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Abstract. The detection of edges belonging to the foreground, even
when using “background modeling” can be very challenging due to the
blending of foreground with background, inter-reflections from surround-
ing objects, partial occlusions, etc., leading to missing edges, spurious
edges from background, highlights, and missing edges due to partial
occlusion, ete. This renders the figure edge-maps after the background
edges have been removed by background modeling unreliable and unus-
able. We propose an approach to this problem by integrating information
across multiple adjacent frames (typically 5 or 7 frames). First, we align
edge maps from neighboring frames to a central frame so as to obtain
a compound edge-map. The alignment which “transports” the temporal
information into a common reference is based on a view of an edge as
a sample of an underlying curve. Second, we check the consistency of
edges across frames by a notion of perceptual grouping based on geo-
metric “edge consistency”. This retains the edges which are consistent
spatially as well as temporally and thereby removing some spurious edges
and filling-in some gaps. Quantitative comparisons on synthetic video
and qualitative comparisons on real video data shows that the resulting
composite edge map is significantly better both on synthetic and on real
data.

1 Introduction

Numerous computer vision applications such as surveillance, automated vehicles
navigation, and robotics, among others, require segregated foreground objects.
Foreground detection from a plain background with no illumination or inter-
reflection effects, such as those in Figure 1(a) can be simple. However in a re-
alistic scene, Figure 1(b), factors like illumination, multiple objects, occlusion,
blending of foreground into background, etc. render the problem very difficult.
For example, when true edge contrast falls below noise threshold, motion esti-
mation can be erroneous, Figure 1. The use of background modeling of both
edge location and orientation improves the results [4] but many of the problems
remain. On the other hand, dynamic imagery like video provides additional and
redundant information that we propose can lead to a more robust figure-ground
segregation.



Our approach assumes that a background model is available and produces
a figure edge map for each frame of the video. Our goal is to produce a com-
posite edge map for each frame by integrating edge maps across several frames
(typically 5 or 7 frames). Our main assumption is that significant edges (occlud-
ing contours, reflectance edges, shadows, etc.) typically persist over time, while
most spurious edges arising from the coincidental alignment of intensities are
not stable across frames. Interframe consistency can then be used in two com-
plementary ways. First, the ability to deal with spurious edges through geomteric
consistency across frames allows for the use of very low edge thresholds, which
produce undesirable single frame edgemaps but which in composite form have
fewer gaps and missing edges. Second, the disappearance of true edges in single
frame edge maps are due to momentary occlusion (e.g. car behind a lamp-post),
interreflections, coincidental alignment of intensity , etc, which are transitory
phenomena. The use of multiple frames allows for the filling of such missing
edges.
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Fig. 1. The bottom row shows edge maps of single frame shown in the top row. (a)
When background modeling works perfectly, it is as if the object appears on a plain
background, as the single frame from a synthetic video shows. However, typically in
realistic imagery foreground detection suffers from numerous artifacts, e.g., gaps spuri-
ous edges, highlight edges due to interreflections as shown in the same synthetic video
frame but with a more realistic background (b).

Our Approach: We consider video acquired with a stationary camera' looking
at a static scene with moving objects. We use the approach described in [4]

1 A non-stationary camera could also be used but it would require a background
registration of the video frames.



which uses an egde-based background model to detect the sub-pixel edge-maps
of foreground objects where both edge locations and edge orientations employed
resulting in improvements as compared to using edge locations only. Some of
the detections are shown in the third row of Figure 2. Note the detections from
individual frames are generally successful in differentiating figure from ground.
However, there are also spurious edges and missing gaps due to the factors
mentioned previously. The figure edge-maps have a lot of gaps, spurious edges,
background edges and missing chunk of edges as illustrated in Figure 2. These
problems are even more significant for lower-resolution imagery as the latter
examples in the paper show.

We propose to first align the edge-maps from adjacent frames {I(t—n), I(t—
n+1),.,I(t—-1),I(t+1),..,I(t +n)} (usually we use n is 2 or 3) onto the
central frame I(t) to form a “spatio-temporal” compound edgemap. This enables
us to “transport” temporal information into the central frame. Second, we use
geometric consistency of these spatio-temporal edges to distinguish structural vs
spurious edges.

The paper is organized as follows: we first review some related work in Sec-
tion 2. The geometric alignment of edge map is presented in Section 3 and the
geometric consistency is presented in Section 4. The experimental results are
described in 5.

2 Related Work

To the best of our knowledge, the idea of using edge maps both for the align-
ment /registration of frames and as a main feature for fusion across frames is
novel. However, the idea of integrating edge information to fuse image or edge-
maps from multiple sensors has been proposed earlier. Abidi and Delcroix [1]
proposed an approach to fuse range and intensity edge-maps. They employ two
ideas (i) principle of token corroboration: an edge in the final fused edge-map is
retained if it is supported by either range and intensity edge-map and (%) prin-
ciple of belief enhancement/withdrawl: edge in the final edge map is weighted
depending how similar is the edge content in both the edge-maps. Yocky [2] pro-
poses fusion of multisensor images using wavelet transform. The idea is to fuse
data which has compression along complementary datasets, e.g., an image with
high spatial resolution but low resolutioncolor information and another image
with low spatial resolution but high color information. The authors enhance an
image from a sensor using high frequency components from the other sensor
image.

The work by Yang and Blum [3] proposes a method using multiple neighbor-
ing frames for fusion of multi-sensor images. The approach is to use a statistical
model for image formation whose parameters as well as the final fusion image is
unknown. An EM-based iterative algorithm is employed to solve for the parame-
ters and the fused image iteratively. The temporal information or the neighboring
frames add a constraint through consistency of parameters. The authors claim
temporal information improves the fusion results.



3 Alignment of Edge-Maps

Our basis of method for registering two edge-maps is the work proposed by Chui
and Rangarajan [5]. Aligning edge-maps requires estimating the correspondence
between edge maps as well as the relative spatial transformation. The non-rigid
matching using softassign algorithm in [5] first estimates the correspondence
between two frames the correspondence and then the transformation between
the corresponding point sets. The process is repeated to convergence. We ex-
tended/modified their existing algorithm for aligning edges in two ways: (7)
pairwise point distance is replaced with point-curve distance and (ii) we em-
ployed the efficient Clough-Tocher interpolation scheme (O(nlogn)) instead of
CPU guzzler thin plate spline (O(n?)). First we summarize the approach in [5]
and then discuss the modifications.

The correspondence is represented by a matrix M where columns represent
edges in the first edge-map {e;,¢ = 1,...., K} and rows represent edges in the
second edge-map {€;,j =1, ...., K}. An additional column and an additional row
are also added to represent outliers and missing edges, respectively. In binary
form only one element in each row and each column can be one, indicating
a one-to-one correspondence between the edges, if the one is not in the last
column/row, or otherwise a spurious edge or missing edge, respectively. The
matrix, however can accomodate a non-binary fuzzy representation if it is doubly
stochastic [5]. Thus, an initial measurement of correspondence between the edges
is considered. The transformation is a spatial map defined as a combination of
affine transformation and thin plate spline function. Assuming correspondence
between the two edge sets {e;,i = 1,....,L} and {g;,j = 1,....,L} is given, the
transformation mapping an edge e(z,y) to edge (Z,7) is given by

€= fanle) = Aet ) Ulle - eil)wi, (1)

i=1

where A is an affine transformation matrix, and U(r) = r?log r? and w; are the
weights of the thin plate spline (TPS) kernel 2. The affine transformation brings
corresponding edge elements into approximate registration while the thin plate
spline transformation refines the registration.

The ideal transformation would be smooth while moving each edge to coincide
with its corresponding edge. The free parameters of the transformation, A and
{2, are chosen to (i) minimize the distance between corresponding elements,
i.e., [€; — fa,e(e)], and (i) maintain a smooth map by minimizing the second
derivatives of f leading to

L
0% f 0% f 0% f
_ == _ |2
E(A,Q)_;:1|ez fa,0(e)] +’\//[|ax2|+2|amay|+|ay2 dzdy, (2)

where ) is a regularization parameter for the smoothness term.
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Fig. 2. The top row shows a couple of frames from a video, the second row shows
the corresponding subpixel edgemaps, the third row shows the detected figure edges
using [4]. Observe that in the third and fourth row (zoomed in), how gaps, e.g., as
boxed in (a) and spurious edges as boxed in (b) render local determination of figure
from background from a single frame unreliable.

(@) (b)

Fig. 3. (a) The correspondence between two edge maps is shown as green lines con-
necting corresponding edge points (red and blue) for two frames of an image sequence.
(b) zoomed in (a). Observe that the majority of outliers are correctly deleted.



The two stages are combined in an iterative fashion, iterating between ()
finding the best transformation given the current correspondence M: Since M
is not binary a weighted centroid Me;] gives the effective edge position to cor-

respond to [€;]; (ii) finding the best correspondence M given the current trans-
—[Ei—f(ea)? . .
formation of using M;; = e T , where T is “temperature”, M is then

converted into a doubly stochastic matrix.

Initially, at a high temperature the elements of matrix M are assigned uni-
form values which implies all the pair-correspondences {e;} x {e;} are equally
likely. As the temperature is lowered, M approaches a binary matrix which en-
sures one-to-one correspondence. Figure 3 illustrates the correspondence between
two edge maps, where green lines connect points from one edge set (in red) to
another edge set (in blue). The transformation allows for the edge maps from
multiple frames to be superimposed on a single frame, Figure 8(d).
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Fig. 4. This figure illustrates the advantage of using point to curve distance. (a) Point
to point distance would be problematic as the sampling of the curve is different as
shown in red and blue edges. (b) an estimate of point-curve distance and (c) point to
curve distance allows the samples from other frames (red) to align with the underlying
curve (shown in green).

Sampling variation issues: Consider a 2D curve C' moving and deforming
from one frame to another. This curve C is sampled differently in different frames
giving rise to distinct spatial locations for edges in different frames. Figure 4(a)
shows that using the point to point distance dp(i,5) = |[p; — pj|| can lead to
multiple correspondences and erroneous distnce estimates. We propose to esti-
mate the point to curve distance instead. Since the curve from which the edge is
sampled is not available, we use the best estimate, namely the line extension of
the edge ( when curvature information is available we use a circle). Thus, the dis-
tance of an edge e; to the transported edge from another frame €; is the distance
between €; and the line ( or circle) extending e;, Figure 4(b). This algorithm
works well in general but (i) it sometimes produces erroneous correspondence
due to variation in sampling across curves ans (ii) is computationally expensive.
We now discuss our modification to address these problems.

Specifically the distance function between two edges then comprises three
terms: (i) the perpendicular distance of an edge to the tangent of the other
edge dp(i,7) = |(ps — pj) % Tj|, where Tj is the unit tangent of the edge T; =
(cosb;,sinb;), and p; is the edge position. (ii) The difference between orientation
of edges dg = ||6; —6;|| and (iii) the Euclidean distance between position of edges



de = ||pi — pj|| to define a local neighborhood over which the computation is
meaningful. Then the similarity between two edges is represented by

S(’L,j) — e_d2/2a§6_d12’/20;‘;€_d3/202, (3)

where g, 0, and o, are the uncertainties associated with each of the distances
and are typically assigned equal to 2.0 pixels, 7/6 and 5.0 pixels respectively.
Efficient Implementation: Thin plate spline interpolation in [5] is used to
model the elastic deformation between point-sets. Thin plate spline is computa-
tions are very expensive especially for the high number of edges retained after
background modeling, typically of the order of thousands. It takes roughly 25
mins to register a pair of edge-maps( approx. 1000 edges). So this motivated to
look for faster interpolation scheme which do not compromise the performance.
Clough-Tocher implementation [6] of piecewise cubic patch is used to get the
required speed up without giving up performance. The order of the algorithm is
O(nlogn) as compared to O(n?) of thin plate splines.

4 Geometric consistency of Spatio-temporal compound
edge-map
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image from the top row. Note that edges which do not support the

curve model do not form any curvelets and hence are discarded.

By aligning and superimposing multiple edge-maps to a central frame we
have transported the temporal information onto a single composite frame. We



now discuss the issue of integration of edge information across frames in the
composite edge-map. The gaps in the central frame would likely be completed
by the edges from other frames and spurious edges would likely not receive
support from edges in the other frames. In order to retain structural edges we
need to check the geometric consistency of superimposed edges by perceptual
grouping, as proposed in [7]. In this work authors propose the construction of
“curvelets” which are local discrete combinations of edges which satisfy a local
curve model, the Euler Spiral ( constant rate of change in curvature), Figure 5.
This is done by constructing discrete combinations from edges in a small (5 x 5)
or (7 x 7) neighborhood through which an Euler Spiral passes.

Fig. 7. This figure demonstrates the approach to recover structural edges using geo-
metric consistency via curvelets. (a) Top left is the original edge-map, rest of the five
edge-maps in different colors are obtained by adding noise and removing edges ran-
domly in the original edge-map. (b) Top image is when all the noised edge-maps are
superimposed, middle image shows curvelets for the superimposed edge-map and last
one is the edge-map retained from the curvelets map.

More concretely, the algorithm considers each edge in turn as an anchor edge.
Next construct pairs from each edge in a 5 X 5 neighborhood and the anchor
edge. Each edge pair defines a family of Euler spirals. Those Euler Spirals in this
family that pass through a third edge are retained and form a curvelet hypothe-
sis. Additional information from a fourth edge further strengths the hypothesis.
Typically, curvelets where the Euler Spiral passes through 6 or 7 edges are kept
as viable. Figure 6 illustrates how this idea is applied to the fusion of edges in



a video sequence. The superimposed compound edge map top left is fitted with
curvelets shown in top right. Observe how there are no curvelets (green) forma-
tion for the spurious edges. Last row shows the zoomed and cropped images from
the top row. This clearly shows curvelets are formed where there is lot of edges
supporting or lying on some curve where as the edges which are scattered ran-
domly do not form curvelets which we discard. We demonstrate this idea further
on a simple data like a circle. The ideal image top left is viewed in five different
frames with different edges missing and different spurious elements. The result
of first aligning these frames and then find curvelets in the composite edge map
is shown in the bottom right of Figure 7.

Fig. 8. Results of our approach on a video sequence. (a) Video sequence, (b) subpixel
edge-map of (a), (c) Foreground edge-map, (d) superimposed edge-maps of 5 frames,
(e) consistent edges retained. Note the difference between (c) and (e) figure edge-maps.



5 Experimental Results

We demonstrate the results of our approach on several synthetic and real videos.
First, in Figure 8, we visually compare the foreground edge-maps from individ-
ual frames to the foreground edges obtained using our approach. Note how gaps
in Figure 8(c) are closed using our approach, Figure 8(e), and how numerous
spurious edges are discarded. The foreground edge-maps obtained using our ap-
proach look more complete than the original foreground edge maps. In order to
highlight the strength of our approach, we also considered a video where the ob-
ject undergoes partial occlusion and the foreground edge-map is incomplete and
incorrect as it contains edges of the occluding object, as shown in Figure 9(a,c).
Note how our approach not only fills in those gaps because of occlusion but
also throw away the occluder’s edges. It is clear that qualitatively our approach
provides more reliable and more complete foreground edge-maps.

Fig. 9. Results of our approach on a video sequence under occlusion. (a) Video se-
quence, (b) subpixel edge-map of (a), (c) Foreground edge-map, (d) superimposed
edge-maps of 5 frames, (e) consistent edges retained. Note the difference between (c)
and (e) figure edge-maps. The occluded part is filled in.



Fig. 10. This figure shows our synthetic video rendered using [8]. Top row shows a
vehicle moving against a simple background and the bottom row shows the scene
rendered with a more complex background with multiple objects, fences, posts, etc.
to make it more realistic and model some of the factors like blending of object into
background, inter-reflections, occlusion, etc which are responsible for degradation of
the figure edge-maps. Figure 1 shows that our examples achieves that purpose.
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Fig. 11. This figure illustrates the experiment carried out on synthetic video to evalu-
ate our approach quantatively. (a) image and edge map of the object in simple setting,
(b) cropped image and edge map of the object in more realistic conditions, (c) Fore-
ground edge-detection with increasing threshold (left to right), (d) Enriched edgemaps
corresponding to edge-maps (c) and (e) ROC curve for our approach and compared to
single detections.



In addition to above results we also provide quantative evaluation for our
approach. The task is to compare edge-map obtained from our approach to the
underlying real edge-maps. One can obtain some sort of ground truth or the
underlying real edge-map manually by marking edges on each frame of a video.
But this would not only be tedious but also would not be accurate. Note that
our approach tries to enrich the edge-map which is corrupted by illumination
changes, interreflections from surrounding objects, blending of the object into
background and occlusion in some cases. Instead, we construct a fairly realistic
looking synthetic video and compare the real edge-map of the object as the
one estimated when the object is isolated from the complexity introduced by
the background. This was done using 3D software POVRAY [8] to render a 3D
scene with a vehicle moving in a scene as shown in last row of Figure 10.
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Fig. 12. This figure shows the zoom in on the results from Figures 8, 9, 11. The left
column shows the single frame foreground detections and the right column shows the
multi-frame composite map. Clearly right column edge-maps are a lot better.

Edge map of the isolated vehicle (first row Figure 10) will be considered
the ground truth and we will compare edge-maps obtained by our approach,



Figure 11(b), to the ground truth, Figure 11(a). We varied the threshold of the
foreground edge detector from the range of 0 to 1. The corresponding foreground
edge maps are shown in Figure 11(c). Note as the threshold increases ( left to
right) the edge-maps get sparse. We ran our algorithm and obtained the enriched
edge-maps as shown in Figure 11(d). Next we compared all the edge maps to
our ground-truth edge-map, Figure 11(a) and computed false positives and true
positives. Next we plotted these values in a ROC curve shown in Figure 11(e).
Note clearly the enriched edge-maps have outperformed the original detections.

6 Conclusions and Future Work

Our contribution has been primarily to demonstrate that dynamic or temporal
information enhances our detections obtained from a single image as evident
from the summary in Figure 12. Some of the drawbacks of our approach are (i)
the method breaks down if the object undergoes significant change of viewpoint
in the adjacent frames , (ii) the algorithm is computationally expensive as it
takes 30 sec on Intel Xeon 3.2GHz processor to process one object (approx. 700
edges). This limits our approach to be applied on objects and not on the whole
image. We would like to improve these aspects of the algorithm in future.
Acknowledgements: This research was funded by Lockheed Martin Corpora-
tion and NSF grant NSF IIS-0413215.
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