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Abstract. In this paper we propose a method for variational segmenta-
tion and contour matching of non-rigid objects in image sequences which
can deal with the occlusions. The method is based on a region-based ac-
tive contour model of the Chan-Vese, augmented with a frame-to-frame
interaction term which uses the segmentation result from the previous
frame as a shape prior. This method has given good results despite the
presence of minor occlusions, but can not handle significant occlusions.
We have extended this approach by adding a registration step between
two consecutive contours. This registration step is based on a novel vari-
ational formulation and gives also a mapping of the intensities from the
interior of the previous contour to the next. With this information oc-
clusions can be detected from deviations from predicted intensities and
the missing intensities in the occluded areas can then be reconstructed.
The performance of the method is shown with experiments on synthetic
and real image sequences.

1 Introduction

Segmentation is an important and difficult process in computer vision, with
the purpose of dividing a given image into one or several meaningful regions
or objects. This process is more difficult when the objects to be segmented are
moving and non-rigid and even more when there are severe occlusions. The
shape of non-rigid, moving objects may vary a lot along image sequences due to,
for instance, deformations or occlusions, which puts additional constraints on
the segmentation process. In particular we would like to distinguish real shape
deformations of the object from apparent shape deformations due to occlusions.

There have been a number of methods proposed and applied to this problem.
Active contours are powerful methods for image segmentation; either boundary-
based such as geodesic active contours [1], or region-based such as Chan-Vese



models [2], which are formulated as variational problems. Those variational for-
mulations perform quite well and have often been applied based on level sets.
Active contour based segmentation methods often fail due to noise, clutter and
occlusion. In order to make the segmentation process robust against these ef-
fects, shape priors have been proposed to be incorporated into the segmentation
process. In recent years, many researchers have successfully introduced shape
priors into segmentation methods such as in [3–9].

We are interested in segmenting non-rigid moving objects in image sequences.
When the objects are non-rigid, an appropriate segmentation method that can
deal with shape deformations should be used. The application of active contour
methods for segmentation in image sequences gives promising results as in [10–
12]. These methods use variants of the classical Chan-Vese model as the basis
for segmentation. In [10], for instance, it is proposed to simply use the result
from one image as an initializer in the segmentation of the next.

Another major problem for segmentation methods for image sequences is the
presence of occlusions. Minor occlusions can usually be handled by some kind of
shape prior. However, major occlusions is still a big problem. In order to improve
the robustness of the segmentation methods in the presence of occlusions, it is
necessary to detect the occlusions. The occluded area can then either be excluded
from segmentation process or reconstructed [13–15].

The main purpose of this paper is to propose and analyze a novel varia-
tional segmentation method for image sequences, that can both deal with shape
deformations and at the same time is robust to noise, clutter and occlusions.
The proposed method is based on minimizing an energy functional containing
the standard Chan-Vese functional as one part and a term that penalizes the
deviation from the previous shape as a second part. The second part of the func-
tional is based on a transformed distance map to the previous contour, where
different transformation groups, such as Euclidean, similarity or affine, can be
used depending on the particular application. This variational framework is then
augmented with a novel contour flow algorithm, giving a mapping of the inten-
sities inside the contour of one image to the inside of the contour in the next
image. Using this mapping, occlusions can be detected by simply thresholding
the difference between the transformed intensities and the observed ones in the
novel image.

This paper is organized as follows: in Sect. 2 we discuss the proposed seg-
mentation of image sequences. The variational contour matching is described in
Sect. 3 and how this can be used to detect and locate the occlusion is described
in Sect. 4. Experimental results of the model are presented in Sect. 5 and we
end the paper with some conclusions.

2 Segmentation of Image Sequences

In this section, we describe the region-based segmentation model of Chan-Vese [2]
and a variational model for updating segmentation results from one frame to the
next in an image sequence.



2.1 Region-Based Segmentation

The idea of the Chan-Vese model [2] is to find a contour Γ such that the image
I is optimally approximated by a gray scale value µint on int(Γ ), the inside of Γ ,
and by another gray scale value µext on ext(Γ ), the outside of Γ . The optimal
contour Γ ∗ is defined as the solution of the variational problem,

ECV (Γ ∗) = min
Γ

ECV (Γ ), (1)

where ECV is the Chan-Vese functional,

ECV (Γ ) = α|Γ |+β

{

1

2

∫

int(Γ )

(I(x)−µint)
2 dx+

1

2

∫

ext(Γ )

(I(x)−µext)
2 dx

}

. (2)

Here |Γ | is the arc length of the contour, α, β > 0 are weight parameters, and

µint = µint(Γ ) =
1

| int(Γ )|

∫

int(Γ )

I(x) dx, (3)

µext = µext(Γ ) =
1

| ext(Γ )|

∫

ext(Γ )

I(x) dx. (4)

The gradient descent flow for the problem of minimizing a functional ECV (Γ )
is the solution to initial value problem:

d

dt
Γ (t) = −∇ECV (Γ (t)), Γ (0) = Γ0, (5)

where Γ0 is an initial contour. Here ∇ECV (Γ ) is the L2-gradient of the energy
functional ECV (Γ ), cf. e.g. [16] for definitions of these notions. Then the L2-
gradient of ECV is

∇ECV (Γ ) = ακ + β
[1

2
(I − µint(Γ ))2 −

1

2
(I − µext(Γ ))2

]

, (6)

where κ is the curvature.
In the level set framework [17], a curve evolution, t 7→ Γ (t), can be repre-

sented by a time dependent level set function φ : R2 × R → R as Γ (t) = {x ∈
R2 ; φ(x, t) = 0}, φ(x) < 0 and φ(x) > 0 are the regions inside and the outside
of Γ , respectively. The normal velocity of t 7→ Γ (t) is the scalar function dΓ/dt
defined by

d

dt
Γ (t)(x) := −

∂φ(x, t)/∂t

|∇φ(x, t)|
(x ∈ Γ (t)). (7)

Recall that the outward unit normal n and the curvature κ can be expressed in
terms of φ as n = ∇φ/|∇φ| and κ = ∇ ·

(

∇φ/|∇φ|
)

.
Combined with the definition of gradient descent evolutions (5) and the for-

mula for the normal velocity (7) this gives the gradient descent procedure in the
level set framework:

∂φ

∂t
=

(

ακ + β
[1

2
(I − µint(Γ ))2 −

1

2
(I − µext(Γ ))2

]

)

|∇φ|,

where φ(x, 0) = φ0(x) represents the initial contour Γ0.



2.2 The Interaction Term

The interaction EI(Γ0, Γ ) between a fixed contour Γ0 and an active contour Γ
may be regarded as a shape prior and be chosen in several different ways, such
as the pseudo-distances, cf. [6], and the area of the symmetric difference of the
sets int(Γ ) and int(Γ0), cf. [3].

Let φ0 : D → R denotes the signed distance function associated with the
contour Γ0 and a ∈ R2 is a group of translations. We want to determine the
optimal translation vector a = a(Γ ), then the interaction EI = EI(Γ0, Γ ) is
defined by the formula,

EI(Γ0, Γ ) = min
a

∫

int(Γ )

φ0(x − a) dx. (8)

Minimizing over groups of transformations is the standard devise to obtain pose-
invariant interactions, see [3] and [6].

Since this is an optimization problem a(Γ ) can be found using the gradient
descent procedure. The optimal translation a(Γ ) can then be obtained as the
limit, as time t tends to infinity, of the solution to initial value problem

ȧ(t) =

∫

int(Γ )

∇φ0(x − a(t)) dx, a(0) = 0. (9)

Similar gradient descent schemes can be devised for rotations and scalings (in
the case of similarity transforms), cf. [3].

2.3 Using the Interaction Term in Segmentation of Image Sequences

Let Ij : D → R, j = 1, . . . , N , be a succession of N frames from a given
image sequence. Also, for some integer k, 1 ≤ k ≤ N , suppose that all the
frames I1, I2, . . . , Ik−1 have already been segmented, such that the corresponding
contours Γ1, Γ2, . . . , Γk−1 are available. In order to take advantage of the prior
knowledge obtained from earlier frames in the segmentation of Ik, we propose
the following method: If k = 1, i.e. if no previous frames have actually been
segmented, then we just use the standard Chan-Vese model, as presented in
Sect. 2.1. If k > 1, then the segmentation of Ik is given by the contour Γk which
minimizes an augmented Chan-Vese functional of the form,

EA
CV (Γk−1, Γk) := ECV (Γk) + γEI(Γk−1, Γk), (10)

where ECV is the Chan-Vese functional, EI = EI(Γk−1, Γk) is an interaction

term, which penalizes deviations of the current active contour Γk from the pre-
vious one, Γk−1, and γ > 0 is a coupling constant which determines the strength
of the interaction.

The augmented Chan-Vese functional (10) is minimized using standard gra-
dient descent (5) described in Sect. 2.1 with ∇E equal to

∇EA
CV (Γk−1, Γk) := ∇ECV (Γk) + γ∇EI(Γk−1; Γk), (11)



and the initial contour Γ (0) = Γk−1. Here ∇ECV is the L2-gradient (6) of the
Chan-Vese functional, and ∇EI the L2-gradient of the interaction term, which
is given by the formula,

∇EI(Γk−1, Γk;x) = φk−1(x − a(Γk)), (for x ∈ Γk). (12)

Here φk−1 is the signed distance function for Γk−1.
We use the Chan-Vese model to segment a selected object with approxi-

mately uniform intensity and apply the proposed method frame-by-frame. First
we compute the optimal translation vector (9) based on the previous contour,
we then use this vector to translate the previous contour until it is aligned to
the optimal position (12). Then the minimum of the functional (10) is obtained
by the gradient descent procedure (11) implemented in the level set framework
outline in Sect. 2. This procedure is iterated until it converges.

3 A Contour Matching Problem

In this section we are going to present a variational solution to the following
contour matching problem: Suppose we have two simple closed curves Γ1 and
Γ2 contained in the image domain Ω. Find the “most economical” mapping
Φ = Φ(x) : Ω → R2 such that Φ maps Γ1 onto Γ2, i.e. φ(Γ1) = Γ2. The latter
condition is to be understood in the sense that if α = α(s) : [0, 1] → Ω is a
positively oriented parametrization of S1, then β(s) = Φ(α(s)) : [0, 1] → Ω is
a positively oriented parametrization of Γ2 (allowing some parts of Γ2 to be
covered multiple times).

To present our variational solution of this problem, let M denote the set of
twice differential mappings Φ which maps Γ1 to Γ2 in the above sense. Loosely
speaking

M = {Φ ∈ C2(Ω;R2) |Φ(Γ1) = Γ2}.

Moreover, given a mapping Φ : Ω → R2, not necessarily a member of M, then
we express Φ in the form Φ(x) = x + U(x), where the vector valued function
U = U(x) : Ω → R2 is called the displacement field associated with Φ, or simply
the displacement field. It is sometimes necessary to write out the components of
the displacement field; U(x) = (u1(x), u2(x))T .

We now define the “most economical” map to be the member Φ∗ of M which
minimizes the following energy functional:

E[Φ] =
1

2

∫

Ω

‖DU(x)‖2
F dx, (13)

where ‖DU(x)‖F denotes the Frobenius norm of DU(x) = [∇u1(x),∇u2(x)]T ,
which for an arbitrary matrix A ∈ R2×2 is defined by ‖A‖2

F = tr(AT A). That
is, the optimal matching is given by

Φ∗ = arg min
Φ∈M

E[Φ]. (14)



Using that E[Φ] can be written in the form

E[Φ] =
1

2

∫

Ω

|∇u1(x)|2 + |∇u2(x)|2 dx, (15)

it is easy to see that the Gâteaux derivative of E[Φ] is given by

dE[Φ; V ] =

∫

Ω

∇u1(x) · ∇v1(x) + ∇u2(x) · ∇v2(x) dx

=

∫

Ω

tr(DU(x)T DV (x)) dx,

for any displacement field V (x) = (v1(x), v2(x))T . After integration by parts we
find that the necessary condition for Φ∗(x) = x + U∗(x) to be a solution of the
minimization problem (14) takes the form

0 = −

∫

Ω

∆U∗(x) · V (x) dx, (16)

for any admissible displacement field variation V = V (x). Here ∆U∗(x) =
(∆u1(x), ∆u2(x))T is the Laplacian of the vector valued function U∗ = U∗(x).
Since every admissible mapping Φ must map the initial contour Γ1 onto the tar-
get contour Γ2, it can be shown that any displacement field variation V must
satisfy

V (x) · nS2
(x + U∗(X)) = 0 for all x ∈ Γ1. (17)

Notice that this condition only has to be satisfied precisely on the curve Γ1,
and that V = V (x) is allowed to vary freely away from the initial contour. The
interpretation of the above condition is that the displacement field variation at
x ∈ Γ1 must be tangent to the target contour Γ2 at the point y = Φ(x). In view
of this interpretation of (17) it is not difficult to see that necessary condition
(16) implies that the solution Φ∗ of the minimization problem (14) must satisfy
the following Euler-Lagrange equation:

0 =

{

∆U∗ − (∆U∗ · n∗
Γ2

)n∗
Γ2

, on Γ1,

∆U∗, otherwise,
(18)

where n∗
Γ2

(x) = nΓ2
(x + U∗(x)), x ∈ Γ1, is the pullback of the normal field of

the target contour Γ2 to the initial contour Γ1. The standard way of solving (18)
is to use the gradient descent method: Let U = U(t, x) be the time-dependent
displacement field which solves the evolution PDE

∂U

∂t
=

{

∆U − (∆U · n∗
Γ2

)n∗
Γ2

, on Γ1,

∆U, otherwise,
(19)

where the initial displacement U(0, x) = U0(x) ∈ M specified by the user,
and U = 0 on ∂Ω, the boundary of Ω (Dirichlet boundary condition). Then
U∗(x) = limt→∞ U(t, x) is a solution of the Euler-Lagrange equation (18).

Notice that the PDE (19) coincides with the so-called geometry-constrained

diffusion introduced in [18]. Thus we have incidentally found a variational for-
mulation of the non-rigid registration problem considered there.
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Φ(Γ1) = Γ2
Γ1

Γ2

F1

Γ2

F2

Fig. 1. Given two closed curves Γ1 and Γ2 contained in two images F1 and F2, Φ maps
F1 onto F2 such that Γ1 is mapped onto Γ2 (i.e. Φ(Γ1) = Γ2).

4 Detect and Locate the Occlusion

The mapping Φ = Φ(x) : Ω → R2 such that Φ maps Γ1 onto Γ2 is an estimation
of the displacement (motion and deformation) of the boundary of an object
between two frames. By finding the displacement of the contour, a consistent
displacement of the intensities inside the closed curve Γ1 can also be found. Φ
maps Γ1 onto Γ2 and pixels inside Γ1 are mapped inside Γ2. This displacement
field which only depends on displacement - or registration - of the contour (and
not on the image intensities) can then be used to map the intensities inside
Γ1 into Γ2. After mapping, the intensities inside Γ1 and Γ2 can be compared
and then be classified as the same or different value. Since we can still find the
contour in the occluded area, therefore we can also compute the displacement
field even in the occluded area.

After the occlusion has been detected, the segmentation can be further im-
proved by again employing the previously described Chan-Vese-method aug-
mented with an interaction term. However, in this second stage, the integration
is only performed over the area of the image where no occlusion has been de-
tected. This procedure treats the occluded area in the same way as a part of the
image with missing data as in [19], which is reasonable .

5 Experiments

5.1 Segmentation

In this section we present the results obtained from experiment using synthetic
image sequence. We use the Chan-Vese model to segment a selected object
with approximately uniform intensity and apply the proposed method frame-by-
frame. The minimization of the functional is obtained by the gradient descent
procedure (11) implemented in the level set framework. See also [17].



Fig. 2. Segmentation of a non-rigid object in a synthetic image sequences with additive
Gaussian noise (Frame 1-7). Without the interaction term, noise in the occlusion is
captured (Left column). This is avoided when the interaction term is included (Right
column).



The classical Chan-Vese method will have problems segmenting an object if
occlusions appear in the image which cover the whole or parts of the selected ob-
ject. In Fig. 2 and Fig. 5, we show the segmentation results for a non-rigid object
in a synthetic image sequence and for a walking human in a real image sequence
(available at http://homepages.inf. ed.ac.uk/rbf/CAVIAR/), respectively, where
occlusions occur. The classical Chan-Vese method fails to segment the selected
object when it reaches the occlusion (Left column). Using the proposed method,
which uses the frame-to-frame interaction term, we obtain much better results
(Right column).

Fig. 3. Left: Deformation field. Right: Frame 4 after deformation according to the
displacement field onto Frame 5.

Fig. 4. The occluded regions of the Frame 3-6 of Fig. 2 can be detected and located

In both experiments the coupling constant γ is varied to see the influence of
the interaction term on the segmentation results. The contour is only slightly
affected by the prior if γ is small. On the other hand, if γ is too large, the contour
will be close to a similarity transformed version of the prior.

5.2 Contour Matching and Occlusion Detection

As described in Sect. 3 and Sect. 4, occlusion can be detected and located by
deforming the current frame according to the displacement and compare the



Fig. 5. Segmentation of a person covered by an occlusion in the human walking se-
quence. Left column: without interaction term, and Right column: with interaction
term



deformed frame with the next frame (inside the contour Γ2). First we compute
the displacement field based on the segmentation results of two frames. In Fig.
3, we show the displacement field of Frame 4 and 5. With this displacement field,
we can do full deformation of the Frame 4 onto Frame 5 (Fig. 3 right) and then
compare the intensities between Frame 5 and deformed Frame 4. By comparing,
we can then classify the intensities as having the same or different value by
thresholding. The results for the synthetic image sequence are presented in Fig.
4 and for the human walking sequence in Fig. 6.

Fig. 6. The occluded regions of the Frame 3 and 4 of Fig. 5 are detected and located
by predicting the intensities inside the contour of the walking person.

6 Conclusions

We have presented a new method for segmentation and contour matching of
image sequences containing nonrigid, moving objects, that also can handle oc-
clusions. The proposed segmentation method is formulated as variational prob-
lem, with one part of the functional corresponding to the Chan-Vese model and
another part corresponding to the pose-invariant interaction with a shape prior
based on the previous contour. The optimal transformation as well as the shape
deformation are determined by minimization of an energy functional using a
gradient descent scheme. This segmentation method is augmented with a con-
tour flow estimation algorithm based on a novel variational formulation. The
estimated contour flow makes it possible to extract occluded areas and then fur-
ther refine the segmentation. Preliminary results are shown and its performance
looks promising both in terms of segmentation and occlusion detection.
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