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Abstract. Motion estimation has traditionally been approached eaitirem a
pure discrete point of view, using multi-view tensors, onfra pure continuous
point of view, using optical-flow-based techniques. Thigepauilds upon the
recent developments of hybrid matching constraints foianastimation. These
hybrid matching constraints are based on both correspap@@ature points and
the motion of these feature points, thus combining the adgas of both discrete
and continuous methods. The main usage of these constimimtsa theoretical
basis for filtering approaches to structure and motion regyenabling an up-
date of a current motion estimate when a new image becomellaea One
important feature is that the update formulas become lirigathe motion pa-
rameters in the calibrated case, which is a major improvencempared to the
standard discrete approach. Another advantage is that f@emts are needed
in the update formula than in the traditional discrete case.

We will present several hybrid matching constraints andwdetheir properties
as well as show how they can be used for structure and mottimatfon. First
the hybrid bifocal and trifocal constraints will be treateeixtending the tradi-
tional discrete epipolar and trifocal constraints. Then wil derive novel hy-
brid constraints for structure and motion recovery from gidly moving cali-
brated stereo-head. Finally, we will derive novel hybridtoféng constraints for
the 2D-case, enabling linear update of the motion paransefi®m a calibrated
2D-camera.

1 Introduction

Structure from motion is one of the central problems in cotapuision and has been
extensively studied during the last decades. The objeidit@ compute the motion of
the camera and the structure of the scene from a number afdtdimensional images.
The standard method is to first estimate the motion of the canbased on matching
tensors, obtained from corresponding points in an imageesere. Then, given the
motion of the camera, the structure of the scene is obtaimadparse set of 3D-points,
which can be used as a starting point for surface estimatitexture mapping, cf. [1].
The most common method for estimation of the matching camgtris based on a
discrete setting, where e.g. the fundamental (or esspmitrix is estimated between
an initial view and another view obtained later in the segeerf. [2]. In order to
deal with long image sequences several matching consraiatthen pasted together,
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giving a consistent set of matching constraints from whiah motion of the camera
can be estimated, cf. [3]. Another approach, closely rdlateoptical flow, is to use a
continuous setting and estimate the motion parametersdmrtinuous time matching
constraints based on image point positions and velocitfep}—6].

Attempts has been made to combine the discrete and the gonirmethods. In
[7], @ number of differential matching constraints wereivkst and an algorithm for
updating the fundamental matrix along an image sequencéaw&sited. However, no
experimental evidence or details about the algorithm weseng Recently, these ideas
have been taken up and specified for on-line structure andmestimation in [8], and
preliminary results on an on-line structure and motionesyshave been reported in [9].
However, these papers are limited to two types of diffeedmtiatching constraints and
the theory is not fully developed.

The main purpose of the present paper is to develop methgg@doon-line recur-
sive structure and motion estimatifor long image sequences. By this, we mean meth-
ods that can update a current estimate of the position aedtation of the camera and
the structure of the scene, when a new image in the sequenombes available. Such
methods have been presented in [10] and [11], where in betssaaomplex non-linear
procedures are used to update the structure. We will progpaseel method where the
motion estimation is separated from the structure estonaginabling simpler and more
stable update schemes.

In this work we derive several types of matching constraiatledhybrid matching
constraints(HMC), for the estimation and update of the motion paranset€he first
one is an extension of the epipolar constrainthylrid epipolar constraintwhere both
corresponding points in two images as well as their motighérsecond image are used.
The second one is an extension of the trifocal constraintigheid trifocal constraint
where both corresponding points in three images as well s iotion in the third
image are used. The third one is thgbrid stereo constraintwhere corresponding
points together with their motion in a rigidly moving stergg are used. Finally, the
fourth and fifth ones are th2D hybrid epipolar constraintand the2D hybrid trifocal
constraintswhere both corresponding points in two and three imagesotisply as
well as their motion in the second and third image respegtigee used. All these
hybrid constraints will enable us to update the current améstimatdinearly based
on at leastthree corresponding pointdhis will be shown theoretically, by proving
the exact number of linearly independent constraints nbthfrom each corresponding
point.

The 2D HMC can be used both for pure 2D-cameras, i.e. cameapping feature
points in a 2D-plane to angles, [12], or to specific cases op8i3pective structure and
motion, e.g. lines in affine cameras and planar motion, h3},can be reduced to a 2D
perspective structure and motion problem.

In order to use these hybrid matching constraints in anma&diructure and motion
system, they have to be combined with a structure estimageaeontinuous-discrete
extended Kalman filter. Furthermore, a feedback is neeaex finis structure estimate
to refine the motion estimate in the form of a linear repragecerror constraint, cf. [9].
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2 Problem Description

2.1 Camera model and notation

We assume the standard pinhole camera model,
Ax = PX | (1)

wherex denotes homogeneous image coordinatethe camera matrixX homoge-
neous object coordinates andh scale factor. The camera matiixis usually written
asP = K[ R | —b], whereK denotes the intrinsic parameters gt b) the extrinsic
parametersi being an orthogonal matrix). We will from now on assume thatdam-
erais calibrated, i.e&K is known and that the image coordinates have been transfiorme
such thatP can be written a® = [ R | —b]. When several images of the same point
are available, (1) can be written as

_ _ ()
)\iXi—PZ‘X,Z—l,...M

{ At)x(t) = P()X, t € [0,T] or
in the continuous time case and the discrete time case ft@sgdgcThe camera matrix
P is assumed to have the form

P(@t) =[R(t) | =b(t)] or Pi=[Ri|-bi], 3)

in the continuous case and in the discrete case respectielfyurthermore assume
that the object coordinate system has been chosen suctkthat= R; = I and
b(0) = by = 0, implying thatP(0) = P, = [ | 0].

2.2 Problem formulation

A structure and motion estimation problem can now be fortedlas the task of esti-
mating both the structurX in (2) and the motion parametef&t) andb(t) in (3) at
the timet, given the set of perspective measurem@hts= {x(t;) | Vi : t; < t}. A
recursivestructure and motion problem can be formulated as given @mate of the
structure and motion parameters up to titnee. R;, b; and X;, update this estimate
based on measurements obtained up to timreAt, thus obtainingR; ¢, bs+A¢ and
Xt At

2.3 Discrete Matching Constraints

The discrete matching constrainere obtained by using the discrete version of (2),
for several different and eliminating the object coordinat&s and the scale factors
A; from the resulting equations. In the case of two views we ialitze well-known
epipolar constraint

x'Exy; =0, with E=RTh , (4)

where we for simplicity have used the notati® = R andb, = b andb denotes
the skew-symmetric matrix corresponding to the veétdrhe matrixF in (4) denotes
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the well-knownessential matrixThis constraint can be used to estimate the motion
parameters linearly from at least eight correspondingtpoifhe three- and four-view
constraints are obtained similarly, by starting with th¢eefour) images of the same
point and eliminating the object coordinadésfrom the resulting system of equations,
see [14-16]. In the three-view case the trifocal constsaint the trifocal tensor are ob-
tained and in the four-view case, the quadrifocal consfsand the quadrifocal tensor
are obtained. These can be used to estimate the camera riodiarly, from at least

7 and 6 corresponding points respectively, although hidaenlinear constraints are
ignored.

2.4 Continuous Matching Constraints
Thecontinuous time matching constrairaiee obtained from the camera matrix equation
(2) in continuous form and its time derivative (where for glitity the time dependency

is expressed using an index):

)\tX
)\th + )\tX

[Ry | —b:]X = R X — by,
[R, | =0, ]X = @R X — b, = (5)
Wy (Nexy +by) — b

t
/
t

whereX denotes the firs8 components of the vectdX and we have assumed that
theX is normalized such that the fourth componentis equal feurthermore, we have
used the fact that the derivative of a rotation matrix can bitem asRk; = @, R;, where
w, represents the momentary rotational velocity of the caraetanet. Similarly b,
denotes the momentary translational velocity of the carattinet. Define

V¢ = b; — ’lﬁtbt (6)

(representing the momentary translational velocity in @laoordinate system) and
multiply the last equation in (5) with; x x; giving

T T

xX"ix —x"wrx =0 , (7)
which is the well knowrcontinuous epipolar constrainthis constraint can be used to
estimate the motion parameters from at least eight corre8pg points. Higher order
continuous multi-view constraints are obtained by takirgplkr order derivatives of (2)

and then eliminating the structure, cf. [4].

3 Hybrid Matching Constraints

In this section we will derive severalybrid matching constrainfghat can be used to
update the motion parameters recursively. Recall that wenas that estimates df;,
b; and X, are available and that we are looking for methods to updatsetkestimate to
timet + At.
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3.1 Case I: Epipolar hybrid matching constraints
Write down the camera matrix equations for timdime¢ and timet + At:

Noxo = [1]0]X
)\txt = [Rt | —bt ]X (8)

>\t+AtXt+At = [Rt+At | *bt+At ]X .

Using R, = '@ as a first order approximation a@t, valid betweert andt + At,
implying that
Rt+At = ewf’Ath ~ Rt + ’IjU\thAt N

and

birae = by + di At, corresponding td; = b, ,

At+at = A + ueAt, corresponding ta, = \; 9)

X+ At = Xt + ugAt, corresponding tay; = x;
and eliminatingX using the first equation in (8) and expanding until the firstenrin
At gives

o
RtXO Xt 0 bt )\t |:0:|
A ~ 9, 10
|:th9<0 u; Xy dt] e 0 (10)
1

Mg

implying thatrank M, < 4, which will be calledthe hybrid epipolar constraintsAs-
suming normalization such that= (z,y,1), u = (u,, uy, 0), expanding the minors
of My turns out to give the following different types of consttsiin the motion pa-
rametersv; andb;:

1. Minors containing the first three rows give the discretp@ar constraint.

2. Minors containing two rows out of the first three give lineanstraints ind; and
wy, in total nine such linear constrairtts.

3. Minors containing the three last rows give non-linearstmints on the motion
parameters.

For our purposes, only the second type of constraints afalu$ée first type giving
the epipolar constraint can not be used, since we alreadydraestimate of the motion
up to timet and the third ones are not useful because of the non-lifesarlh fact
there are exactly two linearly independent constraintshenmiotion parameters from
the nine constraints of the second type above, see Appendiot A detailed proof.
This implies that the essential matrix can be updated frolmeet three corresponding
points, which is a huge improvement compared to the standiamiete approaches,
where five corresponding points give highly non-linear ¢ists, and at least eight
corresponding points are needed to obtain reasonableeslmpar constraints.

! There are three ways of omitting one row from the first thregsrand then three ways of
omitting one row from the last three rows independently.
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Observe that whetd; andw; has been recovered, the new motion parameters and

the new essential matrix can easily be obtained from

Rypar =e"'R -
{ At "= Biar=RI b (11)

bt+At = bt + tht

The update in (11) guarantees that the new essential matfits the nonlinear con-
straints. Observe also that although the update is nomlingae motion parameters it
can be performed efficiently using e.g. Rodriguez formuiaaly, observe that either
v: Or d; may be used as a parameter for the translational veloditgeshey are related
according to (6).

3.2 Case IlI: Trifocal hybrid matching constraints

Write down the camera matrix equations for times, ¢t andt + At:

Aoxo = [1]0]X

Aoxs = [ Ry | —bs X

>\txt = [Rt | *bt ]X
[

RtJrAt | 7bt+At ]X .

12)

>\t+AtXt+At =

Eliminating X using the first equation and expanding until the first ordedirgive

_)\O
Rsxg x5 0 0 b, As 0
RtX() 0 Xt 0 bt )\t =10 5 (13)
’L,athX() 0 Ut Xt dt Mt 0

Ng

implying thatrank Ny < 5, which will be calledthe hybrid trifocal constraintsThe
minors of N, gives the following different constraints in the motion peretersy; and
by

1. Minors containing only one row out of the first three give fireviously derived
hybrid epipolar constraint.

2. Minors containing only one row out of the last three give #tandard discrete
trifocal constraints.

3. Minors containing two rows out of the first three, one row ailithe middle three
rows and two rows out of the last three rows give linear camsts ind; andw;, in
total 27 such linear constraints.

For our purposes, only the last type of constraints are uskfturns out that there
only exist two linearly independent constraints on the nroparameters from the nine
constraints of the second type above, which can be provdreisame way as for the
epipolar case in Appendix A. This implies that the trifocai$or can be updated from
at least three corresponding points.
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3.3 Case lll: Moving stereo head

For simplicity we assume that we have a fixed rigid stereo hedld camera matrices

P =[1]0],
{PHS“ g a4
and a rigidly moving scene with coordinates
X(t) = RiXo + b, implying X'(t) = @, R:Xo + dy (15)
Write down the camera matrix equations and their derivativetimet:

A1x1 = Ry Xo + by

Nix1 + x| = 0 Ry X + dy (16)
Aoxg = SR; X + Sby +u

AoXo + Aoxy = SRy Xo + Sdy +u .

These equations can be written as a single matrix equation:

X()
Rt X1 000 bt *)\1 0
’l,ﬁth Xll X1 0 0 dt *)\Il o 0 (17)
SR; 0 0 x; 0 Sb;+u ) 0’
S’L/U\th 00 XIQ X9 Sdt —)\12 0
1

S.

implying rank S. < 6. By a suitable choice of object coordinates we may assume
that R, = I andb;, = 0 — we may even assume théit= I by a suitable change of
coordinates in the second image and renamirgand thus obtain

I x000 O
@t Xll X1 0 0 dt
S 0 0x1 0 u ' (18)
S{l}\t 0 0 XIQ X9 Sdt

S, =

Again, the same constraint can be derived from a discreferdiftial starting point. The
constraints withinrank S. < 6 will be calledthe hybrid stereo constraints
Expanding the minors of (18) gives the following differenthstraints in the motion

parametersy; andb;,:

1. Minors containing only one row out of rows 4 to 6 give theyioesly derived

hybrid epipolar constraint between views 1 and 2.
2. Minors containing only one row out of the last three rowgeghe previously de-

rived hybrid epipolar constraint between views 2 and 1.
3. Minors containing at least two rows out of row 4 to 6 and astewo rows out
of the last three rows, give either trivial constraints onfimear constraints in the

parameters,; andd,; needed for the motion update.
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The first and second type of hybrid stereo constraints abamebe used to update a
current structure and motion estimate linearly. | turnstbat these constraints give two
linearly independent constraints on the motion parametérich again can be shown
in the same manner as in Appendix A. This implies that the omogiarameters of a
rigidly moving stereo-rig can be updated from at least tlu@eesponding points.

3.4 Case |V: 2D-cameras

In the case of 2D-cameras, the camera matrix equations)lan@d (3) looks exactly
the same, but the camera matfixs a2 x 3-matrix, the orthogonal matrik is a2 x 2-
matrix and the translational vectéris a 2-vector. Writing down the camera matrix
equations for timeé), time ¢ and timet + At, results in a matrix equation that looks
exactly as (10), with the main difference that the sizéff is now4 x 4 andw, now
denotes @ x 2 skew-symmetric matrix, i.e. a matrix defined by a single peeirw;.
The condition

(19)

RtXQ Xt 0 bt o
det [ﬁ)\thXO U X¢ dt:| =0

is called the2D hybrid epipolar constraintThis constraint consists of one single linear
constraint on the three motion parametessandd,. Thus it is possible to update a
current motion estimate from only three corresponding {sdimtwo images. This is a
major improvement to standard methods in several wayslyfitlse update equations
are linear in the motion parameters. Secondly, only two Esa@long with the mo-
tion of the feature points in one of the images) are needadpaced to the traditional
methods where at least three images are needed in ordegia ahy constraints on the
motion parameters. Finally, a unique update is obtainetipesed to the discrete case
where three images always gives an ambiguous solutiorl €. [

Writing down the camera matrix equations for tifines, t andt + At, results in a
matrix equation that looks exactly as (13), with the maifedénce that the size dff,
is now6 x 5 and againu; now denotes & x 2 skew-symmetric matrix, defined by a
single parametew,. The condition

RSX() Xs 00 bs
rank RtX() 0 X¢ 0 bt S 5 (20)
’L/l}thX() 0 Uy X¢ dt

is called the2D hybrid trifocal constraintExpanding the minors of (20) gives the fol-
lowing different constraints in the motion parametefsandb;:

1. Minors containing only one row out of rows 1 and 2 give thevjwusly derived 2D
hybrid epipolar constraint between views 2 and 3.

2. Minors containing only one row out of rows 3 and 4 give lineanstraints in the
motion parameters, in total 2 such linear constraints.

3. Minors containing only one row out of rows 5 and 6 give thendiard discrete
trifocal constraint between views 1 and 2 and 3.

The second type of constraints are interesting for us. Hewéwe two linear constraints
obtained in this way are linearly dependent, implying thakeast three images are
needed in order to linearly update the current motion eséintzor a detailed proof, see
Appendix B.
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3.5 Motion estimation using HMC

Given a current estimate of the motion parameters and a nagiéwith at least three
corresponding points, the motion parameters can be updatad a linear system of
equations of the type

M {“’t] -m , (21)

whereM = M (xE, xk uF R, b)) fork =1,...n,n > 3andm = m(x§, x5, uf, R, b;)
are the functions that computes the coefficients of the dyhgtching constraint equa-
tions in Sec. 3.1 in the epipolar case and similarly for theeptases.

3.6 State estimation using the continuous-discrete EKF

Given the motion parameters it is possible to employ a nurabalgorithms for recur-
sive structure recovery, e.g. a continuous-discrete eegiKalman (EKF) filter for the
state estimation process [18], [19].

3.7 Motion estimation refinement by reprojection constrairts

Given motion estimateR; andb, obtained using the HMC through (21), the measure-
mentx,, and the 3-D estimaf¥ from the EKF, we seek correction vecters3? € R3*!

of small magnitude, such that improved motion estimdtgsandb;,” are given by the
reprojection constraint

Mxe =[RS | b/ 1X, Rf =¢®Ry, b =b:+0. (22)
Expanding the first equation in (22) to a first order approxiomegives

A\ Xy & RtX + aRtX + by + ﬁ =
— ~ (23)
RtXOé+ﬂ:€3: RtX*Fbt*)\tXt,

wheree can be interpreted as the reprojection error. Observe #3ti¢ a linear con-
straint in the correction vectors and 3. Since (23) contains two linear constraints on
theses parametersy; is also a free parameter) in the correction vectors, a linpdate
on the motion parameters can be made from at least threesporrding points. Similar
correction formulas can be derived for the 2D-case. Obdbatehis motion estimation
refinementis in fact a pose update, similar to one iteraticmmon-linear least squares
estimation problem.

The inclusion of the reprojection constraint correctiogpssignificantly enhances
the performance of the estimation procedure, leading teeraocurate and robust esti-
mates of both structure and motion.
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3.8 Structure and motion algorithm

Using the results of the previous sections, the followirggpathm can now be employed
for recursive structure and motion recovery:
1. Initialization

— Assume that images are obtained sequentially at time itsstan = 0,1,2...,
equally spaced by\t. Also assume some initial values for the state vector and the
error covariance matrix in the EKF.

— Given the images at timeg = 0 andt; = At with at least eight point corre-
spondences, get initial parameter estimatgsand v, using e.g. the continuous
eight-point algorithm in the 3D single camera case.

— ComputeR;, = e®4t andb;, = dyAt.

2. Estimation loop-fori =1,2...do

— Using at least three point correspondences, set up thechytaiching constraints
in (21).

— Solve the linear system (21) for the new parameter estimateandd,, .

— Update the rotation matrix and the translation vector adiogrto (11).

— Usew, andy,, in the EKF to get structure estimates over the time inteleyal; +
At].

— Refine the motion estimate according to (23).

Note that since we are estimating both strucamémotion, the estimates are inherently
subjected to a scale ambiguity. In the above algorithm tladesissue is resolved by
assuming the translational velocity vectotto be of unit length in the initialization
procedure. This together with the assumption of normalirgaje coordinates fixes
the scale for the subsequent parameter estimates throligh (2

4 Experiments

Since the initial parameter values obtained by the in#&lon process generally can
be assumed quite accurate, the truly interesting case willren one or both of the
parameter vectors) and v are time varying. The hybrid-based method can then be
evaluated by its ability to follow the time-variations iretparameters, as well as by its
ability to correctly recover the 3-D structure.

For purpose of illustration we simulate images of an objenststing of eight points
in a general configuration on a grid of stepsige 4, and with the parameter vectors

2
wit) =5 (1, -1, 1),
1 T
—1, —0.4, 0.4)" + = (t, t, —0.5t)" .
(-1, =04, 0.4)"+ 2 (&, 1, —0.50)
Perspective measurements were computed at time inst@atssed byAt = 0.01. The

estimates of the components of the rotational velogitgnd the translational velocity
v together with the true values based on the hybrid epipolasttaints, are shown in
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Fig. 1. Estimation results obtained using the hybrid epipolar trairgs: (a) True (solid) and
estimated (dashed) translational velocity(b) True (solid) and estimated (dashed) rotational
velocity w, (¢) 3-D estimation errors for one of the observed objeabisoi

Fig. 1(a) and Fig. 1b) respectively. The resulting 3-D estimation error for oneheaf
observed object points is shown in Figcl

We also conducted a similar experiment on the same data baste hybrid tri-
focal constraints. The same procedure as before, basecdeanitialization using the
continuous epipolar constraint, and the recursive esiimaising the epipolar hybrid
constraints, was used until time= 0.4s. After that, the trifocal hybrid constraints was
used, withs = ¢/2, see Fig 2.

5 Conclusion

We have derived several hybrid matching constraints; daipdrifocal-, stereo- and
2D-hybrid motion constraints. We have proposed an algaoritbr on-line recursive
estimation of structure and motion from perspective mesgsents in a continuous-
discrete setting, utilizing these hybrid matching coristsafor the estimation of the
velocity parameters, combined with a state estimator, bptionally selected as the
continuous-discrete EKF. The structure and motion estimgitrocesses are connected
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Fig. 2. Estimation results obtained using the hybrid trifocal ¢maists: (a) True (solid) and esti-
mated (dashed) translational velocity(b) True (solid) and estimated (dashed) rotational vejoci
w, (c) 3-D estimation errors for one of the observed objechizoi

by recursive feedback of the structure estimates, reguitirreprojection error con-
straints used to obtain refined motion estimates. Simuktpdriments are included to
illustrate the applicability of the concept. The main adeges of the presented method
is that only three corresponding points are needed for tipeesdial update and correc-
tion of the velocity parameter estimates. Further, boteghgdate schemes are linear.

Note that it isnot necessary that the same three points are tracked throutjteout
whole image sequence. It is easy to change to any otherttofy®int correspondences
when needed.
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Appendix A

In order to prove that there exist exactly two linearly indiegent constraints among
the nine epipolar hybrid constraints, we have to prove thertet are exactly seven inde-
pendent linear dependencies between these constraiatsb$textendingl/, in (10)
with the second column, giving the followirtgx 5-matrix:

RtXO Xt 0 bt Xt
W Rexo Uy X¢ dy 1y

The 5 x 5 minors of this matrix are obviously identically zero. Explarg the three
minors obtained by removing each one of the last three cobugive

2¢L11 —yeLor + La1 — vy B+ uyz =0
¢lio — yeLog + L3y —u 0 =0 (24)
x4L13 — yiLoz + L3z +uy =0 ,
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whereL;; denotes the hybrid constraint obtained by removing row remrom the
first three rows of\/; and row numbey from the last three rows af/; and £ denotes
the epipolar constraint between tithandt. Thus (24) contains exactly three linear de-
pendencies among the epipolar hybrid constraints, asgutimat the epipolar constraint
between view$ andt is fulfilled. Repeating the same procedure by instead adtiieg
third column and expanding the minors obtained by removau@ne of the first three
columns give three further linear dependencies. Finadlgireg both the second and the
third column and expanding the determinant of the resulling6 matrix, give the last
linear dependency. It is furthermore evident from the stmecof these seven depen-
dencies that they are linearly independent. Thus only tweslily independent hybrid
constraints remain (assuming the epipolar constraintfiléd). For practical purposes,
there might be more than two linearly independent condsaitnen the epipolar con-
straint is not exactly fulfilled. However, these are numaticill-conditioned in the
sense that they are close to spanning a two-dimensionat spac

Appendix B

In order to prove that the two 2D trifocal hybrid constraiate linearly dependent we
can proceed similarly as in Appendix A. Start by extendirgratrix in (20) with the
third column, giving the following x 6-matrix:

Rsxg x5 0 0 b5 0
RtXO 0 Xt 0 bt Xt
WeRyxo 0wy x¢ dp g

. This6 x 6 matrix is obviously singular, with determinant identigatlero. This de-
terminant can be written as

l‘tLl — ytLQ + umuyT - uyumT = ItLl - ytLQ =0 , (25)

whereL; denotes the 2D hybrid epipolar constraints &hdenotes the discrete trifo-
cal constraint, giving the desired linear dependency betvtbe two hybrid epipolar
constraints.



