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Abstract. Motion estimation has traditionally been approached either from a
pure discrete point of view, using multi-view tensors, or from a pure continuous
point of view, using optical-flow-based techniques. This paper builds upon the
recent developments of hybrid matching constraints for motion estimation. These
hybrid matching constraints are based on both corresponding feature points and
the motion of these feature points, thus combining the advantages of both discrete
and continuous methods. The main usage of these constraintsis as a theoretical
basis for filtering approaches to structure and motion recovery, enabling an up-
date of a current motion estimate when a new image becomes available. One
important feature is that the update formulas become linearin the motion pa-
rameters in the calibrated case, which is a major improvement compared to the
standard discrete approach. Another advantage is that fewer points are needed
in the update formula than in the traditional discrete case.
We will present several hybrid matching constraints and derive their properties
as well as show how they can be used for structure and motion estimation. First
the hybrid bifocal and trifocal constraints will be treated, extending the tradi-
tional discrete epipolar and trifocal constraints. Then wewill derive novel hy-
brid constraints for structure and motion recovery from a rigidly moving cali-
brated stereo-head. Finally, we will derive novel hybrid matching constraints for
the 2D-case, enabling linear update of the motion parameters from a calibrated
2D-camera.

1 Introduction

Structure from motion is one of the central problems in computer vision and has been
extensively studied during the last decades. The objectiveis to compute the motion of
the camera and the structure of the scene from a number of its two-dimensional images.
The standard method is to first estimate the motion of the camera, based on matching
tensors, obtained from corresponding points in an image sequence. Then, given the
motion of the camera, the structure of the scene is obtained as a sparse set of 3D-points,
which can be used as a starting point for surface estimation or texture mapping, cf. [1].

The most common method for estimation of the matching constraints is based on a
discrete setting, where e.g. the fundamental (or essential) matrix is estimated between
an initial view and another view obtained later in the sequence, cf. [2]. In order to
deal with long image sequences several matching constraints are then pasted together,
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giving a consistent set of matching constraints from which the motion of the camera
can be estimated, cf. [3]. Another approach, closely related to optical flow, is to use a
continuous setting and estimate the motion parameters fromcontinuous time matching
constraints based on image point positions and velocities,cf. [4–6].

Attempts has been made to combine the discrete and the continuous methods. In
[7], a number of differential matching constraints were derived and an algorithm for
updating the fundamental matrix along an image sequence wasindicated. However, no
experimental evidence or details about the algorithm were given. Recently, these ideas
have been taken up and specified for on-line structure and motion estimation in [8], and
preliminary results on an on-line structure and motion system have been reported in [9].
However, these papers are limited to two types of differential matching constraints and
the theory is not fully developed.

The main purpose of the present paper is to develop methodology for on-line recur-
sive structure and motion estimationfor long image sequences. By this, we mean meth-
ods that can update a current estimate of the position and orientation of the camera and
the structure of the scene, when a new image in the sequence becomes available. Such
methods have been presented in [10] and [11], where in both cases complex non-linear
procedures are used to update the structure. We will proposea novel method where the
motion estimation is separated from the structure estimation, enabling simpler and more
stable update schemes.

In this work we derive several types of matching constraint,calledhybrid matching
constraints(HMC), for the estimation and update of the motion parameters. The first
one is an extension of the epipolar constraint to ahybrid epipolar constraint, where both
corresponding points in two images as well as their motion inthe second image are used.
The second one is an extension of the trifocal constraint to ahybrid trifocal constraint,
where both corresponding points in three images as well as their motion in the third
image are used. The third one is thehybrid stereo constraint, where corresponding
points together with their motion in a rigidly moving stereorig are used. Finally, the
fourth and fifth ones are the2D hybrid epipolar constraintsand the2D hybrid trifocal
constraintswhere both corresponding points in two and three images respectively as
well as their motion in the second and third image respectively are used. All these
hybrid constraints will enable us to update the current motion estimatelinearly based
on at leastthree corresponding points. This will be shown theoretically, by proving
the exact number of linearly independent constraints obtained from each corresponding
point.

The 2D HMC can be used both for pure 2D-cameras, i.e. cameras mapping feature
points in a 2D-plane to angles, [12], or to specific cases of 3Dperspective structure and
motion, e.g. lines in affine cameras and planar motion, [13],that can be reduced to a 2D
perspective structure and motion problem.

In order to use these hybrid matching constraints in an on-line structure and motion
system, they have to be combined with a structure estimate, e.g. a continuous-discrete
extended Kalman filter. Furthermore, a feedback is needed from this structure estimate
to refine the motion estimate in the form of a linear reprojection error constraint, cf. [9].
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2 Problem Description

2.1 Camera model and notation

We assume the standard pinhole camera model,

λx = PX , (1)

wherex denotes homogeneous image coordinates,P the camera matrix,X homoge-
neous object coordinates andλ a scale factor. The camera matrixP is usually written
asP = K[ R | −b ], whereK denotes the intrinsic parameters and(R, b) the extrinsic
parameters (R being an orthogonal matrix). We will from now on assume that the cam-
era is calibrated, i.e.K is known and that the image coordinates have been transformed
such thatP can be written asP = [ R | −b ]. When several images of the same point
are available, (1) can be written as

{
λ(t)x(t) = P (t)X, t ∈ [0, T ] or

λixi = PiX, i = 1, . . .M
(2)

in the continuous time case and the discrete time case respectively. The camera matrix
P is assumed to have the form

P (t) = [ R(t) | −b(t) ] or Pi = [ Ri | −bi ] , (3)

in the continuous case and in the discrete case respectively. We furthermore assume
that the object coordinate system has been chosen such thatR(0) = R1 = I and
b(0) = b1 = 0, implying thatP (0) = P1 = [ I | 0 ].

2.2 Problem formulation

A structure and motion estimation problem can now be formulated as the task of esti-
mating both the structureX in (2) and the motion parametersR(t) andb(t) in (3) at
the timet, given the set of perspective measurementsMt = {x(ti) | ∀i : ti ≤ t}. A
recursivestructure and motion problem can be formulated as given an estimate of the
structure and motion parameters up to timet, i.e. Rt, bt andXt, update this estimate
based on measurements obtained up to timet + ∆t, thus obtainingRt+∆t, bt+∆t and
Xt+∆t.

2.3 Discrete Matching Constraints

The discrete matching constraintsare obtained by using the discrete version of (2),
for several differenti and eliminating the object coordinatesX and the scale factors
λi from the resulting equations. In the case of two views we obtain the well-known
epipolar constraint

x
T
1 Ex2 = 0, with E = RT b̂ , (4)

where we for simplicity have used the notationR2 = R and b2 = b and b̂ denotes
the skew-symmetric matrix corresponding to the vectorb. The matrixE in (4) denotes
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the well-knownessential matrix. This constraint can be used to estimate the motion
parameters linearly from at least eight corresponding points. The three- and four-view
constraints are obtained similarly, by starting with three(or four) images of the same
point and eliminating the object coordinatesX, from the resulting system of equations,
see [14–16]. In the three-view case the trifocal constraints and the trifocal tensor are ob-
tained and in the four-view case, the quadrifocal constraints and the quadrifocal tensor
are obtained. These can be used to estimate the camera motionlinearly, from at least
7 and 6 corresponding points respectively, although hiddennon-linear constraints are
ignored.

2.4 Continuous Matching Constraints

Thecontinuous time matching constraintsare obtained from the camera matrix equation
(2) in continuous form and its time derivative (where for simplicity the time dependency
is expressed using an index):

λtxt = [ Rt | −bt ]X = RtX̃ − bt,

λ′

txt + λtx
′

t = [ R′

t | −b′t ]X = ŵtRtX̃ − b′t =

= ŵt(λtxt + bt) − b′t ,

(5)

whereX̃ denotes the first3 components of the vectorX and we have assumed that
theX is normalized such that the fourth component is equal to1. Furthermore, we have
used the fact that the derivative of a rotation matrix can be written asR′

t = ŵtRt, where
wt represents the momentary rotational velocity of the cameraat timet. Similarly b′t
denotes the momentary translational velocity of the cameraat timet. Define

νt = b′t − ŵtbt (6)

(representing the momentary translational velocity in a local coordinate system) and
multiply the last equation in (5) withνt × xt giving

x
′T ν̂x − x

T ŵν̂x = 0 , (7)

which is the well knowncontinuous epipolar constraint.This constraint can be used to
estimate the motion parameters from at least eight corresponding points. Higher order
continuous multi-view constraints are obtained by taking higher order derivatives of (2)
and then eliminating the structure, cf. [4].

3 Hybrid Matching Constraints

In this section we will derive severalhybrid matching constraints, that can be used to
update the motion parameters recursively. Recall that we assume that estimates ofRt,
bt andXt are available and that we are looking for methods to update these estimate to
time t + ∆t.
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3.1 Case I: Epipolar hybrid matching constraints

Write down the camera matrix equations for time0, timet and timet + ∆t:




λ0x0 = [ I | 0 ]X

λtxt = [ Rt | −bt ]X

λt+∆txt+∆t = [ Rt+∆t | −bt+∆t ]X .

(8)

Using Rt = etbwt as a first order approximation ofR, valid betweent and t + ∆t,
implying that

Rt+∆t = ebwt∆tRt ≈ Rt + ŵtRt∆t ,

and
bt+∆t = bt + dt∆t, corresponding todt = b′t ,

λt+∆t = λt + µt∆t, corresponding toµt = λ′

t ,

xt+∆t = xt + ut∆t, corresponding tout = x
′

t ,

(9)

and eliminatingX using the first equation in (8) and expanding until the first order in
∆t gives

[
Rtx0 xt 0 bt

ŵtRtx0 ut xt dt

]

︸ ︷︷ ︸
Md




−λ0

λt

µt

1


 =

[
0
0

]
, (10)

implying thatrankMd < 4, which will be calledthe hybrid epipolar constraints. As-
suming normalization such thatx = (x, y, 1), u = (ux, uy, 0), expanding the minors
of Md turns out to give the following different types of constraints in the motion pa-
rameterswt andbt:

1. Minors containing the first three rows give the discrete epipolar constraint.
2. Minors containing two rows out of the first three give linear constraints indt and

wt, in total nine such linear constraints.1

3. Minors containing the three last rows give non-linear constraints on the motion
parameters.

For our purposes, only the second type of constraints are useful. The first type giving
the epipolar constraint can not be used, since we already have an estimate of the motion
up to timet and the third ones are not useful because of the non-linearities. In fact
there are exactly two linearly independent constraints on the motion parameters from
the nine constraints of the second type above, see Appendix Afor a detailed proof.
This implies that the essential matrix can be updated from atleast three corresponding
points, which is a huge improvement compared to the standarddiscrete approaches,
where five corresponding points give highly non-linear constraints, and at least eight
corresponding points are needed to obtain reasonable simple linear constraints.

1 There are three ways of omitting one row from the first three rows and then three ways of
omitting one row from the last three rows independently.
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Observe that whendt andwt has been recovered, the new motion parameters and
the new essential matrix can easily be obtained from

{
Rt+∆t = ebwt∆tRt

bt+∆t = bt + dt∆t
⇒ Et+∆t = RT

t+∆tb̂t+∆t . (11)

The update in (11) guarantees that the new essential matrix fulfils the nonlinear con-
straints. Observe also that although the update is nonlinear in the motion parameters it
can be performed efficiently using e.g. Rodriguez formula. Finally, observe that either
νt or dt may be used as a parameter for the translational velocity, since they are related
according to (6).

3.2 Case II: Trifocal hybrid matching constraints

Write down the camera matrix equations for time0, s, t andt + ∆t:





λ0x0 = [ I | 0 ]X

λsxs = [ Rs | −bs ]X

λtxt = [ Rt | −bt ]X

λt+∆txt+∆t = [ Rt+∆t | −bt+∆t ]X .

(12)

EliminatingX using the first equation and expanding until the first order in∆t give




Rsx0 xs 0 0 bs

Rtx0 0 xt 0 bt

ŵtRtx0 0 ut xt dt




︸ ︷︷ ︸
Nd




−λ0

λs

λt

µt

1




=



0
0
0


 , (13)

implying thatrankNd < 5, which will be calledthe hybrid trifocal constraints. The
minors ofNd gives the following different constraints in the motion parameterswt and
bt:

1. Minors containing only one row out of the first three give the previously derived
hybrid epipolar constraint.

2. Minors containing only one row out of the last three give the standard discrete
trifocal constraints.

3. Minors containing two rows out of the first three, one row out of the middle three
rows and two rows out of the last three rows give linear constraints indt andwt, in
total27 such linear constraints.

For our purposes, only the last type of constraints are useful. It turns out that there
only exist two linearly independent constraints on the motion parameters from the nine
constraints of the second type above, which can be proven in the same way as for the
epipolar case in Appendix A. This implies that the trifocal tensor can be updated from
at least three corresponding points.
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3.3 Case III: Moving stereo head

For simplicity we assume that we have a fixed rigid stereo head, with camera matrices
{

P1 = [ I | 0] ,

P2 = [ S | u]
(14)

and a rigidly moving scene with coordinates

X(t) = RtX0 + bt implying X
′(t) = ŵtRtX0 + dt (15)

Write down the camera matrix equations and their derivatives for timet:




λ1x1 = RtX0 + bt

λ′

1x1 + λ1x
′

1 = ŵtRtX0 + dt

λ2x2 = SRtX0 + Sbt + u

λ′

2x2 + λ2x
′

2 = SŵtRtX0 + Sdt + u .

(16)

These equations can be written as a single matrix equation:




Rt x1 0 0 0 bt

ŵtRt x
′

1 x1 0 0 dt

SRt 0 0 x1 0 Sbt + u
SŵtRt 0 0 x

′

2 x2 Sdt




︸ ︷︷ ︸
Sc




X0

−λ1

−λ′

1

−λ2

−λ′

2

1




=




0
0
0
0


 , (17)

implying rankSc < 6. By a suitable choice of object coordinates we may assume
that Rt = I andbt = 0 – we may even assume thatS = I by a suitable change of
coordinates in the second image and renamingu – and thus obtain

Sc =




I x1 0 0 0 0
ŵt x

′

1 x1 0 0 dt

S 0 0 x1 0 u
Sŵt 0 0 x

′

2 x2 Sdt


 . (18)

Again, the same constraint can be derived from a discrete differential starting point. The
constraints withinrankSc < 6 will be calledthe hybrid stereo constraints.

Expanding the minors of (18) gives the following different constraints in the motion
parameterswt andbt:

1. Minors containing only one row out of rows 4 to 6 give the previously derived
hybrid epipolar constraint between views 1 and 2.

2. Minors containing only one row out of the last three rows give the previously de-
rived hybrid epipolar constraint between views 2 and 1.

3. Minors containing at least two rows out of row 4 to 6 and at least two rows out
of the last three rows, give either trivial constraints or non-linear constraints in the
parameterŝwt anddt needed for the motion update.
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The first and second type of hybrid stereo constraints above can be used to update a
current structure and motion estimate linearly. I turns outthat these constraints give two
linearly independent constraints on the motion parameters, which again can be shown
in the same manner as in Appendix A. This implies that the motion parameters of a
rigidly moving stereo-rig can be updated from at least threecorresponding points.

3.4 Case IV: 2D-cameras

In the case of 2D-cameras, the camera matrix equations (1), (2) and (3) looks exactly
the same, but the camera matrixP is a2×3-matrix, the orthogonal matrixR is a2×2-
matrix and the translational vectorb is a 2-vector. Writing down the camera matrix
equations for time0, time t and timet + ∆t, results in a matrix equation that looks
exactly as (10), with the main difference that the size ofMd is now4 × 4 andŵt now
denotes a2 × 2 skew-symmetric matrix, i.e. a matrix defined by a single parameterwt.
The condition

det

[
Rtx0 xt 0 bt

ŵtRtx0 ut xt dt

]
= 0 (19)

is called the2D hybrid epipolar constraint. This constraint consists of one single linear
constraint on the three motion parameterswt anddt. Thus it is possible to update a
current motion estimate from only three corresponding points in two images. This is a
major improvement to standard methods in several ways. Firstly, the update equations
are linear in the motion parameters. Secondly, only two images (along with the mo-
tion of the feature points in one of the images) are needed, compared to the traditional
methods where at least three images are needed in order to obtain any constraints on the
motion parameters. Finally, a unique update is obtained, compared to the discrete case
where three images always gives an ambiguous solution, cf. [17].

Writing down the camera matrix equations for time0, s, t andt + ∆t, results in a
matrix equation that looks exactly as (13), with the main difference that the size ofMd

is now6 × 5 and againŵt now denotes a2 × 2 skew-symmetric matrix, defined by a
single parameterwt. The condition

rank




Rsx0 xs 0 0 bs

Rtx0 0 xt 0 bt

ŵtRtx0 0 ut xt dt


 ≤ 5 (20)

is called the2D hybrid trifocal constraint. Expanding the minors of (20) gives the fol-
lowing different constraints in the motion parameterswt andbt:

1. Minors containing only one row out of rows 1 and 2 give the previously derived 2D
hybrid epipolar constraint between views 2 and 3.

2. Minors containing only one row out of rows 3 and 4 give linear constraints in the
motion parameters, in total 2 such linear constraints.

3. Minors containing only one row out of rows 5 and 6 give the standard discrete
trifocal constraint between views 1 and 2 and 3.

The second type of constraints are interesting for us. However, the two linear constraints
obtained in this way are linearly dependent, implying that at least three images are
needed in order to linearly update the current motion estimate. For a detailed proof, see
Appendix B.



Structure and Motion Estimation in 3D and 2D from Hybrid Matching Constraints 9

3.5 Motion estimation using HMC

Given a current estimate of the motion parameters and a new image with at least three
corresponding points, the motion parameters can be updatedusing a linear system of
equations of the type

M

[
wt

dt

]
= m , (21)

whereM = M(xk
0 ,xk

t ,uk
t , Rt, bt) for k = 1, . . . n, n ≥ 3 andm = m(xk

0 ,xk
t ,uk

t , Rt, bt)
are the functions that computes the coefficients of the hybrid matching constraint equa-
tions in Sec. 3.1 in the epipolar case and similarly for the other cases.

3.6 State estimation using the continuous-discrete EKF

Given the motion parameters it is possible to employ a numberof algorithms for recur-
sive structure recovery, e.g. a continuous-discrete extended Kalman (EKF) filter for the
state estimation process [18], [19].

3.7 Motion estimation refinement by reprojection constraints

Given motion estimatesRt andbt obtained using the HMC through (21), the measure-
mentxt, and the 3-D estimateX from the EKF, we seek correction vectorsα, β ∈ R

3×1

of small magnitude, such that improved motion estimatesR+
t andb+

t are given by the
reprojection constraint

λ+
t xt = [ R+

t | −b+
t ]X , R+

t = ebαRt , b+
t = bt + β . (22)

Expanding the first equation in (22) to a first order approximation gives

λtxt ≈ RtX̃ + α̂RtX̃ + bt + β ⇒

R̂tX̃α + β = ǫ := RtX̃ + bt − λtxt ,
(23)

whereǫ can be interpreted as the reprojection error. Observe that (23) is a linear con-
straint in the correction vectorsα andβ. Since (23) contains two linear constraints on
these6 parameters (λt is also a free parameter) in the correction vectors, a linearupdate
on the motion parameters can be made from at least three corresponding points. Similar
correction formulas can be derived for the 2D-case. Observethat this motion estimation
refinement is in fact a pose update, similar to one iteration in a non-linear least squares
estimation problem.

The inclusion of the reprojection constraint correction step significantly enhances
the performance of the estimation procedure, leading to more accurate and robust esti-
mates of both structure and motion.
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3.8 Structure and motion algorithm

Using the results of the previous sections, the following algorithm can now be employed
for recursive structure and motion recovery:
1. Initialization

– Assume that images are obtained sequentially at time instants ti, i = 0, 1, 2 . . .,
equally spaced by∆t. Also assume some initial values for the state vector and the
error covariance matrix in the EKF.

– Given the images at timest0 = 0 and t1 = ∆t with at least eight point corre-
spondences, get initial parameter estimatesw0 andν0 using e.g. the continuous
eight-point algorithm in the 3D single camera case.

– ComputeRt1 = ebw0∆t andbt1 = d0∆t.

2. Estimation loop- for i = 1, 2 . . . do

– Using at least three point correspondences, set up the hybrid matching constraints
in (21).

– Solve the linear system (21) for the new parameter estimateswti
anddti

.
– Update the rotation matrix and the translation vector according to (11).
– Usewti

andνti
in the EKF to get structure estimates over the time interval[ti, ti +

∆t].
– Refine the motion estimate according to (23).

Note that since we are estimating both structureandmotion, the estimates are inherently
subjected to a scale ambiguity. In the above algorithm the scale issue is resolved by
assuming the translational velocity vectorν to be of unit length in the initialization
procedure. This together with the assumption of normalizedimage coordinates fixes
the scale for the subsequent parameter estimates through (21).

4 Experiments

Since the initial parameter values obtained by the initialization process generally can
be assumed quite accurate, the truly interesting case will be when one or both of the
parameter vectorsw and ν are time varying. The hybrid-based method can then be
evaluated by its ability to follow the time-variations in the parameters, as well as by its
ability to correctly recover the 3-D structure.

For purpose of illustration we simulate images of an object consisting of eight points
in a general configuration on a grid of stepsize10−4, and with the parameter vectors

w(t) =
2

3

(
1, −1, 1

)
,

ν(t) =
1√
1.32

(
−1, −0.4, 0.4

)T
+

1

2

(
t, t, −0.5t

)T
.

Perspective measurements were computed at time instants separated by∆t = 0.01. The
estimates of the components of the rotational velocityw and the translational velocity
ν together with the true values based on the hybrid epipolar constraints, are shown in
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Fig. 1. Estimation results obtained using the hybrid epipolar constraints: (a) True (solid) and
estimated (dashed) translational velocityν, (b) True (solid) and estimated (dashed) rotational
velocityw, (c) 3-D estimation errors for one of the observed object points.

Fig. 1(a) and Fig. 1(b) respectively. The resulting 3-D estimation error for one ofthe
observed object points is shown in Fig. 1(c).

We also conducted a similar experiment on the same data basedon the hybrid tri-
focal constraints. The same procedure as before, based on the initialization using the
continuous epipolar constraint, and the recursive estimation using the epipolar hybrid
constraints, was used until timet = 0.4s. After that, the trifocal hybrid constraints was
used, withs = t/2, see Fig 2.

5 Conclusion

We have derived several hybrid matching constraints; epipolar-, trifocal-, stereo- and
2D-hybrid motion constraints. We have proposed an algorithm for on-line recursive
estimation of structure and motion from perspective measurements in a continuous-
discrete setting, utilizing these hybrid matching constraints for the estimation of the
velocity parameters, combined with a state estimator, hereoptionally selected as the
continuous-discrete EKF. The structure and motion estimation processes are connected
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Fig. 2. Estimation results obtained using the hybrid trifocal constraints: (a) True (solid) and esti-
mated (dashed) translational velocityν, (b) True (solid) and estimated (dashed) rotational velocity
w, (c) 3-D estimation errors for one of the observed object points.

by recursive feedback of the structure estimates, resulting in reprojection error con-
straints used to obtain refined motion estimates. Simulatedexperiments are included to
illustrate the applicability of the concept. The main advantages of the presented method
is that only three corresponding points are needed for the sequential update and correc-
tion of the velocity parameter estimates. Further, both these update schemes are linear.

Note that it isnot necessary that the same three points are tracked throughoutthe
whole image sequence. It is easy to change to any other triplet of point correspondences
when needed.
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Appendix A

In order to prove that there exist exactly two linearly independent constraints among
the nine epipolar hybrid constraints, we have to prove that there are exactly seven inde-
pendent linear dependencies between these constraints. Start by extendingMd in (10)
with the second column, giving the following6 × 5-matrix:

[
Rtx0 xt 0 bt xt

ŵtRtx0 ut xt dt ut

]
.

The 5 × 5 minors of this matrix are obviously identically zero. Expanding the three
minors obtained by removing each one of the last three columns give

xtL11 − ytL21 + L31 − uxytE + uyxtE = 0

xtL12 − ytL22 + L32 − uxE = 0

xtL13 − ytL23 + L33 + uyE = 0 ,

(24)
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whereLij denotes the hybrid constraint obtained by removing row number i from the
first three rows ofMd and row numberj from the last three rows ofMd andE denotes
the epipolar constraint between time0 andt. Thus (24) contains exactly three linear de-
pendencies among the epipolar hybrid constraints, assuming that the epipolar constraint
between views0 andt is fulfilled. Repeating the same procedure by instead addingthe
third column and expanding the minors obtained by removing each one of the first three
columns give three further linear dependencies. Finally, adding both the second and the
third column and expanding the determinant of the resulting6 × 6 matrix, give the last
linear dependency. It is furthermore evident from the structure of these seven depen-
dencies that they are linearly independent. Thus only two linearly independent hybrid
constraints remain (assuming the epipolar constraint is fulfilled). For practical purposes,
there might be more than two linearly independent constraints when the epipolar con-
straint is not exactly fulfilled. However, these are numerically ill-conditioned in the
sense that they are close to spanning a two-dimensional space.

Appendix B

In order to prove that the two 2D trifocal hybrid constraintsare linearly dependent we
can proceed similarly as in Appendix A. Start by extending the matrix in (20) with the
third column, giving the following6 × 6-matrix:




Rsx0 xs 0 0 bs 0
Rtx0 0 xt 0 bt xt

ŵtRtx0 0 ut xt dt ut




. This6 × 6 matrix is obviously singular, with determinant identically zero. This de-
terminant can be written as

xtL1 − ytL2 + uxuyT − uyuxT = xtL1 − ytL2 = 0 , (25)

whereLi denotes the 2D hybrid epipolar constraints andT denotes the discrete trifo-
cal constraint, giving the desired linear dependency between the two hybrid epipolar
constraints.


