation (5) is obtained by assuming the Tay-
lor expansion given in equation (4) is valid. That is, the
incremental velocityv should be small at each point of the
object (eg. |vx| < 1 and |vy| < 1). In other words, the
initial velocity needs to be close to the actual velocity. By
using a pyramidal image structure, the above condition is
met if the elastic matching algorithm starts at a higher level
in the pyramid where the velocities along theX axis andY
axis are small enough, or if the given initial velocity is close
enough to the actual velocity. In addition to these methods,
an iterative local tuning algorithm is designed to adjust the
velocity locally, such that the final incremental velocity at
each point is small enough. This local tuning algorithm is
especially useful when only some of the object points have
velocity values larger than1 along theX axis or theY axis.
The local tuning algorithm is described below.

(1) For pointX l
i , assume every othervl

j is fixed forj 6= i,
thenvl

i can be obtained by solving the binary linear equa-
tions (6) and (7).

(2) If the incremental value|vx| > 1, then the new value
v0

x = v0
x +sign(vx). If the incremental value|vy| > 1, then

the new valuev0
y = v0

y + sign(vy) wheresign(x) = 1 if
x > 0, andsign(x) = −1 if x < 0.

5



(3) Repeat steps (1) and (2) until all the incremental val-
ues |vx| < 1 and |vy| < 1, or the maximum number of
iterations is met. The final velocity for each point isv0 + v.

When the occlusion hypothesis changes at some of the
points, the local tuning algorithm is also used to recompute
the velocity at those points.

4.3 Occlusion Reasoning

When occlusion exists, it is necessary to update the oc-
clusion hypothesis for each point when its velocity is avail-
able. A reasonable assumption about occlusion is that an
object is occluded gradually instead of suddenly. It is also
assumed that an occluded object becomes unoccluded grad-
ually instead of suddenly. Therefore, only those points near
the object boundary or the boundary of the occluded area
are chosen as candidates to be updated. In order to decide
whether a point is occluded or not, the Mahalanobis dis-
tance between the feature vector associated with the coun-
tour pointc(x, y) and the feature vector associated with the
corresponding image pointI(x+vx, y+vy) is computed as
d = [c(x, y)−I(x+vx, y+vy)]Σ−1[c(x, y)−I(x+vx, y+
vy)]τ . If d is above a certain threshold, this point is classi-
fied as occluded, otherwise it is classified as unoccluded.
When multiple objects correspond to the same point in the
image, only one object can be visible at this image point.
The object with the minimum distanced to this point in the
image is classified as the visible object at this image point.

After the occlusion reasoning is performed, the resulting
information is fed back to the elastic matching algorithm,
and the tuning algorithm is used to adjust the velocity field
locally. At most two iterations are needed for the occlusion
hypothesis to be updated and the resulting information fed
back to elastic matching algorithm.

4.4 Adaptation of the Object Template

As an object moves, its shape and color features change
dynamically. Thus, the object shape model and the color
features of the points on the object need to be updated at
each iteration. For a point which is not occluded, its feature
point is updated as:c(Xi, t + 1) = c(Xi, t) + ρ[I(Xi + vi; t +

1) − c(Xi, t)], Σ2(Xi; t + 1) = Σ2(Xi; t) + ρ[(Ik(Xi + vi; t +

1) − ck(Xi; t))(Ik(Xi + vi; t + 1) − ck(Xi; t))
τ
− Σ2(Xi, t)],

whereρ is a given learning rate.

5 Velocity Field Approximation Using B-
spline Surfaces

The elastic matching algorithm yields a mapping which
minimizes an energy function that takes into account both,
feature similarity and shape distortion during tracking. The
computed mapping determines the displacement of each

point along theX andY axes, i.e. the velocity of each point.
However, this mapping may also yield some noisy and false
matches that do not reflect the actual motion of the object.
Hence B-spline surfaces are used to smooth the velocity
field and suppress the effect of the noisy and false matches.
Provided the velocity inV = {vk} = {(vk,x, vk,y)} is
known, the following procedure is used to determine the
NX × NY B-spline control points in order to approximate
V . For each point locationXk = (xk, yk) of the object, the
corresponding B-spline control parameter(ûk, v̂k) is esti-
mated as:

(ûk, v̂k) = ((NX − m + 1) ∗ xk/W, (NY − n + 1) ∗ yk/H) (12)

whereW and H are the width and height of the object
respectively. The estimated velocity component along the
X axis v̂k,x is expressed in terms of(ûk, v̂k) as follows:

v̂k,x(ûk, v̂k) =

m−1
∑

i=0

n−1
∑

j=0

d
x
i′
k

,j′
k

N
m
i (u

1
k)N

n
j (v

1
k) (13)

where thedi,j ’s are the control points which determine
the association of a given point on the B-spline surface
with the control parameters(u, v), Nm

i (u) and Nn
j (v)

are the basis functions along theu and v axes respec-
tively, andn andm are the orders of the B-spline (m =
n = 4 in our case). Herei′k = i + u0

k, j′k = j +
v0

k, (u0
k, v0

k) = (⌊ûk⌋, ⌊v̂k⌋), and (u1
k, v1

k) = (ûk −
u0

k, v̂k − v0
k). Equation (13) can be further generalized as

v̂k,x(ûk, v̂k) =
∑NX

i=0

∑NY

j=0
dx

i,jBk(i, j), whereBk(i, j) =

Nm−1

i−û0
k
(û1

k)Nn−1

j−û0
k
(v̂1

k), if ⌊ûk⌋ ≤ i < ⌊ûk⌋ + m − 1 and

⌊v̂k⌋ ≤ j < ⌊v̂k⌋ + n − 1; Bk(i, j) = 0 otherwise.
For each point associated with an object, minimization

of the following objective function is used to determine the
values of theL = NX × NY control points:

E =

N∑

k=1

‖vk,x − v̂k,x(ûk, v̂k)‖2 (14)

where (ûk, v̂k) are the estimated control parameters
computed using equation (12), andN is the total number
of points of the object. The minimization entails solving a
system of equations given by∂E/∂dx = 0, which, in turn,
can be represented by equationAdx = bx, whereA is given
by:














∑N
k=1 Bk(0, 0)Bk(0, 0) ...

∑N
k=1 Bk(0, 0)Bk(NX , NY )

∑N
k=1 Bk(0, 1)Bk(0, 0) ...

∑N
k=1 Bk(0, 1)Bk(NX , NY )

... ... ...

∑N
k=1 Bk(NX , NY )Bk(0, 0) ...

∑N
k=1 Bk(NX , NY )Bk(NX , NY )














and bx = (
∑N

k=1
Bk(0, 0)vk,x,

∑N

k=1
Bk(0, 1)vk,x, ...,

∑N

k=1
Bk(NX , NY )vk,x)τ .

The system of equation can be solved using LU decom-
position. The value ofNX andNY is usually small for rigid
object tracking. In our experiments,4×4 control points can
approximate the velocity field in the image plane resulting
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from 3-D movement of a planar object (translation, rotation
or a combination of the two) with negligibly small mean
squared error (MSE). Although we have not examined the
MSE resulting from the approximation, using4 × 4 con-
trol points, of the velocity field in the image plane resulting
from 3-D movement of a 3-D object, our experiments on hu-
man tracking yield very good results. Since an elastic object
with restricted deformation can be usually approximated by
a rigid object with articulated motion, the resulting velocity
field can still be approximated using4 × 4 control points.
More control points are necessary only for modeling com-
plex and/or abrupt motion and deformation of a highly elas-
tic object. To further reduce the computational complexity,
the values ofNm

i andNn
i can be precomputed and stored

in a lookup table.

6 Velocity Estimation Model

A Kalman filter is used to estimate/predict the velocity
field of an object. Note that the term velocity field, in the
Kalman filter algorithm, actually denotes the control point
values resulting from the B-spline approximation of the ve-
locity field. The canonical Kalman filter used in this paper
can be described using the following equations:

V̂
−

d,k+1 = V̂
+

d,k + qk (15)

Zk = V̂
−

d,k + vk (16)

whereVd is the estimated/predicted velocity field, andZk

is the actually measured velocity field. Equation (15) repre-
sents the prior estimation ofVd whereas equation (16) de-
scribes the linear relation between the estimatedVd and the
actually measured velocity fieldZk. Variablesqk andvk

represent random noise in the prior estimation and actual
measurement of the velocity field respectively. Bothqk and
vk are modeled as Gaussian white noise with distributions
N (0, Q) andN (0, R) respectively.

7 Experimental Results

The proposed tracking algorithm has been applied to var-
ious tracking scenarios. In our current experiment, the ob-
jects are initialized manually by labeling their contours over
the first image. Figure 3(a) shows the snapshots of the track-
ing of an eraser in a video while the camera is zooming in.
Figure 3(b) shows the snapshots of the tracking of an eraser
in a video while the camera is zooming out. Figure 3(c)
shows the snapshots while the tracked object is rotating in
the image plane and Figure 3(d) shows the snapshots while
the scene is subject to global change in illumination. Fig-
ure 3 shows that the proposed tracking algorithm can handle
large changes in object size (i.e., significant scale changes)

(a) Zoom in (b) Zoom out

(c) Rotation (d) Illumination change

Figure 3. Zooming, rotation, illumination
change

(a) Face scaling (b) Face occlusion

(c) Two face tracking

Figure 4. Face Tracking

and handle object rotation and scene illumination change
due to the adaptive nature of the object template and the
robustness of the features used. Experiments are also con-
ducted on face tracking. Figure 4(a) shows the tracking re-
sult when the tracked face exhibits large scale changes in the
video. Figure 4(b) shows the tracking result in the presence
of occlusion thus demonstrating that the occlusion reason-
ing is very robust in handling occlusions. Figure 4(c) shows
the tracking results on two faces where one face occludes
another. The various tracking results can be viewed in the
video accompanying this paper.

8 Conclusions

A novel hybrid region-based and contour-based multi-
ple object tracking model using elastic matching is pro-
posed. The elastic matching algorithm exploits both, the
spectral features and contour-based features of the tracked
objects, making it more robust and general in the context
of object tracking. The proposed elastic matching algo-
rithm uses a multiscale optical flow computation algorithm
to compute the velocity field. This prevents the multiscale
elastic matching algorithm from being trapped in a local op-
timum unlike conventional elastic matching algorithms that
use a heuristic search procedure in the matching process.
The proposed tracking framework can be viewed as a gen-
eralization of the traditional linear Kalman filter where the

7



multiscale elastic matching algorithm is used to compute
the velocity field which is then approximated using B-spline
surfaces. The control points of the B-spline surfaces are di-
rectly used as the tracking variables in a Kalman filtering
model. The B-spline approximation of the velocity field is
used to update the spectral features of the tracked objects in
the Kalman filter model. The dynamic nature of these spec-
tral features are subsequently used to reason about occlu-
sion. Experimental results on tracking of multiple objects
in real-time video are presented.

Experimental results show that the proposed algorithm
is very efficient in handling occlusions and changes in scale
and illumination. However, it is observed that a single ob-
ject hypothesis is not sufficient to handle all possible track-
ing scenarios. Without a suitable foreground or background
model, this scheme is not suitable for long term tracking.
Future work will integrate the optical flow based elastic
matching model with a foreground object detection algo-
rithm and particle filtering algorithm to achieve robust and
consistent tracking.
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