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Abstract. The computation of free space available in an environment
is an essential task for many intelligent automotive and robotic appli-
cations. This paper proposes a new approach, which builds a stochastic
occupancy grid to address the free space problem as a dynamic pro-
gramming task. Stereo measurements are integrated over time reducing
disparity uncertainty. These integrated measurements are entered into an
occupancy grid, taking into account the noise properties of the measure-
ments. In order to cope with real-time requirements of the application,
three occupancy grid types are proposed. Their applicabilities and im-
plementations are also discussed. Experimental results with real stereo
sequences show the robustness and accuracy of the method. The current
implementation of the method runs on off-the-shelf hardware at 20 Hz.

1 Introduction

The computation of free space available in the environment is an essential task
for many intelligent automotive and robotic applications. The free space is the
world regions where navigation without collision is guaranteed. Navigable space
might become extremely important in automotive applications if an escape route
in a critical situation is required. In robotics, free space is required when planning
the path between two points. This paper proposes a method for the computation
of free space in complex traffic scenarios.

Literature Review. Occupancy grids were first introduced in [2]. Occupancy
grids were proposed as a model to handle a number of problems in the mobile
robot domain. This includes: range-based mapping, multiple sensor integration,
path planning, and navigation. Although the grids were used initially to model
occupancy probabilities, the encoding of multiple properties in the cell state was
proposed early in [2]. In [5] and [9] three-dimensional grids were used to model
properties like color, textureness, and occupancy. Occupancy or evidence grids
continue to be used everywhere in the literature for spatial modelling of envi-
ronments. An exhaustive review can be found in [13] and [14].

An occupancy grid is built in [12] based on the input given by a stereo cam-
era. 3D points are tracked over time and integrated with Kalman filters. The
estimated covariance matrix of the 3D points is used to update the occupancy
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grid. However, the error of the triangulated 3D points is modelled as a Gaussian
distribution. This leads to biased estimates of 3D position [11], and therefore
to the wrong estimation of free space. In [10] the free space is computed us-
ing occupancy grids and stereo vision. The method uses filters to improve the
quality of the disparity image and apply a threshold to decide the occupancy or
non-occupancy of the cells. Free space computation on occupancy grids were also
addressed by [8] using laser range finders and omnidirectional stereo. In [1] free
space is computed independently of evidence grids by applying inverse perspec-
tive mapping. [4] indirectly obtains free space by computing the road-obstacle
boundaries by dynamic programming on a simplified disparity space image.

This paper presents a novel method for the computation of free space based
on dynamic programming on a polar occupancy grid. The Cartesian representa-
tion of an occupancy grid is redefined in this paper and two additional types of
grids are proposed.

2 Overview of the Algorithm

Figure 1 shows a block diagram of the proposed algorithm. The algorithm starts
by computing stereo with input from a pair of rectified stereo images. The stereo
algorithm corresponding to the Stereo Computation block is not constrained to a
specific implementation. The only requirement is computation of enough dispar-
ity measurements to capture all relevant objects in a scene. The stereo algorithm
generates a disparity and a variance image. The variance image contains the es-
timated variance of each measured disparity.

Disparity and variance images are used to refine an integrated disparity image
by means of Kalman filters. An iconic representation (section 4) is used, where
the state vector of the filter collects all disparity measurements. The ego-motion
of the camera must be available in order to predict the disparity and variance
images. The prediction is corrected with a new stereo measurement to obtain
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Fig. 1. Block diagram of the algorithm.



3

refined disparity and variance images. The next step is to compute the occupancy
grid. Section 3 addresses this topic.

The occupancy grid is also integrated over time to reduce the effect of out-
liers. The Occupancy Grid Integration block performs a low-pass filter with a
predicted occupancy grid based on ego-motion of the camera. Finally, free space
is computed using dynamic programming on a polar grid (topic of section 5).

The next section deals with occupancy grids and how to generate them from
stereo measurements.

3 Occupancy Grids

Definition. An occupancy grid M is a two-dimensional array or grid which
models occupancy evidence of the environment. The 3D world is orthographically
projected on a plane P parallel to the road (assuming a structured environment
where the floor surface is planar). The plane is discretized into cells (i, j). Every
cell corresponds to some tetragonal area Aij of the plane P. The intersection
area of any two cells is always empty, i.e. Aij ∩ Alm = �, (i, j) 6= (l,m). The
areas Aij are not necessarily rectangular and may not be equal. The subindex
ij specifies a lateral component (i) and a depth component (j). Every cell of
the grid mantains an occupancy likelihood D(i, j) of the represented world area.
Figure 2 shows some examples of occupancy grids. The following sections present
three types of occupancy grids based on the this definition.

Mathematical Preliminaries. A measurement is defined as the vector
mk = (u, v, d)T , where (u, v) is a left image coordinate, and d its corresponding
disparity computed by stereo. The measurement mk is the projection of some
world feature located at point pk = (x, y, z)T onto the camera image, such that
mk = P (pk). The projection equation is;

mk = P (pk) =
1
z

 fux
fvy
fuB

 +

u0

v0

0

 , (1)

where fu and fv are the focal lengths measured in pixel width and height re-
spectively. B is the baseline of the stereo system, and (u0, v0) is the principal
point of the image. The inverse of the projection equation is the triangulation
equation which is defined as;

pk = P−1(mk) =
B

d

 (u− u0)
(v − v0)svu

fu

 , (2)

where svu = fu/fv.
The vector mk is a noisy measurement of a real but unknown vector m̄k,

such that ξ̄k = mk − m̄k is the real unknown error vector. ξ̄k is assumed to be
an occurrence of a zero mean random process with probability density function
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(a) Cartesian
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(b) Column/Disparity
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(c) Polar

Fig. 2. Examples of occupancy grids. The figures on the top show the plane P with the
discretized areas Aij . The figures on the bottom show the corresponding occupancy
grids. Some cells and their corresponding areas have been marked in order to show the
world areas represented in each case.

(p.d.f.) Gm̄k
, i.e. Gm̄k

(ξk) models the likelihood of obtaining an error ξk given
the fact that the real state is m̄k. Without loss of generality it is assumed a
multivariate Gaussian p.d.f.;

Gm̄k
(ξk) =

1
(2π)3/2

∣∣Γ̄ k

∣∣ exp
(
−1

2
ξT

k Γ̄
−1
k ξk

)
, (3)

where Γ̄ k is the real measurement covariance matrix.
The objective is to find the function Lij(mk) which defines the occupancy

likelihood for cell (i, j) given measurement mk. The obtained likelihood is added
to the current cell value of the occupancy grid D(i, j), such that for m measure-
ments the occupancy likelihood for a given cell (i, j) is:

D(i, j) =
m∑

k=1

Lij(mk). (4)

In the following sections three types of occupancy grids are defined, and the
corresponding Lij is found.

Cartesian Occupancy Grid. The world is represented by a Cartesian grid,
i.e. a portion of the world is projected to a plane, and mapped linearly to a grid
of fixed dimensions (see Figure 2(a)). Assuming that cell (i, j) of the Cartesian
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grid is centered at world coordinate (xij , zij), and that m̄k can be approximated
by mk the likelihood function for cell (i, j) is;

Lij(mk) = Gmk
(P (pij)−mk), (5)

where pij = (xij , y, zij)T and y is the triangulated height of the measurement
obtained with Equation 2. Equation 5 defines likelihood of the cell to be; Gauss
factor dependent on deviation between measurement and the projected cell po-
sition. Thus, the maximum likelihood factor is given to the cell which contains
the triangulated measurement (see Figure 3(a)).

In the actual implementation, the registration of measurement mk by up-
dating every cell of the grid is time consuming, and prohibitive for real-time
application. A more appropriate implementation updates only the cells which
are affected significantly by the current measurement. For example, when as-
suming Gaussian p.d.f., only cells for which the Mahalanobis distance between
its projection, and the measurement is less than 3 are considered. The amount
of measurement data not registered is less than 0.3%.

Column/Disparity Map. Contribution of the v component of measurement
vector mk in Equation 1 can be ignored since it contributes only to the height
component of the 3D point pk. Since the height component is lost by the pro-
jection onto the grid, the vector (u, d) suffices to register the measurement. The
cells of the column/disparity grid correspond to discretized values of the u and
d image coordinates (see Figure 2(b)). Assuming that the cell (i, j) corresponds
to the coordinate (uij , dij), The likelihood function for the cell (i, j) is:

Lij(mk) = Gmk
( (uij − u, 0, dij − d)T ). (6)

Figure 3(b) shows an example of the Lij function.

Polar Occupancy Grid. In stereo triangulation, depth varies inversely pro-
portional with disparity. Registering stereo measurements in a column/disparity
grid implies a decreasing resolution to distant points (compare Figures 2(b) and
2(c)). This problem is overcome by defining a polar grid. In a polar occupancy
grid, cells represent discretized values of coordinates (u, z) where u corresponds
to the column of the image, and z the depth in the world coordinate system.
Let us assume that cell (i, j) corresponds to coordinate (uij , zij). The likelihood
function for cell (i, j) is;

Lij(mk) = Gmk
( (uij − u, 0, d′ij − d)T ), (7)

where d′ij = fuB/zij , i.e. disparity corresponding to the cell depth.

Discussion The usual representation is a Cartesian grid [14]. It offers an intu-
itive way to model the environment since there is linear mapping between world
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(a) Cartesian Occupancy Grid.

(b) Column/Disparity Occupancy Grid.

(c) Polar Occupancy Grid.

Fig. 3. Probability density functions for the same measurement in each occupancy grid
representation. The figures show the likelihood function Lij .

and occupancy grid coordinates. Nevertheless, a Cartesian representation is not
always the best choice. The main drawback of a Cartesian grid is its computa-
tion time. Every measurement has a different Lij and affects a different number
of cells. Distant points require much more registration time than close points
because of the greater number of cells affected by the measurement.

A much faster implementation is obtained with a column/disparity grid. If
the measurement covariance matrix Γ̄ k is constant, a single look-up table stores
the coefficients required to register all measurements. If Γ̄ k is not constant, the
computation is stil faster than in the Cartesian case. The Lij function is symmet-
ric with respect to both grid axes (see figure 3(b)). This allows the computation
of coefficients for only one quarter of the cells; the remaining three quarters are
just mirrored transformations of the first quarter. Furthermore, the number of
cells affected by a measurement does not depend on the measurement itself, but
only on the covariance matrix Γ̄ k.
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The depth resolution of a column/disparity grid decreases quadratically with
distance. This might be convenient for applications requiring a higher accuracy
for closer objects, but is a problem if the goal is detection of distant objects.
A polar occupancy grid provides a constant depth resolution at the expense of
some computation time. The form of the likelihood function Lij is asymmetric in
the depth direction (because of non-linearity of the triangulation equation) but
symmetric in the horizontal direction (see Figure 3(c)). This means that only
half of the cells affected by a measurement require computation. If the covariance
matrix is constant, maintaining a look-up table for every row in the grid speeds
up the algorithm.

It is convenient be able to transform one representation into another repre-
sentation. In section 5 this will be required for the computation of free space
using dynamic programming. Given any two occupancy grids of different types
Da and Db, where a and b, where chosen just for convenience, and indicate any
two different types of occupancy grids, the transformation is;

Da(i, j) =
∑

(l,m)∈Ω

Db(l,m), (8)

such that;

Ω = (l, m) | (l,m)
T a

b7→(i, j), (9)

and where the mapping T a
b defines the coordinate transformation from an occu-

pancy grid of type b to a map of type a. Ω collects all the cells corresponding to
the same destination cell (i, j).

4 Iconic Representation for Stereo Integration.

The main error of triangulated stereo measurement is in the depth component
(see e.g. [6]). The reduction of disparity noise helps localization of estimated 3D
points, and therefore grouping of objects in a grid. Tracking of features in an
image over time allows reduction of the covariance matrix Γ k (see [3]). Nev-
ertheless, tracking is a very expensive operation and highly restricts real-time
capability of a system with an increasing number of features. Instead a more
direct method that does not require tracking, but depends on the ego-motion in-
formation of the camera, is used. Iconic representation introduced in [7] is used.
In the iconic representation only disparity components of the measurement vec-
tor ml are filtered by means of a Kalman filter. The first two components of the
measurement ml are discretized into integer values so that disparity measure-
ments always correspond to integer image positions.

Stereo integration requires three main steps as figure 1 shows:

– Stereo Prediction: the current integrated disparity and variance images are
predicted. This is equivalent to computing expected optical flow and dispar-
ity based on ego-motion [7]. Our prediction of the variance image includes
the addition of a driving noise parameter that models the uncertainties of
the system, such as ego-motion inaccuracy.
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– Stereo computation: disparity and variance images are computed based on
the current left and right images.

– Disparity Image Correction: both, predicted and measured disparity im-
ages are fused together obtaining the new integrated disparity and variance
images. Current predicted disparities with no corresponding measurement
(i.e. no disparity computed the current image position) are not immediately
deleted, in the expectation that a measurement for this estimate will be
computed in the next frame. Disparity measurements with no correspond-
ing estimate are considered new, and are added into the current integrated
disparity image. Every remaining measured disparity has a corresponding
estimate. If the measurement does not lie within a 3 Γ distance from the
current estimate, the measurement is added as new replacing the estimate.
Otherwise the estimate is updated with standard Kalman filter correction
equations [7].

An example of the improvement achieved with the iconic representation is
shown in figure 4. The occupancy grid shown in Figure 4(b) was obtained with
standard output from the stereo algorithm while in Figure 4(e) the occupancy
grid was computed with an integrated disparity image. The improvement can
be seen by the reduction in tails of registered 3D points. Figure 4(f) shows
the comparison when using and not using the disparity image integration. The
region corresponds to the pedestrian. The integrated disparity image shows an
improvement of several orders of magnitude.

5 Freespace Computation by Dynamic Programming

Cartesian space is not a suitable space to compute the free space because the
search must be done in the direction of rays leaving the camera. Furthermore, the
set of rays must span the whole grid. A more appropriate space is the polar space.
In polar coordinates every grid column is, by definition, already in the direction
of a ray. Therefore, searching for obstacles in the ray direction is straightforward.
The first step is to transform the Cartesian grid to a polar grid as addressed in
section 3.

In polar representation, the task is now to find the first occupied cell. The
first visible obstacle in the positive direction of depth will be found. All the space
found before the cell is considered free space. Figure 5(a) shows the procedure
so far. By observing Figure 5(a) carefully, it can be seen that the solution forms
a path from left to right segmenting transversely the polar grid in two regions.
Instead of thresholding each column as usually done [10] [8], dynamic program-
ming is used. The new method based on dynamic programming has the following
properties:

– Global optimization: every row is not considered independently, but as part
of a global optimization problem that is optimally solved.

– Spatial and temporal smoothness of the solution: the spatial smoothness is
imposed by the use of a cost that penalizes jumps in depth while temporal
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Figures (b), (c) and (d) show the Cartesian, column/disparity and polar (re-
spectively) maps computed with rectified stereo pair of Figure (a). In Cartesian space
the cell size is 0.15m × 0.15m. The Polar grid has depth resolution of 0.15m and an-
gular resolution of 1 px. The column/disparity grid has the same angular resolution,
and disparity resolution of 0.1 px. These three occupancy grids were computed using
raw stereo information. Figure (e) shows the resulting Cartesian map when integrated
stereo is used as addressed in section 4. The pedestrian is shown as a reference point
with a vector in all figures. Figure (f) shows amplified regions of the pedestrian likeli-
hood for Figure (b) (top) and Figure (e) (bottom).
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(a) Polar Occupancy Grid. (b) Corresponding free space in
world coordinates.

(c) Segmentation result. (d) Freespace.

Fig. 5. Free space search in a polar representation, and corresponding free space area.

smoothness is imposed by a cost that penalizes the deviation of the current
solution from a prediction.

– Preservation of spatial and temporal discontinuities: the saturation of the
spatial and temporal costs allows the preservation of discontinuities.

Dynamic programming is applied to the grid in order to segment the image into
two regions. For computation of the optimal path, a graph G(V,E) is generated.
V is the set of vertices, and contains one vertex for every cell in the grid. E is
the set of edges which connect every vertex of one column, with every vertex
of the following column. Every edge has an associated value which defines the
cost of segmenting the image through the connected vertices. The objective is
to find the minimal path using dynamic programming. The cost of each edge is
composed of a data and a smoothness term, i.e.;

ci j,k l = Ed(i, j) + Es(i, j, k, l), (10)

is the cost of the edge connecting the vertices Vi j and Vk l where;

Ed(i, j) =
1

D(i, j)
, (11)

is the data term defined by the inverse likelihood of the cell and3 and;

Es(i, j, k, l) = S(j, l) + T (i, j), (12)
3 If D(i, j) = 0, then a very large value is assigned to Ed(i, j)
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is a smoothness term containing a spatial and a temporal part. The spatial term
penalizes jumps in depth and is defined as:

S(j, l) =
{

Cs d(j, l) ; if d(j, l) < Ts

Cs Ts ; if d(j, l) ≥ Ts
. (13)

The function d(j, l) returns the distance in meters between cells in rows j and l
of the grid. The constant Cs is a cost parameter penalizing jumps in depth, and
the threshold Ts (also measured in meters) saturates the cost function, allowing
the preservation of depth discontinuities.

The temporal term of Equation 12 has the same form, i.e.;

T (i, j) =
{

Ct d(j, j′) ; if d(j, j′) < Tt

Ct Tt ; if d(j, j′) ≥ Tt
, (14)

where Ct is the cost parameter, Tt is the maximal distance for the saturation,
and j′ is the prediction obtained by applying ego-motion to the segmentation
result of the previous cycle.

6 Experimental results

The method was tested on-line and off-line on a variety of different traffic scenar-
ios; including downtown, highways and freeways. Figure 5(d) shows the freespace
computed with the stereo image of figure 4(a). The camera captured 12 bit VGA
greyscale images, the stereo baseline was 56 cm, and the focal length 1500 px.
The carpet overlayed on the image shows the space of the road which is free
of obstacles. Figure 5(c) shows the corresponding segmentation of the dynamic
programming on the column/disparity grid.

A suitable application for this method is the determination of the free space
while driving through road works. The lateral space available for driving might
become narrow. In such a situation, the information provided by free space
analysis is very valuable. Figure 6 shows two examples. The baseline of the
camera system is 308 cm, and the images have a 12 bit greyscale VGA resolution
with 820 px focal length. Figure 6(a) shows the free space results while driving
through road works on a highway. The green carpet shows the free space detected.
A prediction of the vehicle trajectory in 2 seconds is shown in blue. The walls
at the left and right shows the lateral space available for driving. Figure 6(b)
shows another situation on a freeway while raining. The lateral space is limited
at the right by a truck, and at the left by a concrete barrier. Both are correctly
detected as occupied regions, and the free space is correctly computed.

Finally, figure 6(c) shows the results of the method in a downtown scenario.

7 Conclusion

We have presented a method for the computation of free space with stochastic
occupancy grids. Three types of grids were defined, their benefits and drawbacks
were discussed. Applying dynamic programming to a polar occupancy grid, the
optimal segmentation between free/occupied regions is found.



12

(a) Highway. (b) Freeway. (c) Downtown.

Fig. 6. Free space analysis on road works.
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