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Abstract. This paper addresses the problem of tracking multiple un-
dulating creatures through interactions and partial occlusions from a
top view. Detailed posture estimation of biological model organisms is
essential for a wide variety of research. We present a visual tracking
algorithm that incorporates both a contour model and a region model
based on level sets. Both visual cues are naturally integrated into the
observation model of an Iterated Kalman Filter (IKF). We use genera-
tive geometric models to parameterize the animal’s shape deformations
and motion. The priors provided by these parametrized models improve
tracking accuracy in the presence of incorrect foreground segmentation
and partial occlusions, while allowing us to measure physical quantities
directly relevant to experimental goals. For illustration, the method is
used to track the position and shape of multiple nematodes and larval
zebrafish.

1 Introduction

Capturing the detailed motion and behavior of biological organisms plays an
important role in a wide variety of research disciplines. Many studies in genetics,
developmental biology, and neuroscience rely on the analysis of video sequences.
Techniques from computer vision can potentially have a large impact in this area
by providing accurate and efficient screening of complex organismal phenotypes
and behavior modes that are dominated by motion. In this paper, we address
the problems of tracking the planar motion of multiple nematodes (C. elegans)
and larval zebrafish (Danio rerio), which are widely used model organisms in
biology [1, 2]. The experimental lighting conditions in our video sequences are
such that high contrast is often achieved between the organism and background.
This facilitates accurate foreground segmentation and localization of individual
organisms in the lateral direction due to the existence of strong edges.

However, many of the behaviors most interesting for biological research oc-
cur when the animals closely interact, such as mating of nematodes or collisions
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between zebrafish larvae. In these cases, there is often insufficient edge infor-
mation to localize the organisms during partial occlusions (see Fig. 1). Thus,
this problem argues for a region-based approach that will drive our models to
contain the maximum number of foreground pixels. However, to achieve precise
estimation of the organism’s posture, contours should be utilized also. To ad-
dress this need, we present a tracking algorithm that incorporates a level-set
based image segmentation functional and a contour tracker into the framework
of the Iterated Kalman Filter (IKF). The algorithm uses the solution given by
the region-based measurements as an initial condition that is refined using the
contour measurements. Frame 54

Fig. 1: Left: Raw image of mating C. elegans. Right: Despite accurate foreground
segmentation, it is difficult to localize the smaller worm in the axial direction with
only edge information (i.e. both configuration are plausible). Therefore a region-based
method should be employed.

Recently, several automated systems have been developed for tracking multi-
ple C. elegans nematode [3–5]. In [3] and [5], the authors both use a region-based
approach that achieves robust tracking, but they do not take advantage of con-
tour information to refine the pose estimation and achieve greater accuracy. The
authors in [4] proposed an edge-based tracker that achieved high accuracy, how-
ever, manual intervention was required when the head and tail of the worms
remained occluded for more than a few frames. No methods to date have ad-
dressed the problem of tracking multiple zebrafish larvae. The proposed algo-
rithm takes advantage of multiple cues and incorporates a model representation
that is applicable across different species.

Tracking moving objects with changing shape continues to be an active area
of research. Geometric active contours formulated in the level-set framework has
emerged as a general and robust method because its implicit representation natu-
rally deals with topological changes (e.g. when a worm coils its body) that earlier
explicit representations [6] could not. Previous level-set based trackers that use
a dynamic state space framework include [7–11]. By using a state space model
that includes a model of the moving object’s dynamics, the temporal coherence
of the level sets guides the tracking process, instead of using the solution from
the previous image frame as the initial guess for the current frame. In terms of
Bayesian inference, this corresponds to a prior probability distribution on system
state. The region-based portion of our algorithm is most closely related to the



work of [7, 8, 11] who formulate tracking as a problem of Bayesian inference and
incorporate a prior model using a linear combination of principle shapes learned
from a training sequence.

With the animal tracking application in mind, we construct generative geo-
metrical models whose finite parameterizations are adapted to the given problem.
By specifying the degrees of freedom and deformations of our model, the state
estimation process allows us to perform inference on physical quantities that are
of interest to experimental goals. In addition, the generative models allow us to
naturally decouple the organism’s shape from its posture and apply it to diverse
motions across different organisms.

2 Preliminaries

This section first reviews our tracking methodology, and aspects of prior theory
that are needed to develop our approach. Then, we review the popular Chan and
Vese model for image segmentation [12] and show how it is incorporated into
our region-based tracking scheme. We then develop an example of this method
using nematodes and zebrafish that includes a contour based measurement model
which is used to refine the state estimate given by the region-based approach.

2.1 Model-Based Image Tracking

We construct models for animal tracking using a generative modeling approach
[13]. A generative model is constructed by applying a continuous transformation
to a shape, known as a generator. Mathematically, the generator is represented by
the parametric function G(q) : <l → <m, and the continuous transformation by
T (x; r) : <m×<k → <n, where x ∈ <m is a point in space to be transformed, and
r ∈ <k is a parameter that defines the transformation. The resulting generative
model is

F (p) = T (G(q) ; r) : <l+k → <n (1)

where F is the surface defined by our model and p =
[
q r

]T is the joint param-
eterization. Examples of generative models for C. elegans and Danio rerio are
given in Section 3.

The state of the animal consists of the parameters that describe its pose (i.e.
the translation of a body fixed frame with respect to a reference frame and angles
associated with the orientation of appendages), although other parameters can
be included. The visual tracking problem involves sequentially estimating the
state, p, via measurements, z, in a discrete time dynamic state space model

pk = f(pk−1, ξk−1) (2)
zk = h(pk, ωk) (3)

where ξk and ωk are noise processes. We assume that f(p, ξ) is available to
describe the animal’s motion between frames (e.g., see section 3.1), and the
measurements consist of either 2D images or 1D edge-feature points for the re-
gion and contour methods, respectively. To systematically derive the tracking



equations for the region-based approach, the generative model defined by (1) is
transformed into the image domain by rendering it using an appropriate cam-
era model, IF (p) = Render(F (p)) : <n → <2. The image IF (p) determines the
regions inside and outside the rendered model and is used to construct a signed
distance function (SDF), φ. The observation equation, h(p, ω), is then based
on the Chan and Vese model which uses the implicit representation of φ. For
the contour-based approach, the observation function is the concatenation of
edge-feature points normal to the model contour. Correspondence is achieved
using statistical measures and an exclusion heuristic based on current estimates
of other models. See the ensuing sections for details. Under the assumptions of
white and Gaussian noise, the IKF is used as our nonlinear estimation technique.
A specific example of the approach is given in Section 3.2.

2.2 Region-Based Tracking

As shown in [14], a single iteration of the update equation in an IKF is equivalent
to a single Gauss-Newton iteration of a nonlinear least squares problem. To
establish this equivalence, assume that the state estimate p̂ ∈ <n and observation
z ∈ <m come from the multivariate normal distributions

p̂ ∼ N (p,P), z ∼ N (h(p),R). (4)
From Bayes Rule, the MAP estimate of p is found by maximizing P(p|z) '

P(z|p)P(p) with respect to z. Maximizing the posterior distrubution is equivalent
to minimizing the negative log of the function P(z|p)P(p),

E(p) =
1
2

[
(z − h(p))TR−1(z − h(p)) + (p̂− p)TP−1(p̂− p)

]
(5)

after dropping a constant. The minimization of (5) is equivalent to a nonlinear
least squares problem with an error functional of the form:

E(p) = 1
2‖f(p)‖2. (6)

The Gauss-Newton method for minimizing (6) defines a sequence of approxima-
tions pi that converges to a local minimum of (6) for problems where ||f(p)||
is locally convex at the solution. Using matrix algebra and utilizing the matrix
inversion lemma, the Gauss-Newton sequence becomes equivalent to

pi+1 = p̂k + Ki

(
z − h(pi)−Hi(p̂k − pi)

)
, (7)

which is the IKF update equation for the kth time step. Hi is the Jacobian
matrix of h(pi) and Ki = PHT

i (HiPHT
i +R)−1 is the Kalman gain. Thus, the

update equation of an iterated Kalman Filter is equivalent to a nonlinear least
squares problem of the form in (6).

Next, we use this result to incorporate a level set image functional into the
Kalman Filter update framework. In order to determine the boundary that di-
vides the image into foreground and background regions (i.e, the image boundary
that divides the tracked animal’s body from the background), a contour Γ is em-
bedded into the zero level set of a signed distance function φ : Ω → < on the
image domain Ω ⊂ <2:



Γ = {(x, y) ∈ Ω | φ(x, y) = 0}. (8)

By minimizing an energy functional, Γ is deformed implicitly by evolving the
function φ. While many different image-based energy functionals have been pro-
posed, we focus on the popular Chan and Vese model [12], which can be solved
using level set methods [15]. It has the form:

Ecv(φ) =
∫

Ω

(I−c1)2H(φ)+(I−c2)2(1−H(φ)) dx dy+
∫

Ω

ν|∇H(φ)| dx dy, (9)

where the first and second terms try to increase the grayscale homogeneity of
the image I inside and outside Γ and the third term penalizes the contour
length. H(·) is the Heaviside function, and the constants, c1 and c2 are defined
as c1(φ) =

∫
Ω

I(x,y)H(φ)dx dy∫
Ω

H(φ)dx dy
and c2(φ) =

∫
Ω

I(x,y)(1−H(φ))dx dy∫
Ω

(1−H(φ))dx dy
which respectively

represent the average grayscale intensity inside and outside the contour.
When prior knowledge about the object being detected is available, φ can be

explicitly parameterized by the model parameters. This approach is utilized by
Tsai et al. to accurately segment MRI scans of the left ventricle and prostate
gland [16]. They redefine the Chan and Vese model as Ecv(c1, c2, φ(w, z)) and
perform gradient descent directly on the shape parameters, w, and the pose
parameters, z. We also define φ as a function of the shape and pose parame-
ters, however, instead of using PCA to model the shape deformations, we use a
generative model (1) that encodes all variables appropriate to scientific goals.

We assume that our segmenting contour Γ and associated φ are parameter-
ized by a state vector p. Following [16], we eliminate the “length” term in the
Chan and Vese model because the underlying model-based parameterization of
Γ prevents it from growing arbitrarily. Then (9) becomes

Ecv(p) =
∫

Ω

(I − c1)2H(φ(p)) + (I − c2)2(1−H(φ(p))) dx dy. (10)

To show how the Chan-Vese segmentation model can formally fit into an IKF
framework, we define the observation function of the state space model (3) as:

h(p) =

{
c1 φ(p) ≥ 0
c2 φ(p) < 0

. (11)

Note that the c1, c2 are functions of φ, which in turn is a function of p, and
so h(·) is differentiable. For implementation on images with a finite number of
pixels, we convert (10) to a discrete representation:

Ecv(p) =
∑

i

∑
j

(I(xi, yj)− h(xi, yj ; p))2 (12)

= ‖(I − h(p))‖2. (13)

where I(xi, yj) is the image intensity at the pixel with coordinates (xi, yj). Note
that the Chan-Vese model tries to minimize the difference in pixel intensity be-
tween the observed image and a binary-valued image, defined by the observation



function h of (11), across the image domain Ω. Assuming that the covariance
of z (in (3)) assumes the value R = I, the identity matrix, and rewriting the
squared Mahalanobis distance as ‖y−p‖2Σ , (y−p)T Σ−1(y−p), we can rewrite
error function (5) of the MAP estimate as:

E(p) =
1
2

[
‖z − h(p)‖2R + ‖p̂− p‖2P

]
(14)

=
1
2

[
Ecv + ‖p̂− p‖2P

]
. (15)

That is, the error function takes the nonlinear least squares form of (6), whose
iterative minimization is equivalent to the IKF update equation. Thus, we have
shown that the Chan and Vese segmentation model can be implemented as the
observation term of an iterated Kalman filter when one defines the observation
function according to (11). The second term in (15), ‖p̂ − p‖2P , is equivalent to
a “shape prior” or “knowledge-driven” term. It draws the current state towards
the prediction and weights it according to the statistical certainty, while the first
term modifies the state based solely on image intensity.

2.3 Contour Update

Let p̂∗k and P∗k be the updated state and covariance at time step k due to the
Chan and Vese Model region model described above. The final state estimate is
achieved by applying the Kalman update equation to these estimates, pi+1 =
p̂∗k + Ki

(
z − hc(pi) −Hc

i (p̂∗k − pi)
)
, using the contour observation model, hc(p)

and iterating until convergence.
Implementation of the IKF update equation requires linearization of (11),

which can be better approximated using the statistical linearization methods
of Sigma-Point Kalman Filters (SPKF) (see [17] and the references therein).
We follow the approach of [18] by using iteration in addition to the statistical
linearization. The iteration is stopped when either the residual norm is less than
a preset threshold, it increases for consecutive iterations, or the update reaches
a maximum number of iterations.

The tracking approach presented here has several advantages. First, the
region-based observation model makes a global measurement of the error by
utilizing the distribution of intensity values across the entire image to make a
local search for the solution. Second, by utilizing the statistical linearization
methods, we eliminate the need to directly calculate the Jacobian matrices asso-
ciated with our process and observation equations. Finally, the contour update
allows us to refine our state estimate using the dominant edges present in our
high contrast images.

3 The Worm and Fish State Space Models

Sections 3 and 3.1 describe the equations for a single organism. Tracking K
organisms is achieved by concatenating the state variables K times. The motion



of C. elegans and Danio rerio on a typical microscope slide is largely planar,
so we restrict our modeling of the organisms to two dimensions and assume
orthographic projection in the camera model. To a good approximation, they
also maintain constant length and width during locomotion. Therefore, we model
the organism’s centerline as a planar, inextensible curve. The centerline shape
can be effectively described by the bend angle as a function of distance along its
length. This function, Θ(u), becomes the generator of our model and is finitely
parameterized using a linear combination of known basis functions, Φk

j (u):

Θ(u) =
NΘ∑
j=1

αjΦ
k
j (u). (16)

Although other choices are possible, the current implementation uses second and
fourth order (k = {2, 4}) periodic B-spline basis with NΘ = 8 for the worm and
fish, respectively. The organism’s centerline is constructed by integrating the unit
tangent vector e1 to the centerline curve, and the width is created by expanding
the surface in the direction of the normal vector e2. This transformation creates
our parameterized generative model F (p):

e1(u) =
[
cos(Θ(û))
sin(Θ(û))

]
, e2(u) =

[
− sin(Θ(u))
cos(Θ(u))

]
(17)

F (p) = β
( ∫ u

0

e1(û)dû + v R(u)e2(u)
)

+ T (18)

where β is a constant scaling term with units pixels ∗ mm−1, T is a global
translation vector to the model’s center of mass, p =

[
α T

]T , L is the organ-
ism’s length, u ∈ [−L

2 , L
2 ], v ∈ [−1, 1] are the mesh parameters, and R(u) is

a continuous function for the organism’s width as a function of distance along
its length. Currently, R(u) is defined as a fourth order periodic B-spline using
20 control points and is calculated offline using a semi-automatic initialization
routine described in [19]. For our experiments, the scaling term β is calculated
from a test image using a stage micrometer.
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Fig. 2: Illustration of C. Elegans and Danio rerio geometric models. The models are
deformed by changing the bend angle Θ(u) and the location of its body coordinate
frame T



3.1 Motion Model

The motion model assumes that the organism undergoes axial progression along
its length with a constant wave velocity, η1, corrupted by acceleration noise, η2.
Thus, the state vector and process noise vector for a single organism are:

p =
[
α T η1

]T
ξ =

[
∆α ∆T η2

]T (19)

The equations of motion calculate the predicted state vector after the organ-
ism has undergone a total axial displacement of η0 = η1∆t + η2

∆t2

2 , where ∆t is
the inverse of the camera frame rate. These equations take the form:

pk = f(pk−1, ξk−1)
αk

Txk

Tyk

η1k

=


Λ(u)−1Λ(u + η0)αk−1

Txk−1 +
∫ η0

0
cos(Φ(û)αk−1)dû

Tyk−1 +
∫ η0

0
sin(Φ(û)αk−1)dû
η1k−1

+


∆αk−1

∆Txk−1

∆Tyk−1

η2k−1∆t

 (20)

Here, Φ(u) is a NΘ dimensional row vector of B-spline bases, and Λ(u) =[
Φ(u1)
·
·

Φ(us)

]
is a s x NΘ matrix of B-spline bases evaluated at s sampled grid points

in u. The predicted shape parameters are calculated by projecting onto this
basis in the domain of displacement u + η0, calculating the new Θ(u + η0), and
projecting back onto the original basis, Φ(u). Likewise, the predicted translation
is calculated by integrating the tangent vector over the axial displacement.

3.2 Observation Model

Although the Chan and Vese model can be applied directly to grayscale images,
we apply it to binary images that are calculated using a simple background
subtraction model. Because microscope lighting effects may cause regions of the
worm and fish to be nearly camouflaged in the background, we determine the
pixels belonging to the worm by background subtraction instead of relying on the
image functional to partition the image based on the distribution of grayscale
intensities. This approach is primarily used to provide improved tracking of
multiple organisms, as we do not currently constrain the shape priors to pre-
vent intersection of different worms or fish because this occurs frequently in the
intended applications.

The binary image serves as the data observation at the kth frame, zk = Ik. An
overview of the worm observation model is illustrated in Figure 3. The rendered
image of each organism model defined by (18) is joined to create the total image
IF (p) =

⋃K
i=1 Render(F (pi)). Once the boundary locations ∂Ω have been found,

the values of c1 and c2 can be calculated directly. We first determine the domains:

ΩI =
{
(xi, yi) | IF (p)(xi, yi) = 1, (xi, yi) /∈ ∂Ω

}
(21)

ΩO =
{
(xi, yi) | IF (p)(xi, yi) = 0

}
, (22)



which determine the sets of pixels inside and outside the worm boundary, re-
spectively. The observation model h(p) is then calculated as follows:

h(p) =

{
c1 =

∑N
i Ik(xi,yi)

N (xi, yi) ∈ ΩI
⋃

∂Ω

c2 =
∑M

i Ik(xi,yi)

M (xi, yi) ∈ ΩO.
(23)

We assume that the image pixels are corrupted by additive noise with unit
variance, ωk ∼ N (0, I). Using this model, the observation dimension is equal
to the number of pixels in the image. To decrease the computational cost of
calculating the Kalman gain, we make two modifications. First, Ik is trimmed
to the smallest window that contains the closed boundaries that belong to the
organism. We also subsample the images Ik and IF (p) using a standard Gaussian
pyramid with unit variance. The observation update is then performed at a level
2 of the pyramid where level 0 is the original resolution (see Fig. 3a).

The contour observation model is illustrated in Fig. 3b, and it consists of the
model boundary points qi =

[
xi yi

]
projected onto their outward normal vectors,

ni =
[
nx

i ny
i

]
. To find corresponding edge-feature points, we follow the approach

of [20] by applying a 1D edge detector filter to Ik in the normal direction at each
of the boundary points in the model. The nearest neighbor detected edge points,
ri, are also projected onto ni so that the error minimized by the IKF has the
form nT(q− r). For worm tracking, we also make two additions to this contour
model. A closed B-Spline curve is fit to the boundaries of Ik and locations of
high negative curvature are calculated. These feature points correspond to head
and tail locations and are matched with our model if they pass a Mahalanobis
test and have a similar normal vector orientation. Also, due to their cylindri-
cal shape, the worms never share a visible boundary while they interact (i.e.
their centerlines are almost never coincident and parallel in any region). This
constraint is incorporated by rejecting any detected edge points for one worm
where the measurement lines cross over the model location of other worms. This
idea is also modeled in [3] using a ’worm overlap energy’ and is a simpler notion
of the exclusion principle presented in [21].

4 Experimental Results

We demonstrate our tracking algorithm on 4 worm sequences and 1 fish sequence.
All videos are acquired using a stereographic microscope outfitted with either
a 30 Hz camera at 720x480 or 640x480 resolution for the worms or a 3000 Hz,
1024x1024 camera for the fish. The fish sequence was cropped to 550x775 to
only include the region where swimming occurs. For each sequence, the model
pose parameters are manually initialized by clicking points along the centerline
of each organism to match the configuration at the first frame. The algorithm is
written in MATLABTM, uses the state estimation toolbox of [22], and operates
in a batch off-line mode.

In the multiple worm sequences, the hermaphrodite (larger worm) is par-
tially paralyzed to keep the mating behavior within the camera’s field of view.
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Fig. 3: Overview of observation models, h(pk, ωk) used in the proposed tracker: (a)
Illustration of the observation model for region-based tracking. Initial condition (red)
and final solution (green) are plotted over the subsampled data image, Ik. Contours
represent the zero level set of φ(pk); (b) Observation model for contour-based tracking.
Edge features are detected along 1D measurement lines. Model locations are labeled
as occluded (yellow stars) if no match is detected. High curvature points (red squares)
are matched with head/tail locations.

Research into the genetic basis of mating behavior mainly involves studying the
male motion. Mating consists of two behavior modes that are dominated by
motion: backing and turning. Quantifying the body posture of the male during
backing and turning is an important metric for understanding the genetic and
neuronal basis of mating. For instance, certain mutants either cannot turn, or
hesitate a lot before turning. Fig. 4 shows four sequences where our algorithm
is able to successfully track both worms while the male backs and turns. The
first row illustrates the failed tracking result when just the contour observation
model is utilized. Because the male model is only using the lower edge infor-
mation to localize itself, the tracker cannot detect when it crawls underneath
the hermaphrodite. However, by incorporating the region-based module, we can
successfully handle the partial occlusion. Fig. 5 illustrates the specific curvature
profile (curvature normalized by body length) of the male worm from the video
sequence in Fig. 4c. The direction of propagation of the curvature isocontours
indicates which way the worm is traveling and, hence, can be used to detect re-
versals. This particular worm undergoes four different reversals to reorient itself
for mating that is indicated by a change in slope of the isocontours.

In Fig. 4f, three zebrafish are successfully tracked during partial occlusions
and collisions that result from one larvae exhibiting an escape response (C-start)
that is initiated by touching the fish with a horse hair. Automatic quantification
of the swimming behavior across multiple fish is important for many scientific
questions such as, automatic phenotyping and schooling behavior. Our approach
allows us to quickly construct specific curvature profiles (see Fig. 5), which com-
pactly illustrates the motion over time. Key measurements such as frequency,



wave speed, and peak muscle strains can be calculated from this plot. The escape
response is illustrated by the initial closely spaced tailbeat cycles, which become
more spaced out after 30ms when the animal has evaded danger.

5 Future Work

We presented a model-based tracking algorithm that formally incorporates the
robust segmentation method of level sets and contours within the nonlinear IKF
estimation framework. This approach has tracked worms during mating and fish
during swimming collisions by utilizing the flexibility of generative models, and
created an accurate behavioral quantification method for numerous future bio-
logical studies. Although we are able to acheive good tracking results, we feel
it is mainly due to incorporating high-level and low-level cues, and not due to
the choice of nonlinear estimator. Because the Kalman filter only performs a
local search, estimators that perform a more global search may have superior
performance in certain scenarios. Specifically, we are interested in incorporating
our parameterized models and contour tracking with the particle filtering im-
plementation of Chan and Vese’s model presented in [11]. In addition, certain
lighting and/or experimental conditions will make appearance-based tracking a
more favorable approach. The work of Khan et. al. on bee tracking [23] provides
a viable approach to estimate the extra parameters associated with appearance
in an effective manner.
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Frame 1 Frame 55 Frame 70

(a) Using only edge information, tracking of
the male worm fails when it is partially oc-
cluded.

Frame 1 Frame 55 Frame 70 Frame 336 Frame 403 Frame 460

(b) Tracking using region and edge based cues successfully handles the partial occlusion.
Frame 1 Frame 78 Frame 269 Frame 308 Frame 338 Frame 470

(c) The implicit representation of φ handles the changing topology of the image contour
in the second and fourth still frames when the male worm curls its body.

Frame 1 Frame 90 Frame 243 Frame 470 Frame 794 Frame 1120

(d) Tracking mutant male that performs backing along hermaphrodite but hesitates and
fails to complete a turn.

Frame 11 Frame 61 Frame 140 Frame 215

(e) This mutant hesitates but successfully completes a turn.
Frame 1 Frame 27 Frame 35 Frame 46 Frame 80

(f) Tracking larval zebrafish during the escape response behavior which is initiated on
the green fish by prodding with a horse hair

Fig. 4: Tracking results of four different C. elegans mating sequences and one zebrafish
sequence. Model estimate of male and hermaphrodite appear in white and cyan, re-
spectively (a)-(e)
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Fig. 5: (Left) Specific curvature profile of male C. elegans vs. time during mating be-
havior from video sequence 4c. (Right) Specific curvature profile of zebrafish larvae
escape response from green fish.

11. Rathi, Y., Vaswani, N., Tannenbaum, A., Yezzi, A.: Particle filtering for geometric
active contours with application to tracking moving and deforming objects. In:
CVPR. (2005)

12. Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Processing
10(2) (2001) 266–277

13. Snyder, J.M., Kajiya, J.T.: Generative modeling: A symbolic system for geometric
modeling. In: SIGGRAPH. (1992) 369–378

14. Bell, B.M., Cathey, F.W.: The iterated kalman filter update as a gauss-newton
method. IEEE Trans. on Automatic Control 38(2) (1993) 294–297

15. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer-
Verlag (2003)

16. Tsai, A., Yezzi, A., Wells, W., Tempany, C., Tucker, D., Fan, A., Grimson, W.,
Willsky, A.: Model-based curve evolution technique for image segmentation. In:
CVPR. (2001)

17. van der Merwe, R., Wan, E.: Sigma-point kalman filters for probabilistic inference
in dynamic state-space models. In: Proc. of the Workshop on Advances in Machine
Learning. (2003)

18. Sibley, G., Sukhatme, G., Matthies, L.: The iterated sigma point kalman filter
with applications to long range stereo. In: Robotics Science and Systems. (2006)

19. Fontaine, E., Lentink, D., Kranenbarg, S., Mller, U., van Leeuwen, J., Barr, A.,
Burdick, J.W.: Automated visual tracking for studying the ontogeny of zebrafish
swimming. (submitted)

20. Blake, A., Isard, M.: Active Contours. Springer (1998)
21. MacCormick, J., Blake, A.: A probabilistic exclusion principle for tracking multiple

objects. In: ICCV. (1999)
22. van der Merwe, R., Wan, E.: Rebel:recursive bayesian estimation library.

http://choosh.bme.ogi.edu/rebel/ (2004) Matlab R©Toolkit.
23. Khan, Z., Balch, T., Dellart, F.: A rao-blackwellized particle filter for eigentracking.

In: CVPR. (2004)


