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Abstract. Structure and motion estimation from long image sequences
is a hard problem, especially when it comes to proving stability and
convergence of different methods. We propose a novel approach based
on nonlinear and adaptive observers based on a dynamic model of the
motion. The estimation of the three-dimensional position and velocity
of the camera as well as the three-dimensional structure of the scene is
done by observing states and parameters of a nonlinear dynamic system,
containing a perspective transformation in the output equation, often re-
ferred to as a perspective dynamic system. The paper presents a stability
analysis for a class of observers for the estimation of position. The analy-
sis provides conditions for convergence, and insight into feasible motions.
An advantage of the proposed method is that it is filter-based, i.e. it pro-
vides an estimate of structure and motion at each time instance, which
is then updated based on a novel image in the sequence. Finally, the
performance of the proposed method is shown in simulated experiments.

Key words: Dynamic vision, perspective dynamic systems, nonlinear
observers, adaptive observers, stability analysis

1 Introduction

One of the central problems in computer vision is the recovery of structure
and motion from image sequences. Most approaches to this problem are batch-
methods, where first all images are gathered and then the calculations are per-
formed on all the data. These methods are usually based on multi-view tensors
and nonlinear least squares optimization, see [1] for an overview of these ap-
proaches. However, some attempts have been made to develop recursive methods
(in the sense of processing images as they becomes available and always having
an estimate of motion and structure at hand), e.g. [2, 3] and also some related
work in the area of automatic control, e.g. [4]. The main motivation for devel-
oping recursive methods is to being able to use them in real-time applications,
where on-line structure and motion estimation is essential.

Another aspect of structure and motion estimation methods is the possi-
bility to prove convergence and stability of the proposed algorithms. Very few
attempts in this direction has been made, especially in the case of long image
sequences. Recent work on applying convex optimization techniques to different
sub-problems has being able to show that global optima are obtained, e.g. [5,
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6]. However, this has not been shown in the case of both structure and motion
estimation for longer image sequences. Other results concerning convergence of
batch-methods have been reported in [7] for a variant of the factorization method
and in [8] for still another batch method. Within the area of automatic control,
observability and controllability of dynamic perspective systems have been stud-
ied in e.g. [9].

In order to apply nonlinear adaptive observers, a dynamic model of the mo-
tion of the camera is introduced. This formulation turns the structure and motion
problem into a problem of observing states and parameters in the resulting dy-
namic perspective system. Structure and motion estimation without knowledge
of motion parameters can be considered the most challenging case, and is de-
scribed e.g. in [10], where structure-independent motion estimation is performed
using a dynamic system, and in [11], where structure estimation is treated. Refer-
ences [10] and [11] present algorithms for estimating structure as well as motion
using e.g. implicit extended Kalman filters. The algorithms are verified experi-
mentally but it is difficult to establish analytical results regarding convergence
and stability. A specific class of algorithms for structure estimation, where avail-
able values for angular and linear velocities are used and where position is es-
timated, can be formulated as nonlinear observers. This kind of observers are
described e.g. in [12–22], which present estimators for structure only using differ-
ent kinds of nonlinear observers, providing various analytical results regarding
stability, and simulation examples for illustration of observer performance.

This paper describes how a parametrization of the underlying dynamic sys-
tem can be used to formulate estimation problems for structure as well as motion,
and how the so obtained problem formulations can be used for the derivation of
estimators, using available methods from nonlinear and adaptive control. Prob-
lem formulations for different estimation tasks are presented, and observers are
derived and illustrated using simulation examples. We also derive analytical re-
sults regarding stability and convergence for the case of structure estimation.

The possibility of using nonlinear and adaptive observers to handle simul-
taneous structure and motion estimation has been previously treated in [23],
however using a different approach involving stereo vision.

Sections 2 and 3 review the derivation of the perspective dynamic system un-
der consideration and describe the dynamic vision parametrization. In Section
4 it is shown how the parametrization can be used to obtain a common problem
formulation for several different structure and/or motion estimation tasks. In
Section 5 a nonlinear observer structure is selected, and nonlinear and adap-
tive observers for the parameterized perspective dynamic system are presented.
The stability analysis is presented in Section 6. The performance of the derived
observers is then illustrated in Section 7 using simulation examples.

2 Dynamic perspective system

The dynamic system parametrization is derived from a dynamic system which is
obtained, as is commonly done, from a description involving coordinate systems
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Fig. 1. Coordinate systems used for describing the position of a 3D point p, belonging
to an observed object.

for the observed object and for the camera. For the purpose of clarity we also
employ an inertial coordinate system when defining a specific motion.

The inertial coordinate system is denoted the a-system. The object coor-
dinate system is denoted the b-system, and is attached to the observed object
which is assumed to be a rigid body. The object may be stationary or moving.
The camera coordinate system is referred to as the c-system, and is considered
attached to a possibly moving camera. The coordinate systems are illustrated in
Fig. 1, where a selected point p on the observed object is also shown.

A system of differential equations for the motion of the point p can be derived.
Introducing the notation daba for the coordinates of the vector dab in Fig. 1 when
expressed using the orientation of the a-system, and the notation xbpb for the
coordinates of the vector xbp in Fig. 1 when expressed using the orientation of
the b-system, we get, using a rotation matrix Rab which expresses the relative
orientation between the two coordinate systems, that xapa = daba + Rabxbpb.
Similarly, the coordinates of the vector xbp can be expressed using the orientation
of the c-system using a rotation matrix Rcb, as

xcpc = dcbc +Rcbxbpb . (1)

Define the skew-symmetric matrix S(v) associated with a vector v ∈ R
3, using

a cross-product with an arbitrary vector u as

S(v)u = v × u . (2)

Introduce also the angular velocity vector ωcbc and the matrix S(ωcbc) = ṘcbR
T

cb.
Differentiating (1) with respect to time and using the orthogonality property
RT

cbRcb = I, together with the assumption of rigid body motion which implies
ẋbpb = 0, then results in

ẋcpc = S(ωcbc)xcpc + ḋcbc − S(ωcbc)dcbc . (3)
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The relation (3) holds for an arbitrary point p, and since the position of p as
seen from inside the body, i.e. xbpb, does not appear in (3), we obtain differential
equations for the motion of N points xi

cpc with i ∈ {1, 2 . . .N}, as

ẋi
cpc = S(ωcbc)x

i
cpc + ḋcbc − S(ωcbc)dcbc . (4)

The camera model used here is a frontal pinhole imaging model [24] with an im-
age plane parallel to the x1-x2-plane of the c-system, a focal length f , an optical
center which coincides with the origin of the c-system, a camera transforma-
tion matrix C ∈ R

2×2 and an offset vector δ ∈ R
2×1. Introducing the vectors

y =
(

y1 y2
)

T

and ξ =
(

ξ1 ξ2
)

T

=
(

xcpc,1

xcpc,3

xcpc,2

xcpc,3

)

T

and defining Cf = f · C, this

results in 2D image coordinates expressed in vector form as

y = Cfξ + δ . (5)

For the purpose of deriving a dynamic system, for which observers can be con-
structed, introduce the simplified notation

x = xcpc, d = dcbc, ω = ωcbc, ξ =
(

x1

x3

x2

x3

)T

. (6)

Further, define the matrix A and the vector b as

A = S(ω), b = ḋ−Ad (7)

with the mapping S as defined in (2). Combining equation (3) with the output
vector y given by the camera model (5) then results in the system

ẋ = Ax+ b

y = Cfξ + δ .
(8)

Extending the model (8) to describe the motion and observation of multiple
points xi on the same rigid object results in

ẋi = Axi + b

yi = Cfξ
i + δ

, i ∈ {1, 2 . . .N} . (9)

Note that the model parameters A, b, Cf and δ, as a result of the rigid body
assumption and the use of a single camera, are common to all the points xi.

3 Dynamic vision parametrization

Given x from (8), introduce the scalar parameter γ and the vector z by

γ =
1√
xTx

, z = γx . (10)

It can be seen from (10) that z is the unit vector in the direction of the 3D
position x, and also that γ is the inverted distance to the feature point under
consideration, i.e. the 3D point with coordinates given by x.
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Differentiating γ in (10) with respect to time using (8) and the fact that
xTAx = 0 since A is skew-symmetric, gives

γ̇ = −γ2zTb . (11)

Combining (8) with the definition of z in (10) and using (11), we further have
that ż = Az + bγ − z(zTb)γ . Observing that ξ, according to (6) and by the

definition of z in (10), also can be expressed as ξ =
(

z1

z3

z2

z3

)T

, the dynamic
system (8) can be formulated as

ż = Az + (I − zzT)bγ

y = Cfξ + δ .
(12)

Now assume that the camera is calibrated, i.e. that Cf and δ in (5) are known.
Also assume that Cf is invertible. Since y is measured, these assumptions imply
that ξ can be assumed known. By (10) and the definition of ξ in (6) the vector
z can also be expressed as

z =
1

√

ξ21 + ξ22 + 1

(

ξ1 ξ2 1
)

T

. (13)

Thus, since ξ is assumed to be a known measurement signal also z can be assumed
known. Combining (11) with the first equation in (12), and introducing

g0(z) = I − zzT (14)

a dynamic system can be formulated as

ż = Az + g0(z)bγ

γ̇ = −γ2zTb .
(15)

Similarly, for the motion of more than one point a dynamic system corresponding
to (9) is obtained as

żi = Azi + g0(z
i)bγi

γ̇i = −(γi)2(zi)Tb
, i ∈ {1, 2 . . .N} . (16)

Equation (10) together with (15) and its multipoint version (16), constitute the
desired dynamic vision parametrization. It is referred to as a parametrization
rather than e.g. a coordinate transformation, since the transformation from x to
z is not invertible. Instead the vector z, which, assuming a calibrated camera, is
measurable according to (13), can be regarded as an alternative form of image
coordinates. More specifically, the parametrization (10) can be interpreted as a
projection onto a spherical image surface. This type of projection is used also
in [19], where a different type of structure estimator is investigated, and where
motion estimation is not considered.
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4 Estimation Problem Formulations

Introduce a measurable vector η ∈ R
N together with a vector of unknown param-

eters θ ∈ R
M . A dynamic system, where the vectors η and θ together constitute

the state vector, will be used as the basis for different estimation problems. The
dynamic system is written as

η̇ = ψ(η) + φT(η)θ

θ̇ = µ(η, θ)
(17)

where ψ, φ and µ are vector-valued functions, determined from the particu-
lar estimation problem under consideration. The matrix φ will be denoted the
regressor matrix.

Structure estimation - Given the motion parameters A and b, a problem of
structure estimation can be formulated as the task of estimating the quantities
γi, i ∈ {1, . . . , N} in (16), which then give estimates for the three-dimensional
position x for each observed feature point, using (10).

In order to relate this problem to the framework provided by (17), let the
measurable vector η and the unknown parameter vector θ be given by

η =
(

(z1)T (z2)T . . . (zN )T

)

T

, θ =
(

γ1 γ2 . . . γN
)

T

(18)

Introducing a block diagonal 3N × 3N -matrix Ā with block diagonal elements
A and comparing (16) with (17) it can be seen that the function ψ(η) in (17) in
this case is described by ψ(η) = Āη . It can further be seen that the regressor
matrix φ(η) is given by a block diagonal matrix φ(η) = diag

(

g0(z
i)b

)

, 1 ≤ i ≤ N
and that the function µ(η, θ) defining the parameter dynamics is

µ(η, θ) =
(

−(γ1)2(z1)Tb . . . −(γN )2(zN )Tb
)

T

. (19)

Estimation of structure and angular velocity - Assuming a known linear
velocity vector b, the problem of estimating the angular velocity ω as well as
the structure parameters γi, i ∈ {1, . . . , N}, is considered. The angular velocity
ω is related to the skew-symmetric matrix A in (16) according to (7). Using
ω × z = −z × ω which implies S(ω)z = −S(z)ω, the system (16) can be written
as

żi = −S(zi)ω + g0(z
i)bγi

γ̇i = −(γi)2(zi)Tb
, i ∈ {1, 2 . . .N} . (20)

The parameter vector θ in (17) is here given by θ =
(

ωT γ1 γ2 . . . γN
)

T

. Again
using the measurable vector η as defined in (18), and comparing (17) and (20),
we get ψ(η) = 0 and the regressor matrix

φ(η) =











−S(z1) g0(z
1)b . . . . . . 0

−S(z2) 0 g0(z
2)b . . . 0

...
... . . .

. . .
...

−S(zN) 0 . . . . . . g0(z
N )b











T
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Assuming that the angular velocity evolves according to a dynamic system of
the form ω̇ = µω(ω) , the parameter dynamics µ(η, θ) in (17) can be expressed
as

µ(η, θ) =
(

µω(ω)T −(γ1)2(z1)Tb . . . −(γN)2(zN )Tb
)

T

Estimation of structure and linear velocity - Assuming a known angular
velocity ω, the problem of estimating the linear velocity b as well as the structure
parameters γi, i ∈ {1, . . . , N}, can be formulated using (17), however augmented
with an additional scaling condition. The need for the scaling condition can
be seen from (16), where for each i, the linear velocity b only appears in the
product γib. Consequently, γi and b cannot be distinguished without the use
of additional constraints. Introducing βi = γib, and assuming that the vector b
evolves according to a dynamic system γiḃ = µβ(βi), the dynamic system (16)
is reformulated, using the equation for γ̇i in (16), as

żi = Azi + g0(z
i)βi

β̇i = −((zi)Tβi)βi + µβ(βi)
, i ∈ {1, 2 . . .N} . (21)

Define normalized values of the parameters γi as

αi =
γi

γ1
, i ∈ {2, . . . , N} . (22)

The problem of estimating the linear velocity b as well as the structure pa-
rameters γi, i ∈ {1, . . . , N} can be formulated using two dynamic systems
having the form (17). The first dynamic system is formulated for the purpose
of estimating β1, and the second dynamic system is formulated for the pur-
pose of estimating αi, i ∈ {2, . . . , N}. For this estimation task, the relation

βi = γib = γi

γ1 γ
1b = αiβ1 is used to reformulate (21) for the purpose of estimat-

ing αi, i ∈ {2, . . . , N}, given an estimate of β1.
The parameters to be estimated, i.e. the quantities β1 and αi, i ∈ {2, . . . , N},

need to be combined with a scaling condition, for the purpose of computing the
structure parameters γi. A scaling condition can be derived e.g. from assumed
knowledge of the distance between two object points. Assuming a distance d
between two points x1 and x2, i.e. (x1 − x2)T(x1 − x2) = d2, we get, using
zi = γixi according to (10) together with (22), that

(z1 − 1

α2
z2)T(z1 − 1

α2
z2) = (γ1)2d2 (23)

Since z1 and z2 are measurable, equation (23) shows that γ1 can be computed,
given an estimated value of α2 and an assumed value of the distance d. The
remaining γi, i ∈ {2, . . . , N} can then be computed using (22).

Structure and motion estimation Following the strategy described above,
where two dynamic systems on the form (17) are used, together with a scaling
condition for the purpose of estimating structure and linear velocity assuming
knowledge of the angular velocity, a formulation for estimation of angular and
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linear velocity as well as structure can be derived. Here we choose to extend the
first dynamic system for the purpose of estimating also angular velocity. The
parameter vector becomes θ1 =

(

ωT (β1)T
)

T

and the regressor matrix is given

by φ1(η1) =
(

−S(z1) g0(z
1)

)

T

. The second dynamic system uses the estimated
β1 as well as the estimated ω which then replaces a known angular velocity with
an estimated angular velocity. Finally, a scaling condition e.g. (23) is used for the
computation of γ1, and hence the remaining γi, i ∈ {2, . . . , N} can be computed
using (22).

5 Nonlinear and adaptive observers

Introduce a matrix F which is Hurwitz, and a symmetric positive definite matrix
Q. A symmetric positive definite matrix P can then be computed as the unique
solution to the Lyapunov equation [25],

F TP + PF = −Q . (24)

Introducing the estimated quantities η̂ and θ̂, an estimator for (17) can then be
formulated as

˙̂η = ψ(z) + F (η̂ − η) + φT(η)θ̂

˙̂
θ = −φ(η)P (η̂ − η) + µ(η, θ̂) .

(25)

The estimator (25) constitutes an extension of the estimator presented in [26],
which in turn is based on [27]. The extension is here due to θ not being a constant
parameter, as is assumed in [26]. Therefore, the second equation in (25) contains

a correction term µ(η, θ̂) which is not present in the estimator in [26].
The estimator (25) is formulated with reference to the dynamic system (17).

Section 4 describes how the dynamic system (17) can be used as the basis for
formulating different estimation problems in dynamic vision. The estimator (25)
can therefore be used as a common estimator structure for the problems consid-
ered, by selecting the vectors η and θ and the functions ψ, φ and µ as described
in Section 4.

The matrices F andQ can be regarded as tuning parameters for the estimator
(25).

6 Stability analysis

A stability analysis for the case of structure estimation is presented. The analysis
shows asymptotic stability of the estimator, hence giving a proof of convergence
in the sense that if the initial structure estimate is close enough to its true value,
the estimate will converge as the time t→ ∞.

For the case of structure estimation the dynamic system (17) is given by

(15). The observer (25) is rewritten, using the notation ẑ and γ̂ for η̂ and θ̂
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respectively, as

˙̂z = F z̃ +Az + g0(z)bγ̂

˙̂γ = −bTg0(z)
TP z̃ − γ̂2zTb

(26)

Introducing the estimation errors z̃ = ẑ − z and γ̃ = γ̂ − γ, and using (15) and
(26) and the relation γ2 − γ̂2 = −γ̃(γ̃ + 2γ), gives the error equations

˙̃z = F z̃ + g0(z)bγ̃

˙̃γ = −bTg0(z)
TP z̃ − γ̃(γ̃ + 2γ)zTb

(27)

The error equations are considered asymptotically stable if z̃ → 0 and γ̃ → 0
as t → ∞. We will show stability of the error equations by Lyapunov’s indirect
method, where stability of a nonlinear system is deduced from the stability
of a linear system, obtained from a linearization of the nonlinear system [25].
Linearization of (27) gives

˙̃z = F z̃ + g0(z)bγ̃

˙̃γ = −bTg0(z)
TP z̃ − 2γγ̃zTb

(28)

As a first step, we show that z̃ → 0 and that γ̃ is bounded. Introduce the scalar
function

V (z̃, γ̃) =
1

2γ4

(

z̃TP z̃ + γ̃2
)

(29)

Differentiating (29) along the trajectories of (28), gives

V̇ (z̃, γ̃) = − 2

γ5
γ̇

(

z̃TP z̃ + γ̃2
)

+
1

2γ4

(

2z̃TP ˙̃z + 2γ̃ ˙̃γ
)

(30)

which using the second equation in (15) together with (28) and (24), becomes

V̇ (z̃, γ̃) = z̃T(
2

γ3
zTbP − 1

2γ4
Q)z̃ (31)

Assuming that the matrices Q and P are such that the matrix

2

γ3
zTbP − 1

2γ4
Q (32)

is negative definite for the object motions considered, i.e. for the range of values
for z, b and γ, we get V̇ (z̃, γ̃) ≤ 0 from which we can conclude that z̃ → 0 and
that γ̃ is bounded, e.g. [25, 28]. In order to show that also γ̃ → 0, a reasoning
inspired by a stability proof in [28] will be used. First, a function ϕ(t) is defined
as

ϕ(t) =
1

2
(γ̃(t+ T )2 − γ̃(t)2) (33)

The function ϕ(t) is bounded since γ̃ is bounded. The time derivative ϕ̇(t) be-
comes

ϕ̇(t) = γ̃(t+ T ) ˙̃γ(t+ T ) − γ̃(t) ˙̃γ(t) =

∫ t+T

t

d

dτ
(γ̃(τ) ˙̃γ(τ))dτ (34)
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The integral in (34) can be rewritten, using (28), resulting in

ϕ̇(t) = −
∫ t+T

t

γ̃(τ)b(τ)Tg0(z(τ))
TPg0(z(τ))b(τ)γ̃(τ)dτ

−
∫ t+T

t

γ̃(τ)b(τ)Tg0(z(τ))
TPF z̃(τ)dτ −

∫ t+T

t

d

dτ
(γ̃(τ)b(τ)Tg0(z(τ))

TP )z̃(τ)dτ

−
∫ t+T

t

d

dτ
(2γ(τ)γ̃(τ)z(τ)Tb(τ))dτ

(35)

If we now assume a persistency of excitation condition, also denoted PE condi-
tion, i.e. that for all t and T , there is a positive number k such that

∫ t+T

t

b(τ)Tg0(z(τ))
Tg0(z(τ))b(τ)dτ ≥ kI (36)

we can show that γ̃ → 0 by the following reasoning. The PE condition (36)
implies that the first integral in (35) fulfils

∫ t+T

t

γ̃(τ)b(τ)Tg0(z(τ))
TPg0(z(τ))b(τ)γ̃(τ)dτ > 0 (37)

Assume now, contradictory to what we would like to show, that it is not the
case that γ̃ → 0. We then see that, for t large enough, the first and last integrals
in (35) will dominate over the two remaining integrals, which both tend to zero
since z̃ → 0. Hence it is possible to achieve, possibly by selecting Q such that
the eigenvalues of P are sufficiently large (which can be done, according to e.g.
[29]), that for t large enough, we get ϕ̇(t) < 0 which contradicts the fact that
ϕ(t) is bounded. Hence, γ̃ → 0.

To summarize, we have shown asymptotical stability of the error equations
(27) by using the corresponding linearized equations (28), provided the matrix
(32) is negative definite for the motions considered and also that the PE condition
(36) holds.

The PE condition (36) can be interpreted in terms of unfavourable motions,
using the following reasoning. From (14) and the observation that z by its defi-
nition (10) is a vector of unit length, it can be seen that if b || z over some time
interval, the integrand of (36) will be identically zero over that interval, and the
PE condition will not be fulfilled. Except for the case b = 0, this means that the
translational velocity of the observed point relative to the camera should not
be directed along a straight line connecting the camera center with the current
measurement z during any time interval. That the case b || z results in an un-
favorable motion from an observability point of view can also be seen directly
from (15), since such a b would disrupt the influence of γ on the z-dynamics, and
thus render the parameter identification process infeasible, since then changes
in the parameter γ cannot be observed through the dynamics of the available
signal z. It can also be seen that b || z implies that provided b3 6= 0, it holds
that

(

y1 y2
)

T

=
(

b1/b3 b2/b3
)

T

, which is the focus of expansion mentioned as an
unobservable case also for the observers presented in e.g. [13, 15, 16, 20].
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Fig. 2. Structure estimation results, using a circular camera motion. True (solid) and
estimated (dash-dotted) values of γ (top) and z (middle). Estimation error for x (bot-
tom).

7 Simulation examples

The performance of the estimator (25) is demonstrated in simulation examples.
In the simulations, we use F = −10 · I and Q = 750 · I as the matrices em-
ployed to determine the matrix P from (24). A structure estimation example
is first presented, using the estimator (25) applied to the dynamic system (17).
The camera is moving in a circle of radius 1 in the x1-x2-plane of the inertial
coordinate system, around an observed object located at the center of the circle.
The optical axis of the camera, i.e. the x3-axis, is kept oriented towards the
origin of the inertial system. The object is assumed fixed, and we can therefore
for simplicity define the inertial system to coincide with the object coordinate
system. In the dynamic systems formulation, this motion can be described using
the parameter vectors ω =

(

−1 0 0
)

T

and b =
(

0 −1 0
)

T

. A single feature point

is observed, with an initial position selected as x0 =
(

−0.5 0.5 1
)

T

. The chosen
initial position represents a point which is not located at the center of the circu-
lar motion. The estimation results are shown in Fig. 2. As can be seen in Fig. 2,
the estimates converge nicely towards the true values. The simulation illustrates
how structure is estimated for a motion giving rise to time-varying γ and z. A
similar simulation example using the same observer, where also noise is added,
can be found in [30].

A structure and motion estimation example is presented, using the estimator
(25) applied to the dynamic system (17), for estimation of angular and linear
velocity as well as three-dimensional position. The observed object contains two
feature points, executing a periodic motion used also in [23], governed by the



12 Ola Dahl, Anders Heyden

0 10 20 30
0.1

0.2

0.3

0.4

0.5

0.6

0.7

γ
,γ̂

0 10 20 30
−2

0

2

4

6

ω
,ω̂

0 10 20 30
0

0.5

1

1.5

2

α
2
,α̂

2

t
0 10 20 30

−4

−2

0

2

4

x
3
−
x̂

3

t

Fig. 3. Structure and motion estimation results, for a periodic object motion as in [23].
True (solid) and estimated (dash-dotted) values of γ (upper left), α2 (lower left) and
ω (upper right). The depth errors are shown in the lower right plot.

parameter vectors ω =
(

−0.4 0.5 4
)

T

and b =
(

0 2π sin(2πt) 2π cos(2πt)
)

T

. The

initial values for the object points are given by x0 =
(

2 2 4 2 2 2
)

T

, with a
distance d = 2 between the two points. The estimation results are shown in Fig.
3, where it can be seen in the lower right plot that the three-dimensional position
is recovered. It can also be seen, in the upper right plot, that the estimated
angular velocity converges to its correct value. The upper left plot shows that
the estimated parameters γ̂ converge to the actual parameters γ for the two
points, as is the case for α2 as seen in the lower left plot.

8 Conclusions

Estimation of 3D structure and motion from 2D images can be performed using
a dynamic systems formulation, where nonlinear and adaptive observers can be
utilized for estimation of states and parameters. In this paper we have demon-
strated how a single parametrization of the underlying perspective dynamic sys-
tem can be used for formulation of estimation problems for structure as well as
motion, and also how a common observer structure can be used for the estima-
tion problems considered.

Observers are derived for estimation of structure for known motion, for esti-
mation of angular or linear velocity and structure, and for estimation of angular
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and linear velocity as well as structure. The observers estimating linear veloc-
ity use a scaling condition, which resolves the well-known scale ambiguity of
the 3D reconstruction formulation. A stability analysis is presented, showing
convergence of the structure estimator. Simulations are presented, illustrating
for the case of estimating linear and angular velocity as well as structure, how
a nonlinear observer can be used for motion estimation as well as recovery of
three-dimensional position in a monocular vision system, using measurements
from two-dimensional images.

The proposed nonlinear observer is able to estimate structure and motion,
using as few as two feature points. This, however, requires that certain dynamic
properties of the angular and linear velocities are known. The observer thus
demonstrates a trade-off compared to a more computer vision oriented approach,
where no specific assumptions regarding the motion dynamics are required, but
instead additional feature points are needed.
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