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Abstract

An online process is proposed for video registration of
dynamic scenes, such as scenes with dynamic textures or
with moving objects. This process has three steps: (i) A
few frames are assumed to be already registered. (ii) Using
the registered frames, the next new frame is extrapolated.
(iii) The actual new frame is registered to the extrapolated
frame.

Video extrapolation overcomes the bias introduced by
dynamics in the scene, even when the dynamic regions
cover almost the entire image. It can also overcome not
only motion, but also many fluctuations in intensity. The
traditional “brightness constancy” is now replaced with
“dynamics constancy”.

1 Introduction

When a video sequence is captured by a moving cam-
era, motion analysis is required for many video editing and
video analysis applications. Most methods for image align-
ment assume that a dominant part of the scene is static, and
also assume brightness constancy. These assumptions are
violated in scenes with moving objects or with dynamic
background, cases where most registration methods will
likely fail.

A pioneering attempt to perform motion analysis in dy-
namic scenes was suggested in [6]. In this work, the en-
tropy of an auto regressive process was minimized with
respect to the motion parameters of all frames. But the im-
plementation of this approach may be impractical for many
real scenes. First, the auto regressive model is restricted to
scenes which can be approximated by a stochastic process,
and it can not handle dynamics such as walking people.
In addition, in [6] the motion parameters of all frames are
computed simultaneously, resulting in a difficult non-linear
optimization problem. Moreover, extending this method to
cases with multiple dynamic textures requires segmenting

the scene into its different dynamic textures [10]. With our
proposed approach, no segmentation is needed.

Unlike computer motion analysis, humans can easily
distinguish between the motion of the camera and the in-
ternal dynamics in the scene. For example, we can virtu-
ally align an un-stabilized video of a sea, even when the
waves are constantly moving. The key to this human abil-
ity is an assumption regarding the simplicity and consis-
tency of scenes and of their dynamics: It is assumed that
when a video is aligned, the dynamics in the scene be-
come smoother and more predictable. This allows humans
to track the motion of the camera even when no apparent
registration information exists. We therefore try to replace
the “brightness constancy assumption” with a “dynamics
constancy assumption”.

This dynamic constancy assumption is used as a basis
for our online registration algorithm: given a new frame
of the sequence, it is aligned to best fit the extrapolation
of the preceding frames. The extrapolation is done using
video synthesis techniques [11, 5, 8], and the alignment is
done using traditional methods for parametric motion com-
putation [2, 7]. Alternating between video extrapolation
and image alignment results in a robust online registration
algorithm which can handle complex scenes, having both
dynamic textures and moving objects.

There is a major difference between the video extrapo-
lation step in our approach and previous results on video
completion or on dynamic texture synthesis. Creating a
good looking video, as is the goal in video completion or
synthesis, is not only difficult, but also creates a video
which deviates from the original data. In our case we
use the video extrapolation only for motion computation.
While this requires that many image regions will be cor-
rectly extrapolated, other regions may not be extrapolated
at all.



2 Video Alignment with Dynamic Scenes

Video motion analysis traditionally aligns two succes-
sive frames. This approach may work well for static
scenes, where one frame can predict the next frame up to
their global relative motion. But when the scenes are dy-
namic, the global motion between the frames is not enough
to predict the successive frame, and global motion analysis
between such two frames is likely to fail. We propose to re-
place the assumptions of static scenes and brightness con-
stancy with a much more general assumption of consistent
image dynamics: “What happened in the past is likely to
happen in the future”. In this section we will describe how
a video be extrapolated using this assumption, and how this
extrapolation can be used for image alignment.

2.1 Dynamics Constancy Assumption

Let a video sequence consist of frames I7...In. A
space-time volume V' is constructed from this video se-
quence by stacking all the frames along the time axis,
V(z,y,t) = I(xz,y). The “dynamics constancy” as-
sumption implies that when the volume is aligned (e.g.,
when the camera is static), we can estimate a large por-
tion of each image I,, = V(z,y,n) from the preceding
frames I, ...1I,_1. We will denote the space-time vol-
ume constructed by all the frames up to the k% frame by
V(z,y, ?). According to the “dynamics constancy” as-
sumption, we can find an extrapolation function over the
preceding frames such that

I.(z,y) = V(z,y,n) ~ Extrapolate(V(z,y,n — 1)).
1
Extrapolate is a non parametric extrapolation function,
estimating the value of each pixel in the new image
given the preceding space-time volume. This extrapola-
tion should use the dynamics constancy assumption, and
will be described in the next section.

When the camera is moving, the image transformation
induced by the camera motion should be added to this
equation. Assuming that all frames in the space time vol-
ume V(z,y,n — 1) are aligned to the coordinate system
of the (n — l)th frame, the new image I,,(x, y) can be ap-
proximated by

I, ~ T, (Extrapolate(V (z,y,n — 1))). (2
T,, is a 2D image transformation between frames I,, 1 and
I,,, and is applied on the extrapolated image. Applying the
inverse transformation on both sides of the equation gives

T—'(1,,)) ~ Extrapolate(V (z,y,n — 1)). 3)

This relation is used in the registration scheme.
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Figure 1. Video Extrapolation using a Space-Time Block
Search. Both motion and intensity variation are accounted
for.

(a) For all blocks bordering with time (n—1), a best match-
ing block is searched in the space-time volume. Once
such a block is found, the pixel in front of this block is
copied to the corresponding position in the extrapolated
frame I%(x,y).

(b) The new frame I,, is not aligned to Frame I,,_1, but
to the frame that has been extrapolated from the preceding
space-time volume.

2.2 Video Extrapolation

Our video extrapolation is closely related to dynamic
texture synthesis [4, 1]. However, dynamic textures are
characterized by repetitive stochastic processes, and do not
apply to more structured dynamic scenes, such as walking
people. We therefore prefer to use non-parametric video
extrapolation methods [11, 5, 8]. These methods assume
that each small space-time block has likely appeared in the
past, and thus the video can be extrapolated using similar
blocks from earlier video portions. This is demonstrated in
Fig. 1. Various video interpolation or extrapolation meth-
ods differ in the way they enforce spatio-temporal consis-
tency of all blocks in the synthesized video. However,
this problem is not important in our case, as our goal is
to achieve a good alignment rather than a pleasing video.

Leaving out the spatio-temporal consistency require-
ment, we are left with the following simple video extrapo-
lation scheme: Assume that the aligned space time volume



V(x,y,n — 1) is given, and a new image I? is to be esti-
mated. For each pair of space-time blocks W, and W, we
define the SSD (sum of square differences) to be:

AWy, W) = Z (Wp(z,y,t) — Wq(xay7t))2' (4)

(z,y,t)

As shown in Fig. 1, for each pixel (z,y) in image I,,_; we
define a space-time block W, ,, ,,—1 whose spatial center is
at pixel (z, y) and whose temporal boundary is at time n—1
(future frames can not be used in an online approach). We
then search in the space time volume V (z,y, n — 2) for a
space-time block with the minimal SSD to block W, , »,—1.
Let W, = W(zp, yp,tp) be the most similar block, spa-
tially centered at pixel (x,,y,) and temporally bounded
by t,. The value of the extrapolated pixel IZ(x,y) will be
taken from V' (z,, yp, tp+1), the pixel that appeared imme-
diately after the most similar block. This scheme follows
the “dynamics constancy” assumption: given that two dif-
ferent space time blocks are similar, we assume that their
continuations are also similar. While a naive search for
each pixel may be exhaustive, several accelerations can be
used as described in Sec. 2.6.

We used the SSD (sum of square differences) as a dis-
tance measure between two space-time blocks, but other
distance measures can be used such as the sum of absolute
differences or more sophisticated measures ([11]). We did
not notice a substantial difference in registration results.

2.3 Alignment with Video Extrapolation

The online registration scheme for dynamic scenes uses
the video extrapolation described earlier. As already men-
tioned, we assume that the image motion of a few frames
can be estimated with traditional robust image registration
methods [9, 7]. Such initial alignment is used as “synchro-
nization” for computing the motion parameters of the rest
of the sequence. Alignment with Video Extrapolation can
be described by the following steps:

1. Assume that the motion of the first K frames has al-
ready been computed, and let n = K + 1.

2. Align all frames in the space time volume
= < )
V(x,y,(n—1)) to the coordinate system of
Frame I,,_;.

3. Estimate the next new image by extrap-
olation from the previous frames I? =

Extrapolate(V (z,y, (n — 1))).
4. Compute the motion parameters (The global 2D im-

age transformation 7., ') by aligning the new input
image I,, to the extrapolated image 7.

5. Increase n by 1, and return to Step 2. Repeat until
reaching the last frame of the sequence.

The global 2D image alignment in Step 2 is performed
using direct methods for parametric motion computation
[2, 7]. Outliers are marked during this alignment as de-
scribed in the next section.

2.4 Masking Unpredictable Regions

Real scenes always have a few regions that can not be
predicted. For example, people walking in the street often
change their behavior in an unpredictable way, e.g. rais-
ing their hands or changing their direction. In these cases
the video extrapolation will fail, resulting in outliers. The
alignment can be improved by estimating the predictabil-
ity of each region, where unpredictable regions get lower
weights during the alignment stage. To do so, we incor-
porate a predictability score M (x,y, t) which is estimated
during the alignment process, and is later used for future
alignment.

The predictability score M is computed is the follow-
ing way: After the new input image I,, is aligned with the
extrapolated image 72 which estimated it, the difference
between the two images is computed. Each pixel (z,y)
receives a predictability score according to the color dif-
ferences in its neighborhood. Low color differences indi-
cates that the pixel has been estimated accurately, while
large differences indicate poor estimation. From these dif-
ferences a binary predictability mask is computed, indicat-
ing the accuracy of the extrapolation,
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0 otherwise,

M(:my,n) = { 5)

where the summation is over a window around (z, y), and
r is a threshold (We usually used » = 1). This is a con-
servative scheme to mask out pixels in which the residual
energy will likely bias the registration. The predictability
mask M, (z,y) = M(z,y,n) is used in the alignment of
frame 1,4, to frame I? ;.

2.5 Fuzzy Estimation

Applications such as video completion or video com-
pression also use extensively frame predictions. Unlike
these applications, video registration is not limited to use a
single prediction. Instead, better alignment can be obtained
when a fuzzy prediction is used. The fuzzy prediction can
be obtained by keeping not only the best candidate for each
pixel, but the best .S candidates (We used up to five candi-
dates for each pixel). The multiple predictions for each
pixel can easily be combined using a summation of the er-
ror terms:

Tn = arg mj}n{ Z )\x,y,s(T_l(In)(xa Z/) - Iﬁ(l’a Y, S))Q}

T,Y,s
(6)



where I2(x,y, s) is the st" candidate for the value of the
pixel I,,(x,y). The weight X, , s of each candidate is
based on the difference of its corresponding space-time
cube from the current one as defined in Eq. 4, and is given
by:

—d(Wp,Wq)?
— 252
Aay,s = € 29

We used o = 1/255 to reflect the noise in the image gray-
levels. Note that the weights for each pixel do not necessar-
ily sum to one, and therefore the registration mostly relies
on the most predictable regions.

2.6 Accelerating the Video Extrapolation

The most expensive stage of the dynamic registration is
finding the best candidates in the video extrapolation stage.
An exhaustive search makes this stage very slow. To enable
fast extrapolation we have implemented several modifica-
tions which accelerate substantially this stage. Some of
these accelerations may not be valid for general video syn-
thesis and completion techniques, as they can reduce the
rendering quality of the resulting video. But high render-
ing quality is not essential for accurate registration.

Limited Search Range: Video sequences can be very
long, and searching the entire history may not be practical.
Moreover, the periodicity of most objects is usually of a
short time period. We have therefore limited the search for
similar space-time cubes to a small volume in both time
and space around each pixel. Typically, we searched up
to 10-20 frames backwards (periods of approximately one
second).

Using Pyramids: We assume that the spatio-temporal
behavior of objects in the video can be recognized even in
a lower resolution. Under this assumption, we construct a
Gaussian pyramid for each image in the video, and use a
multi-resolution search for each pixel. Given an estimate
of a matching cube from a lower resolution level, we search
only in a small spatial area in the higher resolution level.
The multi-resolution framework allows to search in a wide
spatial range and to compare small space-time cubes.

Summed Area Tables: Since the video extrapolation
uses a sum of squares of values in sub-blocks in both space
and time (See Eq. 4), we can use summed-area tables [3]
to compute all the distances for all the pixels in the image
in O(N - S, - Sy - S¢) where N is the number of pixels
in the image, and S;, S, and S; are the search ranges in
the x,y and ¢ directions respectively. This saves the factor
of the window size (Typically 5 x 5 x 5) over a direct im-
plementation. This step cannot be used together with the
multi-resolution search, as the lookup table changes from
pixel to pixel, but it can still be used in the lowest resolu-
tion level, where the search range is the largest.

Figure 2. The water flow in the input movie (top), as well
as the moving pinguin, create a difficult scene for align-
ment. The video was registered using extrapolation, an was
compared to regular alignment. An average of 40 frames
in the stabilized sequence is shown. Using a traditional 2D
parametric alignment the sequence is very unstable, and
the average image is very blurry (lower left). With video
extrapolation the registration is much better (lower right).

2.7 Handling Alignment Drift

Alignment based on Video Extrapolation follows New-
ton’s First Law: An object in uniform motion tends to re-
main in that state. If we initialize our registration algo-
rithm with a small motion relative to the real camera mo-
tion, our method will continue this motion for the entire
video. In this case the background will be handled as a
slowly moving object. This is not a bug in the algorithm,
but rather a degree of freedom resulting from the “dynam-
ics constancy” assumption.

To eliminate this degree of freedom we incorporate a
prior bias, and assume that some of the scene is static. This
is done by aligning the new image to both the extrapolated
image and the previous image, giving the previous image a
low weight. In our experiments we gave a weight of 0.1 to
the previous frame and a weight of 0.9 to the extrapolated
frame. This prior prevented the possible drift, while not
reducing the accuracy of motion computation.

3 Examples

In this section we show various examples of video
alignment for dynamic scenes. A few examples are also
compared to regular direct alignment as in [2, 7]. The
computed alignment was used for video stabilization, and
the stabilized sequences are best seen in the web site:
http://www.vision.huji.ac.il/dynreg. To show stabilization
results in print, we have averaged the frames of the stabi-
lized video. When the video is stabilized accurately, static



Figure 3. In the original video (top) the water and the
bear are dynamic, while the rocks are static. Average im-
ages of 40 frames are shown, with traditional 2D paramet-
ric alignment (lower left) and with our proposed method
(lower right). The sharper average shows the superiority
of our method.

regions appear sharp while dynamic objects are ghosted.
When stabilization is erroneous, both static and dynamic
regions are blurred.

Figures 2 and 3 compare the registration using video
extrapolation with traditional direct alignment [2, 7]. Both
scenes include moving objects and flowing water, and a
large portion of the image is dynamic. In spite of the dy-
namics, after video extrapolation the entire image can be
used for the alignment. For this comparison, in these ex-
amples we did not use any mask to remove unpredictable
regions nor did we use a fuzzy estimation, but rather used
the entire image for the alignment.

The sequence shown in Figure 4 was used by [10] and
by [6] as an example for their registration of dynamic tex-
tures. The global motion in this sequence is a horizon-
tal translation, and the true displacement can be computed
from the motion of one of the flowers. The displacement
error reported by [10] was 29.4% of the total displacement
between the first and last frames, while the error of our
methods was only 1.7%.

Figures 5 and 6 show two more examples of video regis-
tration using extrapolation in challenging scenes. In these
scenes, the estimation of some of the regions was not good
enough (Parts of the falls and the fumes in the *waterfall’

Figure 4. A seguence of moving flow-
ers taken by a panning camera. See
http: //mww.robots.ox.ac.uk/~awf/iccv0l/. Our mo-
tion computation with video extrapolation gave an
accumulated translation error of 1.7% between the first
and last frames, while [10] reported an accumulated error
of 29.4%.

4

Figure 5. This waterfall sequence (left) poses a chal-
lenging task for registration, as most of the scene is cov-
ered with falling water. The video was stabilized using
video extrapolation (using a rotation and translation mo-
tion model). An average of 40 frames in the stabilized
video (right) is shown to evaluate the quality of the stabi-
lization. The dynamic regions are blurred only in the flow
direction, while the static regions remain relatively sharp
after averaging.

video, and some actions in the ’festival’ video), so pre-
dictability masks (as described in Section 2.4) were used
to exclude unpredictable regions from the motion compu-
tations.

4 Concluding Remarks

An approach for video registration of dynamic scenes
has been presented. The dynamics in the scene can be ei-
ther stochastic as in dynamic textures, or structured as in
moving people. Intensity changes such as flickering can
also be addresses. The frames in such video sequences are
aligned by estimating the next frame using video extrapo-
lation from the preceding frames.

Video extrapolation for alignment can be done much
faster than other video completion approaches, resulting
in a robust and efficient registration. The examples show
excellent registration for very challenging dynamic images
that were previously considered impossible to align.

Most methods which address videos with multiple dy-



Figure 6. While the dynamic crowd in the Edinburgh festival makes alignment a real nightmare, alignment using video extrap-
olation had no problems. Three original frames are shown at the top. The panorama is stitched from the video after the alignment
by frame averaging. The scene dynamics is visible by ghosting, and the static background is clearly well registered.

namic patterns use a segmentation of the scene. Due to its
non parametric nature, the proposed approach can find the
motion parameters without any segmentation.

The proposed video extrapolation is different from Im-
age prediction used for video compression in the following
aspects:

e The main objective of the video extrapolation in our
case is to minimize the motion bias rather than the
prediction error.

e An estimation of the gray-values at a sparse set of
image locations is sufficient for accurate registration,
while it is not applicable for compression.

e Unlike video compression methods which compute
the optical flow between current and previous frames,
our video extrapolation does not use the current
frame. This is due to the fact that such an optical flow
would mix between the camera motion and the scene
dynamics.

A possible future challenge can be the development of a
registration scheme in the presence of both motion parallax
and scene dynamics. This combination is not simple, as
motion parallax depends on the dynamic of the camera,
which has no relation to the dynamic of the scene.
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