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Abstract

If we consider the appearance of human motion such as
gait, facial expression and gesturing, most of such activities
result in nonlinear manifolds in the image space. Although
the intrinsic body configuration manifolds might be very
low in dimensionality, the resulting appearance manifold is
challenging to model given various aspects that affects the
appearance such as the view point, the person shape and
appearance, etc. In this paper we learn decomposable gen-
erative models that explicitly decompose the intrinsic body
configuration as a function of time from other conceptu-
ally orthogonal aspects that affects the appearance such as
the view point, the person performing the action, etc. The
frameworks is based on learning nonlinear mappings from
a conceptual representation of the motion manifold that is
homeomorphic to the actual manifold and decompose other
sources of variation in the mapping coefficient space.

1 Introduction

Despite the high dimensionality of the configuration
space, many human motion activities lie intrinsically on low
dimensional manifolds. For example, the shape of the hu-
man silhouette through a walking cycle is an example of a
dynamic shape where the shape deforms over time based
on the action performed but it is also a function of the per-
son body style and the view point. Gait is a 1-dimensional
manifold embedded in the body configuration space and
it is also a 1-dimensional manifold embedded in the vi-
sual input space. Similarly, the appearance of a face per-
forming a facial expression is an example of dynamic ap-
pearance. Therefore, researchers have tried to exploit the
manifold structure implicitly or explicitly in tasks such as
tracking and activity recognition. Learning nonlinear defor-
mation manifolds is typically performed in the visual input
space or through intermediate representations. For example,
Exemplar-based approaches such as [26] implicitly model
nonlinear manifolds through points (exemplars) along the
manifold. Such exemplars are represented in the visual in-
put space. HMM models provide a probabilistic piecewise
linear approximation of the manifold which can be used to
learn nonlinear manifolds as in [5] and in [3].

Data vs. Concept Driven Manifold Embedding: Embed-
ding manifolds to low dimensional spaces provides a way
to explicitly model such manifolds. Learning motion man-
ifolds can be achieved through linear subspace approxima-
tion (PCA) as in [9]. PCA have been widely used in appear-
ance modeling to discover subspaces for appearance vari-
ations and modeling view manifolds as in [16, 15, 2, 6].
Linear subspace analysis can achieve a linear embedding of
the motion manifold in a subspace. However, the dimen-
sionality of the subspace depends on the variations in the
data and not in the intrinsic dimensionality of the manifold.
Nonlinear dimensionality reduction approaches can achieve
much lower dimensionality embedding of nonlinear mani-
folds through changing the metric from the original space
to the embedding space based on local structure of the man-
ifold, e.g. [24, 20, 4]. Nonlinear dimensionality reduction
has been recently exploited to model motion manifolds for
tracking and 3D pose recovery [28, 8, 7, 23]. However, all
these approaches (linear and nonlinear) are data-driven, i.e.,
the visual input is used to model motion manifolds. The
resulting embedding is data-driven and therefore the result-
ing embedded manifolds of different people performing the
same action will be quite different.

To explain our point, let us consider the gait case. Basi-
cally, the gait is a 1-dimensional closed loop, embedded in
the visual input space, that twists differently depending on
the view point, the body shape, self occlusion, clothing, etc.
Therefore, embedded manifolds for different people walk-
ing from the same view point will be different. The same
if we consider manifolds for different views of the same
walking person. This was shown in [7, 8] where LLE [20]
was used to obtain the embedding. These variations pose a
challenge if we would like to use motion manifolds as con-
straints for the motion, for example in tracking or for body
pose recovery. But, conceptually all these manifolds are the
same. They are all topologically equivalent, i.e., homeo-
morphic to each other and we can establish a bijection be-
tween any pair of them. They are all also homeomorphic
to the gait manifold in a kinematic 3D body configuration
space. So, the question we try to address is: given concep-
tual knowledge about the topology of the manifold, how can
we use such knowledge in modeling real motion manifolds



with different sources of variability such as different people,
different views, etc. ?
Generative vs. Discriminative Models Several ap-
proaches have been introduced in the literature to directly
infer 3D body pose as a learned function from the visual in-
put [11, 3, 19, 18, 14, 22, 1]. Such approaches, as well as
the one introduced here, have great potentials in solving the
fundamental initialization problem for model-based vision
as well as in recovering from tracker failures. However,
almost all these approaches are discriminative approaches
where the mapping is learned from the visual input to 3D or
other intermediate representations. In contrast, in [7, 23]
manifolds are learned in a generative fashion, i.e., learn
mapping from a learned low dimensional manifold repre-
sentation into the visual input. We argue that learning a gen-
erative mapping is advantageous for several reasons. Gener-
ative mapping provides means to synthesize the visual input
and therefore fits well within a Bayesian tracking frame-
work as an observation model. Mapping from the visual in-
put to 3D poses or view points are not necessarily a function
but mapping from a manifold representation to the visual
input is a function given that the manifold representation
doesn’t self intersect which is guaranteed in case concep-
tual embedding is used, as in this paper.
Contribution: In this paper we consider such classes of
human motion which lie on a one dimensional closed man-
ifold such as gait and facial expressions. We introduce a
framework to learn decomposable generative models for dy-
namic shape and dynamic appearance of objects where the
motion is constrained to one dimensional closed manifolds
while there are other sources of variability such as differ-
ent views, different people, different classes of motion, etc.,
all of which are needed to be parameterized. The learned
model supports tasks such as synthesis, body configuration
recovery, recovery of other aspects such as view, person pa-
rameters, etc. As direct and important applications of the
introduced framework, we consider the case of gait and also
show results for facial expressions. We aim to learn a gener-
ative model that can generate walking silhouettes for differ-
ent people from different view points. Given a single image
or a sequence of images, we can use the model to solve
for the body configuration, view and person shape style pa-
rameters. As a result we can directly infer 3D body pose,
view point, and person shape style from the visual input.
We also apply the model for facial expressions as an ex-
ample of a dynamic appearance. In this case we learn a
generative model that can generate different dynamic facial
expressions for different people. The model can success-
fully be used to recognize expressions performed by differ-
ent people never seen in the training.

2 Framework

Our objectives is to learn representations for the shape
and/or the appearance of moving (dynamic) objects that
supports tasks such as synthesis, pose recovery, view recov-

ery, input reconstruction and tracking. Such learned rep-
resentation will serve as decomposable generative models
for dynamic appearance where we can think of the image
appearance (similar argument for shape) of a dynamic ob-
ject as instances driven from such generative model. Let
yt ∈ Rd be the appearance of the object at time instance
t represented as a point in a d-dimensional space. This in-
stance of the appearance is driven from a model in the form

yt = Tαγ(xt; a1, a2, · · · , an) (1)

where the appearance, yt, at time t is an instance driven
from a generative model where the function γ is a mapping
function that maps body configuration x t at time t into the
image space. i.e., the mapping function γ maps from a rep-
resentation of the body configuration space into the image
space given mapping parameters a1, · · · , an each represent-
ing a set of conceptually orthogonal factors. Such factors
are independent of the body configuration and can be time
variant or invariant. Tα represents a global geometric trans-
formation on the appearance instance. The general form for
the mapping function γ that we use is

γ(xt; a1, a2, · · · , an) = C ×1 a1 × · · · ×n an · ψ(xt) (2)

where ψ(x) is a nonlinear kernel map from a representation
of the body configuration to a kernel induced space and each
ai is a vector representing a parameterization of orthogonal
factor i, C is a core tensor, ×i is mode-i tensor product as
defined in [12, 27].

The model in equation 2 is a generalization over the
model introduced in [8] where only one factor can be de-
composed. The main reason why the model in [8] is limited
to decomposing a single factor is that the embedding used
was data driven. In that work LLE was used to obtain mani-
fold embeddings, and then a mean manifold is computed as
a unified representation through nonlinear warping of mani-
fold points. However, since the manifolds twists very differ-
ently given each factor (different people or different views,
etc.) it is not possible to achieve a unified configuration
manifold representation independent of other factors. Be-
sides, in [8] there was no notion of optimal unified mani-
fold representation. These limitations motivate the use of a
natural conceptual unified representation of the configura-
tion manifold that is independent of all other factors. Such
unified representation would allow the model in equation 2
to generalize to decompose as many factors as desired. In
the model in equation 2, the relation between body configu-
ration and the input is nonlinear where other factors are ap-
proximated linearly through multilinear analysis. The use
of nonlinear mapping is essential since the embedding of
the configuration manifold is nonlinearly related to the in-
put.

For example for the gait case, a generative model for a
walking silhouettes for different people from different view
points will be in the form

yt = γ(xt; v, s) = C × v × s× ψ(x) (3)



where v is a parameterization of the view, which is inde-
pendent of the body configuration but can change over time,
and s is a parameterization of the shape style of the person
performing the walk which is independent of the body con-
figuration and time invariant. The body configuration x t

evolves along a conceptual representation of the manifold
that is homeomorphic to the actual gait manifold.

The question is what conceptual representation of the
manifold we can use. Since the gait is one dimensional
closed manifold embedded in the input space, it is home-
omorphic to a unit circle embedded in 2D. In general, all
closed 1 D manifold is topologically homeomorphic to unit
circles. We can think of it as a circle twisted and stretched
in the space based on the shape and the appearance of the
person under consideration or based on the view. So we can
use such unit circle as a unified representation of all gait
cycles for all people for all views. Given that all the mani-
folds under consideration are homeomorphic to unit circle,
the actual data is used to learn nonlinear warping between
the conceptual representation and the actual data manifold.
Since each manifold will have its own mapping, we need to
have a mechanism to parameterize such mappings and de-
compose all these mappings to parameterize variables for
views, different people, etc.

Given an image sequences ya
t , t = 1, · · · , T where a de-

notes a particular class setting for all the factors a1, · · · , an

(e.g., a particular person s and view v ) representing a whole
motion cycle and given a unit circle embedding of such data
as xa

t ∈ R2 we can learn a nonlinear mapping in the form

ya
t = Baψ(xa

t ) (4)

Given such mapping the decomposition in equation 1 can be
achieved using tensor analysis of the coefficient space such
that the coefficient Ba are obtained from a multilinear [27]
model

Ba = C ×1 a1 × · · · ×n an

Given a training data and a model fitted in the form of
equation 2 it is desired to use such model to recover the
body configuration and each of the orthogonal factors in-
volved, such as view point and person shape style given a
single test image or given a full or a part of a motion cycle.
Therefore, we are interested in achieving an efficient solu-
tion to a nonlinear optimization problem in which we search
for x∗, v∗, s∗ which minimize the error in reconstruction

E(v, s, x) =|| y − C × v × s× ψ(x) || (5)

or a robust version of the error. We introduce and efficient
algorithms to recover these parameters in the case of a sin-
gle image input or a sequence of images.

3 Conceptual Embedding and Mapping

In this and next sections, for clarity of explanation and
without loss of generality, we use the gait example to show

the procedure, however, the same solution framework ap-
plies to other domains.
Conceptual Manifold Embedding: The input is a set of
image sequences each represents a full cycle of the mo-
tion, e.g., a full walking cycle captured from different view
points. Each image sequence is of certain person and
certain view. We assume that the view does not change
within any sequences. Each person can have multiple im-
age sequences. The image sequences are not necessarily
to be of the same length. We denote each sequence by
Y sv = {ysv

1 · · · ysv
Nsv

} where v denotes the view class in-
dex and s is style index. Let Nv and Ns denote the num-
ber of views and number of styles respectively, i.e., there
are Ns × Nv sequences. Each sequence is temporally em-
bedded at equidistance on a unit circle such that xsv

i =
[cos(2πi/Nsv + δsv) sin(2πi/Nsv + δsv)], i = 1 · · ·Nsv

where the displacement parameter δ is used to align all the
embedded sequences. Notice that by temporal embedding
on a unit circle we do not preserve the metric in input space.
Rather, we preserve the topology of the manifold.
Manifold Mapping: Given a set of distinctive representa-
tive and arbitrary points {zi ∈ R2, i = 1 · · ·N} we can
define an empirical kernel map[21] as ψN (x) : R

2 → R
N

where
ψN (x) = [φ(x, z1), · · · , φ(x, zN )]T, (6)

given a kernel function φ(·). For each input sequence Y sv

and its embedding X sv we can learn a nonlinear mapping
function f sv(x) that satisfies fsv(xi) = yi, i = 1 · · ·Nsv

and minimizes a regularized risk criteria. From the repre-
senter theorem, such function admits a representation of the
form

f(x) =
N∑

i=1

wiφ(x, zi),

i.e., the whole mapping can be written as

fsv(x) = Bsv · ψ(x) (7)

where B is a d × N coefficient matrix. If radial symmet-
ric kernel function is used, we can think of equation 7 as a
typical Generalized Radial basis function (GRBF) interpo-
lation [17] where each row in the matrix B represents the
interpolation coefficients for corresponding element in the
input. i.e., we have d simultaneous interpolation functions
each from 2D to 1D. The mapping coefficients can be ob-
tained by solving the linear system

[ysv
1 · · · ysv

Nsv
] = Bsv[ψ(xsv

1 ) · · ·ψ(xsv
Nsv

)]

Where the left hand side is a d × Nsv matrix formed by
stacking the images of sequence sv column wise and the
right hand side matrix is an N × Nsv matrix formed by
stacking kernel mapped vectors

To align the sequences we use the model learned for a
prototype cycle as a reference. Given a prototype cycle
coefficients B∗, any new cycle embedding coordinate is



aligned to it by searching for the displacement parameter
δ that minimizes the reconstruction error

E(δ) =
∑

i

‖yi −B∗ · ψ(xi(δ))‖

Decomposition:
Multilinear tensor analysis decomposes multiple orthog-

onal factors as an extension of principal component analy-
sis (PCA) (one orthogonal factor), and bilinear model (two
orthogonal factors) [25]. Multilinear tensor analysis can
be achieved by higher-order singular value decomposition
(HOSVD), which is a generalization of SVD [12, 27].

Each of the coefficient matrices Bsv = [b1b2 · · · bN ] can
be represented as a coefficient vector bsv by column stack-
ing (stacking its columns above each other to form a vector)
Therefore, bsv is anNc = d ·N dimensional vector. All the
coefficient vectors can then be arranged in an order-three
gait coefficient tensorB with dimensionalityNs×Nv×Nc.
The coefficient tensor is then decomposed as

B = Ã ×1 S̃ ×2 Ṽ ×3 F̃

where S̃ is the mode-1 basis of B, which represents the
orthogonal basis for the style space. Similarly, Ṽ is the
mode-2 basis representing the orthogonal basis of the view
space and F̃ represents the basis for the mapping coefficient
space. The dimensionality of these matrices are Ns × Ns,
Nv ×Nv, Nc ×Nc for S̃,Ṽ and F̃ respectively. A is a core
tensor, with dimensionality Ns × Nv × Nc which governs
the interactions among different mode basis matrices.

Similar to PCA, it is desired to reduce the dimensionality
for each of the orthogonal spaces to retain a subspace rep-
resentation. This can be achieved by applying higher-order
orthogonal iteration for dimensionality reduction [13, 27].
Final subspace representation is

B = A×1 S ×2 V ×3 F (8)

where the reduced dimensionality for A, S, V , and F are
ns × nv × nc, Ns × ns, Nv × nv, and Nc × nc where ns,
nv and nc are the number of basis retained for each factor
respectively. Using tensor multiplication we can obtain co-
efficient eigenmodes which is a new core tensor formed by
Z = A×3 F with dimension ns × nv ×Nc.

Given this decomposition and given any ns dimensional
style vector s and any nv dimensional view vector v we can
generate coefficient matrixBsv by unstacking the vector bsv

obtained by tensor product bsv = Z×1s×2v. Therefore we
can generate any specific instant of the motion by specify-
ing the body configuration parameter x t through the kernel
map defined in equation 6. Therefore, the whole model for
generating image ysv

x can be expressed as

ysv
t = unstacking(Z ×1 s×2 v) · ψ(xt)

This can be expressed abstractly also in the form of equa-
tion 3 by arranging the tensor Z into a order-four tensor C
with dimensionality d× ns × nv ×N .

4 Parameter Estimation

Given a model fitted as described in the previous section
and given a new image or a sequence of images, it is desired
to efficiently solve for each of the orthogonal factors as well
as body configuration. We discriminate here between two
cases: 1: Input is a whole motion cycle. 2: Input is a single
image. For the first case we can obtain a closed form an-
alytical solution for each of orthogonal factors by aligning
the input sequence manifold to the model conceptual man-
ifold representation. For the second case we introduce an
iterative solution.

4.1 Solving View and Style Given a Whole Se-
quences

Given a sequence of images representing a whole motion
cycle, we can solve for the view, v, and shape style, s. First
the sequence is embedded to a unit circle and aligned to the
model as described in section 3. Then, mapping coefficients
B is learned from the aligned embedding to the input. Given
such coefficients, we need to find the optimal s and v fac-
tors which can generate such coefficients given the learned
model. i.e., we need to find s and v which minimizes the
error

E(s, v) = ‖b−Z ×1 s×2 v‖ (9)

where b is the column stacking of B. If the style vector, s
is known we can obtain a closed form solution for v. This
can be achieved by evaluating the product G = Z ×1 s to
obtain tensor G. Solution for b can be obtained by solving
the system b = G ×2 v for v which can be written as a
typical linear system by unfolding G as a matrix. Therefore
estimate of v can be obtained by

v = (G2)+b (10)

where G2 is the matrix obtained by mode-2 unfolding of G
and + denotes the psuedo inverse.

Similarly we can analytically solve for s if the view, v,
is known by forming a tensor H = Z ×2 v and therefore

s = (H1)+b (11)

where H1 is the matrix obtained by mode-1 unfolding of H
Iterative estimation of v and s using equations 10 and 11

would lead to a local minima for the error in 9. Practically, it
was found that starting with a mean style estimate s̃ we can
obtain almost correct solution for v. Since the view classes
are discrete, we can find the closest view class and use it to
estimate s.

4.2 Solving for Body Configuration, View and
Style From a Single Image

In this case the input is a single image and it is desired to
estimate body configuration and each of the decomposable
factors. For the gait case, given an input image y, we need
to estimate body configuration, x , view v, and person shape
style s which minimize the reconstruction error E(x, v, s)



E(x, v, s) =|| y − C × v × s× ψ(x) || (12)

We can instead use a robust error metric and in both cases
we end up with a nonlinear optimization problem.

We assume optimal style can be written as a linear com-
bination of style classes in the training data. i.e., we need
to solve for linear regression weights α such that s =∑Ks

k=1 αks
k where each sk is a mean of one of Ks style

classes in the training data. Similarly for the view, we need
to solve for weights β such that v =

∑Kv

k=1 βkv
k where

each vk is a mean of one of Kv view classes.
If the style and view factors are known, then equation 12

reduced to a nonlinear 1-dimensional search problem for,
body configuration x on the unit circle that minimizes the
error. On the other hand, if the body configuration and
style factor are known, we can obtain view conditional
class probabilities p(vk|y, x, s) which is proportional to ob-
servation likelihood p(y | x, s, vk). Such likelihood can
be estimated assuming a Gaussian density centered around
C × vk × s× ψ(x), i.e.,

p(y | x, s, vk) ≈ N (C × vk × s× ψ(x),Σvk

).

Given view class probabilities we can set the weights to
βk = p(vk | y, x, s). Similarly, if the body configuration
and view factor are known, we can obtain style weights by
evaluating image likelihood given each style class sk as-
suming a Gaussian density centered at C × v × sk × ψ(x).

This setting favors an iterative procedures for solving for
x, v, s. However, wrong estimation of any of the factors
would lead to wrong estimation of the others and leads to
a local minima. For example wrong estimation of the view
factor would lead to a totally wrong estimate of body con-
figuration and therefore wrong estimate for shape style. To
avoid this we use a deterministic annealing like procedure
where in the beginning the view weights and style weights
are forced to be close to uniform weights to avoid hard de-
cisions about view and style classes. The weights are grad-
ually become discriminative thereafter. To achieve this, we
use a variable view and style class variances which are uni-
form to all classes and are defined as Σv = Tvσ

2
vI and

Σs = Tsσ
2
sI respectively. The parameters Tv and Ts start

with large values and are gradually reduced and in each step
and a new body configuration estimate is computed.

We summarize the solution framework as follows

Input: image y, view class means vk , style class means sk, core tensor C

Initialization :

• initialize Tv and Ts

• initialize α and β to uniform weights

• Compute initial s =
∑Ks

k=1 αks
k

• Compute initial v =
∑Kv

k=1 βkv
k

Iterate :

• Compute coefficient B = C × s× v

• Estimate body configuration: 1-D search for x that minimizes
E(x) = ||y −Bψ(x)||

• estimate new view factor

– Compute p(y|x, s, vk)

– Update view weights βk = p(vk |y, x, s)
– Estimate new v as v =

∑Kv
k=1 βkv

k

• Update coefficient B = C × s× v

• Estimate body configuration: 1-D search for x that minimizes
E(x) = ||y −Bψ(x)||

• estimate new style factor

– Compute p(y|x, sk, v)
– Update style weights αk = p(sk|y, x, v)
– Estimate new s as s =

∑Ks
k=1 αks

k

• reduce Tv , Ts

One important aspect that need to be mentioned for the
special case of gait is that there is a high similarity between
silhouette shapes in each of the half cycles for certain views.
In fact, if orthographic projection is used, side view silhou-
ettes will look identical in both halves of the walking cy-
cle. But since perspective imaging is actually used, there is
slight differences in silhouette shapes between the two half
cycles which are enough to discriminate body configuration
throughout the cycle. However, such similarity can cause
a confusion in estimating x, s, v. This motivates a modi-
fication of the above algorithm for the spacial case of gait
where we use dual hypotheses for body configuration and
view and style factors. At initialization we solve for body
configuration x given the mean style and mean view factors
then we initializes dual body configuration hypotheses as x
and its antipodal point on the circle which we call x̃. The
iterations above proceed with two sets of estimates (x, s, v)
and (x̃, s̃, ṽ). The two sets typically either converge to the
same solution or they diverge to two antipodal body config-
urations where one of them will lead to less error.

5 Experimental Results

5.1 Dynamic Shape Example: Gait Analysis

In this section we show an example of learning the non-
linear manifold of gait as an example of a dynamic shape.
We used CMU Mobo gait data set [10] which contains walk-
ing people from multiple synchronized views1. For training
we selected five people, five cycles each from four differ-
ent views. i.e., total number of cycles for training is 100=5
people × 5 cycles × 4 views. Note that cycles of different
people and cycles of the same person are not of the same
length. Figure 1-a,b show examples of the sequences (only
half cycles are shown because of limited space).

The data is used to fit the model as described in sec-
tion 3. Images are normalized to 60 × 100, i.e., d = 6000.

1CMU Mobo gait data set [10] contains 25 people, about 8 to 11 walk-
ing cycles each captured from six different view points. The walkers were
using a treadmill.
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Figure 1. a,b) Example of training data. Each sequence
shows a half cycle only. a) four different views used for
person 1 b) side views of people 2,3,4,5. c) style subspace:
each person cycles have the same label. d) unit circle em-
bedding for three cycles. e) Mean style vectors for each
person cluster. f) View vectors

Each cycle is considered to be a style by itself, i.e., there
are 25 styles and 4 views. Therefore, Ns = 25, Nv = 4.
18 equidistance points on the unit circle are used to ob-
tain the kernel map space defined in equation 6, i.e., N c =
6000 × 18. After coefficient decomposition and dimen-
sionality reduction as in equation 8 the dimensionality for
A, S, V, F are 5×4×120, 25×5, 4×4, (18×6000)×120
respectively. Figure 1-d shows example of model-based
aligned unit circle embedding of three cycles. Figure 1-
c shows the obtained style subspace where each of the 25
points corresponding to one of the 25 cycles used. Impor-
tant thing to notice is that the style vectors are clustered
in the subspace such that each person style vectors (corre-
sponding to different cycles of the same person) are clus-
tered together which indicate that the model can find the
similarity in the shape style between different cycles of the
same person. Figure 1-e shows the mean style vectors for
each of the five clusters. Figure 1-f shows the four view
vectors.

Evaluation Experiment 1: In this experiment we used the
learned model given the training data described above to
evaluate the recovery of body configuration, view, and per-
son shape style given test data of the same people in the
training but with different cycles not used in the training.
We used two new cycles for each of the five people from
the four views, i.e., 40 cycles with a total of 1344 frames in
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Figure 2. a,b) example pose recovery. from top to bottom: input
shapes, implicit function, recovered 3D pose. c) Style weights. d)
View weights.

all the test sequences. if we use a whole cycle for recovery
of view and person parameter as described in 4.1 we obtain
100% view classification. For style classification we get
36 out of 40 correct classification using nearest style mean
and 40 out of 40 using nearest neighbor. If we use single
frames for recovery, as described in section 4.2, we get 7
frame errors among 1344 test frames for body configura-
tion and style estimation, i.e., 99.5% accuracy with 100%
correct view estimation 2

2a body configuration is considered an error if the distance between
correct and estimated embedding is more than π/8 which is about 2 to 4
frame distance in the original sequence.
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Figure 3. Iterations for frame 5 from above. Left: Error. Center:
style weights. Right: View weights



Figure 4. Examples of pose recovery and view classification for three different people from three views.

Figure 2 shows example of using the model to recover
the pose, view and style. The figure shows samples of a
one full cycle and the recovered body configuration at each
frame. Notice that despite the subtle differences between
the first and second halves of the cycle, the model can ex-
ploit such differences to recover the correct pose. The re-
covery of 3D joint angles is achieved by learning a map-
ping from the manifold embedding and 3D joint angle from
motion captured data using GRBF in a way similar to equa-
tion 4. Figure 2-c,d shows the recovered style weights (class
probabilities) and view weights respectively for each frame
of the cycle which shows correct person and view classifi-
cation. Figure 3 visualizes the progress of the error, style
weights, view weights through the iterations used to obtain
the results for frame 5. As can be noticed, the weights start
uniformly and then smoothly home to the correct style and
view as the error is reduced and the correct body configura-
tion is recovered.
Evaluation Experiment 2: In this experiment we used the
learned model to evaluate the recovery of body configura-
tion and view given test data of people which have not seen
before in the training. We used 8 people sequences, 2 cy-
cles each, from 4 views where none of these people were
used in the training. Overall there are 2476 frames in the
test sequences. The recovery of the parameters was done
on a single frame basis as described in section 4.2. We ob-
tained 111 errors in the recovery of the body configuration,
i.e., body configuration accuracy is 95.52%. For view esti-
mation we get 7 frame errors, i.e., view estimation accuracy
99.72%. This result shows that the model generalizes and
we can recover the view and body configuration with very
high accuracy for unseen people. Figure 4 shows examples
recovery of the 3D pose and view class for four different
people non of them was seen in training. More examples
can be seen in the attached video clips.

5.2 Dynamic Appearance Example: Facial Ex-
pression Analysis

We used the model to learn facial expressions manifolds
for different people. We used CMU-AMP facial expression
database where each subject has 75 frames of varying facial
expressions. We choose four people and three expressions
each (smile, anger, surprise) where corresponding frames
are manually segmented from the whole sequence for train-
ing. The resulting training set contained 12 sequences of
different lengths. All sequences are embedded to unit cir-
cles and aligned as described in section 3. A model in the
form of equation 2 is fitted to the data where we decom-
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Figure 5. From top to bottom: Samples of the input sequences;
Expression probabilities; Expression classification; Style probabil-
ities

pose two factors: person facial appearance style factor and
expression factor besides the body configuration which is
nonlinearly embedded on a unit circle.

We used the learned model to recognize facial expres-
sion, and person identity at each frame of the whole se-
quence. Figure 5 shows an example of a whole sequence
and the different expression probabilities obtained on a
frame per frame basis using the algorithm described in sec-
tion 4.2. The figure also shows the final expression recog-
nition after thresholding along manual expression labeling.
We used the learned model to recognize facial expressions
for sequences of people not used in the training. Figure 6
shows an example of a sequence of a person not used in
the training. The model can successfully generalizes and
recognize the three learned expression for this new subject.

6 Conclusion

In this paper we presented a framework for learning
a decomposable generative model for dynamic shape and
dynamic appearance where the intrinsic motion lies on a
closed 1D manifold which, in such case, is homeomorphic
to a unit circle. Conceptual manifold embedding on a unit
circle has many advantages. Fundamentally, this allows
modeling any variations (twists) of the manifold given any
number factors such as different people, different views, etc.
since all resulting manifolds are still topologically equiva-
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Figure 6. Generalization to new people: expression recognition
for a new person. From top to bottom: Samples of the input se-
quences; Expression probabilities; Expression classification; Style
probabilities

lent to the unit circle. This is not achievable if data-driven
embedding is used. Another advantage of conceptual em-
bedding is that we only need one cycle of data to learn the
manifold while any data-driven embedding would require
several cycles to achieve a reasonable embedding. For the
case of gait we used temporal information to embed the
data which, in this case, provides a straight forward dy-
namic model for tracking. The use of a generative model is
tied to the use of conceptual embedding since the mapping
from the manifold representation to the input space will be
well defined in contrast to a discriminative model where the
mapping from the visual input to manifold representation is
not necessarily a function. We introduced a framework to
solve for various factors such as body configuration, view,
and shape style. Since the framework is generative, it fits
well in a Bayesian tracking framework and it provides sep-
arate low dimensional representations for each of the mod-
elled factors. Moreover, a dynamic model for configuration
is well defined since it is constrained to the 1D manifold
representation. The framework also provides a way to ini-
tialize a tracker by inferring about body configuration, view
point, body shape style from a single or a sequence of im-
ages.
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