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Abstract

A number of Bayesian tracking models involve auxiliary
discrete variables beside the main hidden state of interest.
These discrete variables usually follow a Markovian pro-
cess and interact with the hidden state either via its evo-
lution model or via the observation process, or both. We
consider here a general model that encompasses all these
situations, and show how Bayesian filtering can be rigor-
ously conducted with it. The resulting approach facilitates
easy re-use of existing tracking algorithms designed in the
absence of the auxiliary process. In particular we show how
particle filters can be obtained based on sampling only in
the original state space instead of sampling in the augment-
ed space, as it is usually done. We finally demonstrate how
this framework facilitates solutions to the critical problem
of appearance and disappearance of targets, either upon
scene entering and exiting, or due to temporary occlusion-
s. This is illustrated in the context of color-based tracking
with particle filters.

1. Introduction and motivation

Visual tracking involves the detection and recursive lo-
calization of objects within video frames. In a number of
visual trackers, the state of interest, e.g., size and location
of the object, is associated with auxiliary discrete variables.
Such variables show up for instance within the state evolu-
tion model, e.g., when different types of dynamics can occur
[3]. More often, such auxiliary variables are introduced in
the observation model. It is the case for appearance models
based on a set of key views [7, 9] or silhouettes [7, 1]. Aux-
iliary variables are also used to handle partial or total occlu-
sions [6] or mutual occlusions when jointly tracking multi-
ple objects [5, 9]. Finally, auxiliary variables can be used
to assess the presence of tracked objects in the scene [8, 4].
When a Bayesian tracking approach is used with such aug-
mented models, either specific filters are derived based on
the detailed form of the model at hand or the optimal fil-
ter of the joint model is simply used. In the latter case, a

practical implementation might be unnecessarily costly due
to the increased dimension of the joint space. Sequential
Monte Carlo approximations (SMC) in the joint space are
for instance used in [3, 4, 7, 8, 9].

The first contribution of this paper is to propose a general
and unified framework to easily derive the optimal Bayesian
filter for the augmented model based on the one for a mod-
el with no (or frozen) auxiliary variables. In practice, this
allows the re-use of existing tracking architectures, witha
reasonable computational overhead in case the discrete aux-
iliary variable only takes a small number of values. This ap-
proach allows us in particular to introduce a generic SMC
architecture that relies on sampling in the main state space
only. This is exposed in Section 2.

The problem of appearing and disappearing objects,
whether it is upon entering and exiting the scene, or up-
on getting occluded by another object, is critical in visual
tracking. As we mentioned above, the different forms of
this problem have already been addressed in the past based
on auxiliary hidden processes. The second contribution of
this paper is to re-visit these problems using our generic
framework. The resulting filters are implemented using the
generic SMC architecture proposed in Section 2. To handle
occlusions, we introduce in Section 3 a binary visibility pro-
cess that intervenes in the observation model. In this case,
our generic approach allows us to derive a two-fold mix-
ture filter that deal with temporary occlusions. In a similar
fashion, we address the problem of “birth” and “death” of
objects, which is crucial for multiple-object tracking, byin-
troducing a binary existence process. This process impacts
both the state evolution and the data model. The application
of our approach leads in this case to a simple filter whose
SMC approximation does not need to draw samples for the
existence variable.

2. Tracking with an auxiliary process

2.1. Modeling assumptions

For visual tracking, we are interested in recursively esti-
mating the object statext ∈ R

nx , which specifies the po-
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Figure 1. Graphical model of the joint distribution
p(x0:t, a0:t,y1:t).

sition of the object in the image plane and, possibly, other
parameters such as its size and orientation, based on a se-
quence of observationsyt .

= (y1 · · ·yt). We assume in
addition that a discrete auxiliary variableat also has to be
recursively inferred. This variable takes its values in a set
of cardinalityM that we will denote by{0 · · ·M − 1} for
convenience.

The complete set of unknowns at timet is thus{xt, at},
for which we assume the following Markovian prior

p(xt, at|xt−1, at−1)= p(xt|xt−1, at, at−1)p(at|at−1). (1)

In other words, the state follows a Markov chain with its
kernel parameterized by the current and previous values of
the auxiliary variable, and the auxiliary process is a discrete
Markov chain. LetA = (αji) be itsM × M transition
matrix, with αji

.
= p(at = i|at−1 = j). For brevity, we

will also use the notation

pji(xt|xt−1)
.
= p(xt|xt−1, at = i, at−1 = j). (2)

As for the observation model, we assume in the nor-
mal way that the image data at successive instances
are independent conditional on the hidden variables, i.e.,
p(yt|xt, at,y

t−1) = p(yt|xt, at). For notational conve-
nience we will denote

pi(yt|xt)
.
= p(yt|xt, at = i). (3)

The graphical model of the resulting joint distribution
p(x0:t, a0:t,y1:t) is given in Fig. 1.

2.2. Bayesian filter

For tracking, we are interested in recursively estimating
the joint filtering distribution

p(xt, at|y
t) = p(xt|at,y

t)p(at|y
t), (4)

from which the marginal filtering distribution can be de-
duced as

p(xt|y
t) =

∑
i

p(xt, at = i|yt) =
∑

i

pi(xt|y
t)ξi,t, (5)

where we used the notation

pi(xt|y
t)

.
= p(xt|at = i,yt) (6)

ξi,t
.
= p(at = i|yt). (7)

Similar to our previous notation, we will now use the dis-
tribution subscripti to indicate conditioning with respect to
the current auxiliary variable set toi, and the distribution
subscriptji for conditioning oni and j being the current
and previous values of the auxiliary variable.

We will first show how to compute theM conditional
state posteriorspi(xt|y

t). First note that

pi(xt|y
t) =

pi(xt,yt|y
t−1)

pi(yt|yt−1)
. (8)

The numerator can be expressed as

pi(xt,yt|y
t−1) =

∑
j

pji(xt,yt|y
t−1)

· p(at−1 = j|at = i,yt−1), (9)

with

pji(xt,yt|y
t−1) = pi(yt|xt)pji(xt|y

t−1)

= pi(yt|xt)

∫
pji(xt|xt−1)pj(xt−1|y

t−1)dxt−1, (10)

and

p(at−1 = j|at = i,yt−1)
.
= α̃ji,t

∝ p(at = i|at−1 = j,yt−1)p(at−1 = j|yt−1). (11)

Based on the conditional independence structure of the
model, one can show that the first term on the right hand
side is independent ofyt−1. We thus obtain, after normal-
ization,

α̃ji,t =
αjiξj,t−1∑
k αkiξk,t−1

. (12)

The predictive likelihood in the denominator of (8) is

pi(yt|y
t−1) =

∑
j

α̃ji,t

∫
pji(xt,yt|y

t−1)dxt. (13)

The filtering distribution in (5) is then a mixture of theM
conditional filtering distributions, i.e.,

pi(xt|y
t) =

∑
j α̃ji,tpji(xt,yt|y

t−1)

pi(yt|yt−1)
, (14)

each of which is obtained by combiningM optimal
Bayesian filters to compute (10) and (13).

We still need the marginal posterior of the auxiliary vari-
able,p(at|y

t), to compute the weightsξi,t in the mixture of
(5). We have

ξi,t ∝ pi(yt|y
t−1)

∑
j

p(at = i|at−1 = j,yt−1)ξj,t−1.

(15)



Since the first factor in the sum is independent ofy
t−1, we

finally obtain, after normalization

ξi,t =
pi(yt|y

t−1)
∑

j αjiξj,t−1∑
k pk(yt|yt−1)

∑
j αjkξj,t−1

. (16)

We present below an algorithmic summary of the operations
at timet of the generic algorithm.

• Input : pi(xt−1|y
t−1) and(ξi,t−1) for i = 0 · · ·M−1.

1. Computẽαji,t as in (12), fori = 0 · · ·M − 1.

2. Compute theM2 distributionspji(xt,yt|y
t−1) as in

(10), for i, j = 0 · · ·M − 1.

3. Compute theM measurement prediction distributions
pi(yt|y

t−1) as in (13), fori = 0 · · ·M − 1.

4. Compute the M updated filtering distributions
pi(xt|y

t) = as in (14), fori = 0 · · ·M − 1.

5. Compute the marginal posterior probability vector
(ξi,t)i=0···M−1 of the auxiliary variable as in (16).

• Output : distributionspi(xt|y
t) and weightsξi,t.

At each time step,M2 “elementary” filtering operations
are required (step 2), one per possible occurrence of the
pairing (at, at−1). In practice, not allM2 values may be
admissible, in which case the number of elementary filter-
ing operations at each time step is reduced accordingly. As
we will see, specificities of the model under consideration
might also permit further computational savings.

The framework above is entirely general, both in terms
of model ingredients (evolution and observation processes)
and in terms of implementation. Regarding the latter, all
existing techniques, whether exact or approximate, can be
accommodated. If, for example, the filtering distributions
pi(xt|y

t) are to be represented by Gaussian mixtures, the
mixtures components can be obtained by the Kalman fil-
ter for linear Gaussian models, and by the extended or un-
scented Kalman filters for non-linear and/or non-Gaussian
models. For models of the latter kind it may sometimes be
beneficial to adopt a particle representation, and use sequen-
tial importance sampling techniques to update the filtering
distribution. This is especially true for the highly non-linear
and multi-modal models used in visual tracking, hence the
success of SMC techniques in the computer vision commu-
nity. It is this type of implementation that we now consider.

2.3. SMC implementation

For a general SMC implementation, we will consid-
er proposal distributions of the formqji(xt|xt−1,yt)

.
=

q(xt|xt−1, at = i, at−1 = j,yt). Based on these proposal-
s, different SMC architectures can be designed to approx-
imate the generic algorithm of the previous section. We

propose here an architecture that is based on systematic re-
sampling. Assuming that each conditional posterior distri-
butionpi(xt−1|y

t−1) at timet− 1 is approximated by a set
(s

(n)
i,t−1)n=1···N of N equally weighted particles, we simply

replace steps 2, 3 and 4 in the algorithm of Section 2.2 by:

2. Forj = 0 · · ·M − 1, for i = 0 · · ·M − 1

2a. SampleN particles̃s(n)
ji,t ∼ qji(xt|s

(n)
j,t−1,yt).

2b. Compute thenormalizedpredictive weights

π
(n)
ji,t ∝

pji(s̃
(n)
ji,t|s

(n)
j,t−1)

qji(s̃
(n)
ji,t|s

(n)
j,t−1),yt

with
∑

n

π
(n)
ji,t = 1. (17)

3. Approximate theM predictive data likelihoods by

pi(yt|y
t−1) ≈

∑
j

∑
n

w
(n)
ji,t, (18)

where, fori, j = 0 · · ·M − 1,

w
(n)
ji,t

.
= α̃ji,tpi(yt|s̃

(n)
ji,t)π

(n)
ji,t. (19)

4. For i = 0 · · ·M − 1, draw N particles
s
(n)
i,t with replacement from the weighted set

(s̃
(n)
ji,t, pi(yt|y

t−1)−1w
(n)
ji,t)j,n of M × N particles.

Steps 1 and 5 remain unchanged.
If the proposal distribution does not depend onat = i,

then step 2a can be performedM times instead ofM2

times, providing particles sets(s̃(n)
j,t )n to be used in place

of (s̃
(n)
ji,t)n in the remainder of the algorithm.

Note that, contrary to standard SMC handling of models
with auxiliary variables (e.g., [3, 4, 7, 8, 9]), the proposed
implementation restricts sampling to the original state space
of interest, thus avoiding the sampling of the auxiliary vari-
able.

3. Appearance and disappearance

Most tracking algorithms assume the number of object-
s of interest to be constant in the sequence. However, in
most cases objects of interest enter and exit the scene at
arbitrary times. In addition, they can also disappear tem-
porarily behind other occluding objects. In the latter caseof
occlusion, tracking should be continued blindly in the hope
of locking back onto the objects when they re-appear. An
object entering or exiting the scene should in contrast result
in initiating or terminating tracking, respectively. In any
case, these appearance and disappearance events, whether
they are temporary or definitive, are themselves uncertain
events. The associated concepts of “existence” and “visibil-
ity” should thus be treated jointly with the other unknowns
within a probabilistic framework that can account for all the
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Figure 2.Tracking under severe occlusions. The box cor-
responds to the MC approximation of the posterior state ex-
pectation. Its color is changed from yellow to red when the
posterior visibility probability drops below 0.5.

expected ambiguities. Exploiting the generic approach pre-
sented in the previous section, we propose to achieve this
using two auxiliary binary processes. Although these two
processes can be used jointly, we introduce them separately
for the sake of clarity.

3.1. Visibility process

Explicit introduction of an occlusion process within the
Bayesian tracking framework was proposed in [5] and [9].
Both works, however, rely on specific modeling assumption
(contour-based tracking in the former, luminance exemplars
in the latter), and specific implementations (particle filter
with partitioned importance sampling in the former vanilla
bootstrap particle filter in the latter). In contrast, our ap-
proach relies on generic modeling assumptions and is inde-
pendent of a specific implementation strategy, so that ex-
isting tracking architectures can be re-used. The occlusion
modeling we propose can thus be used in conjunction with
any Bayesian visual tracking technique, based for instance
on the Kalman filter or one of its variants. In addition, using
it within the SMC architecture of Section 2.3 allows restric-
tion of the sampling to the object state space only.

Considering here only the case of complete occlusion,
we introduce a binary visibility variablevt that indicates
whether the object is visible (vt = 1) or not (vt = 0) in
the image at timet. The Markov chain prior on this bina-
ry variable is completely defined by the occlusion and des-
occlusion probabilities,α10 andα01. The state evolution
model is independent of the visibility variable, i.e.,

pji(xt|xt−1) = p(xt|xt−1). (20)
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0

0.5

1

Figure 3.Posterior visibility probability , ξ1,t = p(vt =
1|yt), plotted against time for the example in Fig. 2.

Two data models,

p(yt|xt, vt = 0) = p0(yt) (21)

p(yt|xt, vt = 1) = p1(yt|xt), (22)

will have to be specified, depending on whether the objec-
t of interest is visible in the image or not. In the former
case, the likelihood is independent of the state value. Since
our experiments are conducted in the context of color-based
tracking we consider a simple observation model related to
the more complex ones proposed in [8, 4]. Pixel-wise lo-
cation independent background and foreground models,g0

and g1, respectively, are specified over the selected color
space. Assuming conditional independence of color mea-
sures over a sub-gridS of pixels, we obtain

p0(yt) =
∏
s∈S

g0(ys,t) (23)

p1(yt|xt) =
∏

s∈R(xt)

g1(ys,t)
∏

s∈R̄(xt)

g0(ys,t), (24)

whereR(xt) is the image region associated with an object
parameterized by the statext, andys,t is the color at pixel
s in framet.

For this dynamic model, the SMC architecture of Section
2.3 can be simplified. Indeed, the independence of the state
evolution with respect to the auxiliary variables allows step
2a to be performed onlyM times, and suggests the use of a
unique proposal. A simple and classical choice is to take the
state dynamics (20) as the proposal [2]. We will adopt this
approach here, while bearing in mind that any data-based
proposal can be used in our generic framework.

Fig. 2 shows results obtained on a sequence where a
walking person is successfully tracked despite a succession
of severe and total occlusions caused by trees in the fore-
ground. The manual initialization ot the traker provides
the reference foreground and background models defined
as5 × 5 × 5 joint histograms in the RGB color space. The
unknown statext comprises the position in the image plane
(nx = 2) and its dynamics (20) is taken to be a random walk
with independent Gaussian noise with variance102 on each
component. The parameters of the Markov chain on the vis-
ibility process areα01 = 0.8 andα10 = 0.1, and its initial



distribution is given byp(v0 = 1) = 0.8. We useN = 200
particles for the SMC implementation. The main quantities
of interest are the marginal filtering distributions (5), which
inform on the localization of the object of interest regardless
of whether it is visible or not. The algorithm also recursive-
ly estimates the marginal visibility posteriorp(vt = 1|yt).
The time evolution of this quantity for the pedestrian se-
quence is plotted in Fig. 3. It correctly drops to zero for
each complete occlusion of the tracked person. Note also
that the ambiguity caused by less severe partial occlusions
also results in small decreases in this quantity. Thus, besides
its crucial role in the derivation of the recursive Bayesianfil-
ter for the augmented model, the estimation of the posterior
visibility carries information that is interesting in its own
right. Assessing the degree of occlusion of tracked objects
is for instance a difficult and crucial problem when it comes
to online updating of reference appearance models [6].

3.2. Existence process

Using a Markovian binary variable to indicate presence
in the scene is proposed in [8] to determine in a probabilistic
fashion the beginning and end of the track for a single ob-
ject. We adopt the same model here. However, sequential
Monte Carlo is the only inference mechanism considered in
[8], and it is conducted in the augmented state space. By
comparison, our generic framework can be easily used with
any Bayesian filtering technique and its SMC version im-
plies sampling only in the object state space.

Following [8], we introduce a binary existence variable
et that indicates whether the object of interest is present
(et = 1) or not (et = 0) in the scene at timet. The Markov
chain prior on this binary variable is completely defined by
the death and birth probabilities,α10 andα01. Conditional
on the existence variables the state dynamics is specified by

p00(xt|xt−1) = p10(xt|xt−1) = δu(xt) (25)

p01(xt|xt−1) = pinit(xt) (26)

p11(xt|xt−1) = pdyn(xt|xt−1), (27)

whereu is the consuming state that corresponds to the ob-
ject not existing,pinit is the initial state distribution, andpdyn

is the object dynamic model. From the data model point of
view, the existence process is similar to the visibility pro-
cess.

Due to the component (25) of the evolution model, non-
existenceet = 0 deterministically forcesxt into fictitious
stateu. This is carried over in the posterior model, yielding

p0(xt|y
t) = δu(xt). (28)

As a consequence, the algorithm only needs to recursively
estimate the conditional filtering distribution for the case of
the object existing, i.e.,p1(xt|y

t). Thus, within the SMC

8 18
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Figure 4.Single object detection and tracking. In each
of the displayed frames, the box amounts to the MC ap-
proximation of the posterior state expectation, conditional
on existenceet = 1.

framework, only two proposal distributions,q01 andq11, are
required, instead of four. As in the previous section, we only
consider the simple case where these distributions coincide
with their counterparts in the evolution model.

10 20 30 40 50 60
0

0.5

1

Figure 5.Posterior existence probability, ξ1,t = p(et =
1|yt), plotted against time for the example in Fig. 4.

In the following experiment, the observation model is
defined as in the previous section. Yet again the state com-
prises the object location in the image plane, and in the s-
tate evolution model (26)-(27),pinit andpdyn are respective-
ly chosen as the uniform distribution over positions in the
image plane and a random walk with independent Gaussian
noise. The variance of the noise is152 for each compo-
nent for the car race sequence in Fig. 4. Also, the state
distribution at timet = 0 coincides withpinit . Hence, con-
trary to the previous experiment, the tracker is not initial-
ized manually at the beginning of the sequence (the refer-
ence foreground model is picked on an arbitrary red car in
a different part of the video). For this experiment, the death
and birth probabilities are respectively set toα01 = 0.1 and
α10 = 0.1, and the initial existence distribution is given by
p(e0 = 1) = 0.1. Finally, N = 50 particles were sufficient
to detect the entrance and exit of red cars in the field of view
and to track them while present in the scene. Entrance and
exit events are clearly identified by the variations in the pos-
terior existence probabilityξ1,t, as shown in Fig. 5. In this
example, a single tracker successively locks on to differen-
t cars, each one appearing in the image after the previous
one has been successfully detected and tracked until disap-
pearance. In practice, distinction between different tracked
objects would be necessary, especially if they are likely to
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Figure 6.Detection and tracking of multiple objectsus-
ing multiple interacting trackers with existence process.
The MC approximation of the posterior state expectation is
displayed only for trackers that are “active” (i.e, those with
ξ1,t > 0.2), using one color per tracker.

be present simultaneously in the image. In this context, the
information carried by the existence probabilities facilitates
the design of a mechanism that effectively initiates differen-
t trackers for each “detected” object and subsequently dis-
cards each tracker whose associated existence probability
ξ1,t falls below a threshold.

An example of such a multiple object tracking is pre-
sented in Fig. 6, where football players from the same team
are tracked in a video sequence. Due to player and camera
movement the number of players in view varies continuous-
ly between 0 and 6. Six trackers with existence process are
run in parallel. Each of them locks on a different player as
he enters the image and tracks him until he exits the field
of view, at which point the tracker is disabled. In order to
avoid that an “inactive” tracker becomes “active” by lock-
ing on an already tracked player, the proposal distribution
q01 is shared by all the trackers and reshaped at each instan-
t. It is simply uniform over the part of the state space that is
not yet occupied by any of the active trackers. Note, how-
ever, that we have not introduced any mechanism to handle
mutual occlusions in this preliminary experiment.

4. Conclusions and perspectives

In this paper we introduced a generic Bayesian filtering
tool to perform tracking in the presence of a certain class
of discrete auxiliary processes. The approach places no re-
striction on the ingredients of the evolution and observation
models and on the selected type of filter (Kalman filter and
its variants, particle filters). Hence the proposed framework
allows re-use of existing architectures on a variety of track-
ing problems where the introduction of auxiliary discrete
variables is useful. We demonstrated in particular how the
technique can be applied in visual tracking to handle oc-
clusions and object appearance/disappearance via visibili-
ty and existence binary processes. Our generic framework
would now allow the combination of these two binary pro-
cesses within a single tracking setup. This would be espe-
cially useful to address the difficult problem of multiple ob-
ject tracking where an unknown and varying number of ob-
jects of interest must be detected and tracked in presence of
occlusions. Other lines of future research concern the appli-
cation of our generic framework to other types of tracking
with auxiliary discrete processes, such as those with switch-
es between different dynamics or different appearance mod-
els.
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