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Abstract. Action and event recognition from video require comparing
temporal sequences of images, or of intermediate representations derived
from them. Such a comparison should be insensitive to intrinsic temporal
variations within the same class – for instance the speed of execution of a
particular gesture – and at the same time retain discriminative power to
enable classifying different actions. In this paper, we propose a technique
to compare temporal sequences that accounts for dynamic constraints
implicit in the data generation process. Our technique is more flexible
than those previously used for quasi-periodic actions such as walking
gaits, but more discriminative than others based on dynamic time warp-
ing that do not satisfy dynamic constraints. We illustrate our approach
on public datasets including stationary and non-stationary actions, using
both motion-capture and image data.

1 Introduction

Comparing time series is a problem of critical importance in the analysis of video
for the detection and classification of actions or events of interest. These in turn
are relevant to surveillance, environmental monitoring, and human-machine in-
terfaces. In addition to the challenges of geometric and photometric variability
common to other visual classification tasks, video analysis requires dealing with
temporal variability, whereby the same event can occur at a variety of speeds,
starting from a variety of initial instants and following a variety of velocity
profiles. While geometric and photometric information present in one image is
undoubtedly important (and indeed often sufficient) to recognize actions and
events, the temporal evolution contains a significant amount of information, as
illustrated eloquently by [1]. In this manuscript, therefore, we concentrate on
the classification of events that have distinct temporal signatures. Comparison of
time series is also key in a number of other disciplines, where a variety of tools
have been developed from “dynamic time warping” in speech recognition [2] and
temporal data mining [3] to Lyapunov exponents and non-linear embedding in
chaotic physical and financial systems [4], to stochastic realization theory for
control systems [5]. We argue, however, that the analysis of motion imagery re-
quires the development of dedicated tools, because the models underlying other
disciplines are either too restrictive or much too general. In fact, the assumption



2 Michalis Raptis, Matteo Bustreo, and Stefano Soatto

underlying most data-driven models in system identification is stationarity [6],
which is often violated. On the opposite end, dynamic time warping (DTW) [3]
reparametrizes the temporal axis in a way that is not compatible with physical
constraints implicit in the data formation process. When we image the physi-
cal world, actions are performed by objects with masses and inertias, so their
behavior can only generate velocity profiles that obey the resulting dynamic con-
straints. Therefore, in this manuscript we introduce a time warping model that
accounts for dynamic constraints intrinsic in the hidden generative model of an
action or event. We call this time warping under dynamic constraints (TWDC).

1.1 Prior work

In the analysis of video, temporal variability can be addressed in the representa-
tion, by devising statistics of a video snippet that do not depend on its temporal
evolution, or as part of the matching process, by defining suitable distances or
other discrepancy measures. Examples of the first approach include averaging
statistics, where the video (or some pre-processing of it that reduces the effects
of photometric variability, typically the extraction of silhouettes from the back-
ground) is integrated against a kernel to arrive at a static feature [7]. These
methods are specific to a particular image statistic (e.g. the silhouette) and do
not generalize easily to other models (say affine moments). Another example is
instantaneous statistics, where the value and derivative of a feature vector is
computed at each instant and then quantized over time using a hidden Markov
model [8]. These methods represent a coarse decimation of the original signal, so
much of the information implicit in the dynamics is lost. Yet another example is
to design invariants of the sequence. For instance, transfer functions are shift-
invariant and are sufficient statistics for stationary processes [9,10], but these
methods do not generalize to non-stationary actions.

The alternate approach consists of representing the video as just a collection
of ordered frames (or some statistics of it), and then devise methods to compare
video snaps that minimize the effects of temporal variations. These include the
Kullback-Leibler divergence between the sample video distributions [11], corre-
lation kernels [12], and direct block-correlations [13,7]. These methods could be
considered discriminative in the sense that they compare time series without
regards to how they are generated, and the underlying model is implicit in the
comparison algorithm. Dynamic time warping (DTW) [3] falls in this category,
in that it mods out temporal variations as part of the matching process. It has
been used successfully in other domains of vision research, from epipolar match-
ing in calibrated stereo [14] to discrete-time action modeling [15], to handwriting
[16] among others.

In between these two approaches there are likelihood methods that use one
sequence to infer an underlying model, and then use this model to explain the
data of the other sequence. In this approach, the more data are available (hence
the better the estimate of the model) the worse the classification error is – an
apparent paradox induced by the fact that the generalization model underlying
this approach is problematic: Each realization models one sequence and noisy
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versions of it, without regard for the structure of the intrinsic variability that
different realizations of the same process exhibit

More importantly, none of the methods proposed so far compare temporal
sequences in a way that explicitly takes into account the dynamics of the hidden
process that generate the data, though capturing those dynamics has been shown
to lead to more robust classification results [17,18]. Therefore, in this manuscript
we propose a time-warping distance, following the lines of [3], that however takes
into account dynamic constraints. Our work also relates to [19] who propose
characterizing the space of activities as the quotient of a time series under time
warpings, and from [20], who extend dynamic time warping to include temporal
derivatives.

2 Formalization

The simplest instantiation of our problem can be formalized as searching for a
distance d(y1, y2) between two time series yi = {yi(t) ∈ RN}t=1,...,T . For simplic-
ity we will assume that the sequences have the same length, although all consid-
erations extend to allow for different lengths. Among the simplest distances one
could define is the L2 norm of the difference, d0(y1, y2) =

∫ T
0
‖y1(t)− y2(t)‖2dt,

which corresponds to a generative model where both sequences come from an
(unknown) underlying process {h(t)}, corrupted by two different realizations
of additive white zero-mean Gaussian “noise” (here the word noise lumps all
unmodeled phenomena, not necessarily associated to sensor errors)

yi(t) = h(t) + ni(t) i = 1, 2; t ∈ [0, T ] (1)

The L2 distance is then the (maximum-likelihood) solution for h that minimizes

d0(y1, y2) = min
h
φdata(y1, y2|h) .=

2∑
i=1

∫ T

0

‖ni(t)‖2dt (2)

subject to (1). Here h can be interpreted as the average of the two time series, and
although in principle h lives in an infinite-dimensional space, no regularization
is necessary at this stage, because the above has a trivial closed-form solution.
However, later we will need to introduce regularizers, for instance of the form
φreg(h) =

∫ T
0
‖∇h‖dt. This admittedly unusual way of writing the L2 distance

makes the extension to more general models simpler, as we discuss in the next
subsections.

2.1 Dynamic time warping

In this section we revisit dynamic time warping in a way that makes it amenable
to the extentions we have discussed in the introduction. Consider an arbitrary
infinite-dimensional diffeomorphism x of the interval [0, T ], called a time warping,
so that (1) becomes

yi(t) = h(xi(t)) + ni(t) i = 1, 2. (3)
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The data term of the cost functional we wish to optimize is still
∑2
i=1

∫ T
0
‖ni(t)‖2dt,

but now subject to (3), so that minimization is with respect to the unknown func-
tions x1 and x2 as well as h. Since the model is over-determined, we must impose
regularization [21] to compute the time-warping distance

d1(y1, y2) = min
h∈H,xi∈U

φdata(y1, y2|h, x1, x2) + φreg(h). (4)

In order for τ .= x(t) to be a viable temporal index, x must satisfy a number
of properties. The first is continuity (time, alas, does not jump); in fact, it is
common to assume a certain degree of smoothness, and for the sake of simplicity
we will assume that xi is infinitely differerentiable. The second is causality: The
ordering of time instants has to be preserved by the time warping, which can
be formalized by imposing that xi be monotonic. We can re-write the distance
above as

min
h∈H,xi∈U

2∑
i=1

∫ T

0

‖yi(t)− h(xi(t))‖2 + λ‖∇h(t)‖dt (5)

where λ is a tuning parameter that can be set equal to zero, for instance by
choosing h(t) = y1(x−1

1 (t)), and the assumptions on the warpings xi are im-
plicit in the definition of the set U . This is an optimal control problem, that
is solved globally using dynamic programming in a procedure called “dynamic
time warping” (DTW).

It is important to note that there is nothing “dynamic” about dynamic time
warping, other than its name. There is no requirement that the warping function
x be subject to dynamic constraints, such as those arising from forces, inertia
etc. However, some notion of dynamics can be coerced into the formulation
by characterizing the set U in terms of the solution of a differential equation.
Following [3], as shown by [22], one can represent allowable x ∈ U in terms of a
small, but otherwise unconstrained, scalar function u: U = {x ∈ H2([0, T ]) |ẍ =
uẋ; u ∈ L2([0, T ])} where H2 denotes a Sobolev space. If we define ρi

.= ẋi then
ρ̇ = uρ; we can then stack the two into ξ .= [x, ρ]T , and C = [1, 0], and write
the data generation model as{

ξ̇i(t) = f(ξi(t)) + g(ξi(t))ui(t)
yi(t) = h(Cξi(t)) + ni(t)

(6)

as done by [22], where ui ∈ L2([0, T ]). Here f, g and C are given, and h, xi(0), ui
are nuisance parameters that are eliminated by minimization of the same old
data term

∑2
i=1

∫ T
0
‖ni(t)‖2dt, now subject to (6), with the addition of a regu-

larizer λφreg(h) and an energy cost for ui, for instance φenergy(ui)
.=

∫ T
0
‖ui‖2dt.

Writing explicitly all the terms, the problem of dynamic time warping can be
written as

d3(y1, y2) = min
h,ui,xi

2∑
i=1

∫ T

0

‖yi(t)− h(Cξi(t))‖+ λ‖∇h(t)‖+ µ‖ui(t)‖dt (7)
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subject to ξ̇i = f(ξi) + g(ξi)ui. Note, however, that this differential equation
is only an expedient to (softly) enforce causality by imposing a small “time
curvature” ui.

In the next section we discuss how to enforce dynamic constraints in the
comparison of two time series.

3 Time warping under dynamic constraints

Our strategy to enforce dynamic constraints in dynamic time warping is illus-
trated in Figure 1:

Fig. 1. Traditional dynamic time warping (DTW) assumes that the data come
from a common function that is warped in different ways to yield different time
series. In time warping under dynamic constraints (TWDC), the assumption is
that the data are output of a dynamic model, whose inputs are warped versions
of a common input function.

Now, rather than the data being warped versions of some common function,
as in (3), we will assume that the data are outputs of dynamical models driven by
inputs that are warped versions of some common function. In other words, given
two time series yi, i = 1, 2, we will assume that there exist suitable matrices
A,B,C, state functions xi of suitable dimensions, with their initial conditions,
and a common input u such that the data are generated by the following model,
for some warping functions wi ∈ U :{

ẋi(t) = Axi(t) +Bu(wi(t))
yi(t) = Cxi(t) + ni(t).

(8)

Our goal is to find the distance between the time series by minimizing with re-
spect to the nuisance parameters the usual data discrepancy

∑2
i=1

∫ T
0
‖ni(t)‖2dt

subject to (8), together with regularizing terms φ̄reg(u) and with wi ∈ U . Notice
that this model is considerably different from one discussed in the previous sec-
tion, as the state ξ earlier was used to model the temporal warping, whereas now
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it is used to model the data, and the warping occurs at the level of the input. It is
also easy to see that the model (8), despite being linear in the state, includes (6)
as a special case, because we can still model the warping functions wi using the
differential equation in (6). In order to write this time warping under dynamic
constraint problem more explicitly, we will use the following notation:

y(t) = CeAtx(0) +
∫ T

0

CeA(t−τ)Bu(w(τ))dτ .= L0(x(0)) + Lt(u(w)) (9)

in particular, notice that Lt is a convolution operator, Lt(u) = F ∗ u where F is
the transfer function. We first address the problem where A,B,C (and therefore
Lt) are given. For simplicity we will neglect the initial condition, although it is
easy to take it into account if so desired. In this case, we define the distance
between the two time series

d4(y1, y2) = min
2∑
i=1

∫ T

0

‖yi(t)− Lt(ui(t))‖+ λ‖ui(t)− u0(wi(t))‖dt (10)

subject to u0 ∈ H and wi ∈ U . Note that we have introduced an auxiliary
variable u0, which implies a possible discrepancy between the actual input and
the warped version of the common template. This problem can be solved in two
steps: A deconvolution, where ui are chosen to minimize the first term, and a
standard dynamic time warping, where wi and u0 are chosen to minimize the
second term. Naturally the two can be solved simultaneously.

3.1 Going blind

When the model parameters A,B,C are common to the two models, but oth-
erwise unknown, minimization of the first term corresponds to blind system
identification, which in general is ill-posed barring some assumption on the class
of inputs ui. These can be imposed in the form of generic regularizers, as com-
mon in the literature of blind deconvolution [23]. This is a general and broad
problem, but beyond our scope here, so we will forgo it in favor of an approach
where the input is treated as the output of an auxiliary dynamical model, also
known as exo-system [24]. This combines standard DTW, where the monotonic-
ity constraint is expressed in terms of a double integrator, with TWDC, where
the actual stationary component of the temporal dynamics is estimated as part
of the inference. The generic warping w, the output of the exo-system satisfies{

ẇi(t) = ρi(t), i = 1, 2
ρ̇i(t) = vi(t)ρi(t)

(11)

and wi(0) = 0, wi(T ) = T . This is a multiplicative double integrator; one could
conceivably add layers of random walks, by representing vi are Brownian motion.
Combining this with the time-invariant component of the realization yields the
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generative model for the time series yi:
ẇi(t) = ρi(t), i = 1, 2
ρ̇i(t) = vi(t)ρi(t)
ẋi(t) = Axi(t) +Bu(wi(t))
yi(t) = Cxi(t) + ni(t).

(12)

Note that the actual input function u, as well as the model parameters A,B,C,
are common to the two time series. A slightly relaxed model, following the pre-
vious subsection, consists of defining ui(t)

.= u(wi(t)), and allowing some slack
between the two; correspondingly, to compute the distance one would have to
minimize the data term

φdata(y1, y2|u,wi, A,B,C) .=
2∑
i=1

∫ T

0

‖ni(t)‖2dt (13)

subject to (12), in addition to the regularizers

φ̄reg(vi, u) =
2∑
i=1

∫ T

0

‖vi(t)‖2 + ‖∇u(t)‖2dt (14)

which yields a combined optimization problem

d5(y1, y2) = min
u,vi∈L2,A,B,C

2∑
i=1

∫ T

0

(‖yi(t)−Cxi(t)‖2+‖vi(t)‖2+‖∇u(t)‖2)dt (15)

subject to (12). This distance can be either computed in a globally optimal fash-
ion on a discretized time domain using dynamic programming, or more simply
we can run a gradient descent algorithm based on the first-order optimality con-
ditions. In the next section we report experiments on real and simulated data
that illustrate the power and limitations of the approach proposed.

4 Experiments

We performed several experiments on controlled synthetic datasets and with
publicly available sets of real data, both from motion capture and from image
sequences, for both stationary and non-stationary actions. Here we report a set
of representative results that illustrate the characteristics of our approach as
it compares with DTW and other published results; some of the experiments
reported also highlight the limitations of our approach.

4.1 Stationary sequences

In order to set a baseline and compare our approach against existing ones, we
have first used the popular CMU MoCap Dataset for the case of quasi-periodic
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sequences. The data is provided as a set of joint angle trajectories on a skeletal
model of the human body, obtained by a motion capture system. It contains
instances of 23 individuals walking and running. We restrict our observation
period to just one walking cycle and we perform variance normalization [25].
Of all the joint angle trajectories, for simplicity, we have selected a subset of
6, corresponding to lower-body joints. Despite these decimations, the correct
classification rate using a simple nearest-neighbor classifier based on TWDC was
100%. The resulting confusion matrix (pairwise distances between each data pair,
organized into a matrix, with dark intensity indicating low distance) is shown
in Fig. 2. The sequences have been organized so that walking sequences occupy
the upper quadrant, whereas running sequences are in the lower one.

In order to make a baseline comparison with DTW, we generate a score by
looking at the first k nearest neighbors, and summing the number of classification
errors based on the k-th neighbor, instead of the nearest, with k going from 2
to 10. DTW achieves a cumulative score of 25, whereas with TWDC it was
13. Although it should be obvious a-priori that our approach should improve
on DTW, because it includes it as a subset, this simple experiment suffices to
validate this hypothesis.

In the next experiment we used a more challenging dataset [10], which in-
cludes sequences of limping that are more subtle and hence harder to discriminte
from walking. Our approach outperforms both DTW as well as the results re-
ported by [10] in most cases. The confusion matrix is shown in Fig. 3 and the
following table shows correct classification performance for the three actions
available: (walking, running, limping).

Comparison of gait classification performances in k-nearest neighbor matching
Model k = 3 k = 5 k = 7
DTW (63.6%, 63.6%, 0%) (63.6%, 63.6%, 0%) (63.6%, 63.6%, 0%)
[10] (86.0%, 98.7%, 15.0%) (88.6%, 98.7%, 15.0%) (93.9%, 98.7%, 17.5%)
TWDC (90.9%, 100%, 33.3%) (90.9%, 100%, 33.3%) (90.9%, 100%, 44.4%)

The table shows the percent correct classification for three actions (walking,
running, limping), for k-nearest neighbor classification with k = 3, 5, 7 using
DTW, TWDC and the results reported by [10]. Our approach outperforms both
approaches on average, and in every category and nearest neighbor count, except
for walking with k = 7 where [10] performs better. Note, however, that such an
approach relies on the stationarity assumption, and therefore fails to perform on
the scenarios considered in the next subsection.

4.2 Non-stationary sequences

In this section we put to the test the functioning of our approach on sequences of
non-stationary actions such as dancing, jumping, kicking, limping and skating,
also taken from the CMU MoCap dataset. Here, algorithms that rely on the
assumption of stationarity cannot be employed. Our results are summarized in
the confusion matrix in Fig. 4 as well as the following table.
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Fig. 2. Confusion matrix for walking/running classification in the CMU MoCap
dataset. The distance between 12 walking and 11 running sequences is visualized
as an intensity value, with dark being small and light being large. For each row
we indicate the first (x) and second (o) nearest neighbors. Classification based on
first nearest neighbor yields 100% correct. To compare with DTW, we sum the
classification errors obtained by using the k-th neighbor, instead of the nearest
neighbor, with k = 2, . . . , 10. DTW achieves a score of 25, whereas TWDC
performs better with a score of 13.

Results obtained in the classification of non stationary signals
of the MoCap Dataset in k-nearest neighbor matching (k=3)

Dance Jump Kick Limp Skate
100% 100% 50% 50% 100%

The table shows that some actions are rather simple to classify. Others, how-
ever, are more subtle, for instance limping and kicking. The latter in particular
is quite short, so partial matching with other actions (such as dance) reveals
considerable similarity that only photometric context (e.g. the presence of a
ball) can disambiguate. Furthermore, as we discuss in the next section, there are
range (scale) transformations that we do not model explicitly – for we decide to
concentrate on time domain transformations – that play a confounding role in
the classification.

In the next experiment we tested our algorithm on the dataset presented
by [26], that consists of binary sequences of images obtained from background
subtraction from a stationary camera pointed in front of a scene where subjects
were performing a series of non-stationary actions. Direct comparison with the
metric used by [26] is not possible, since they employ a representation that com-
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TWDC    UCLA!Mocap    Similarity Matrix
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Fig. 3. Confusion matrix for the UCLA dataset [10]. There are 31 sequences of
(walking, running, limping). Moving along the horizontal axis we mark the first
(x) and second (o) nearest neighbors. Classification performance using k nearest
neighbor is reported in the following table.

pounds temporal information via averaging, rather than by warping. Therefore,
classification results are affected by the representation as well as by the metric,
and there is no way to disentangle the two. Nevertheless, we can compare the
overall classification results, summarized in the confusion matrix in Fig. 5. For
simplicity we have used only 3 coarse features, corresponding to the height and
to the width of upper and lower part of a bounding box of the silhouette . De-
spite this brutal simplification, we achieve classification rates comparable with
[26] summarized in the following table.

Results obtained in the classification of non stationary signals
of the Weizmann Database in k-nearest neighbor matching (k=3)
Run 100% Jump 77.8% Wave1 0%
Walk 100% pJump 66.7% Wave2 33.3%
Side 100% Jack 77.8% Bend 77.8%
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TWDC    CMU!NonStationaryData    Similarity Matrix
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Fig. 4. Confusion matrix for 19 sequences and 5 different activities (dancing,
jumping, kicking, limping, skating) from the CMU MoCap dataset. For each
row we indicate the first (x) and second (o) nearest neighbors. Numerical clas-
sification scores are reported in the following table.

Additionally, our results are obtained without any particular attention to
spatial modeling and normalization, just by considering deformations of the tem-
poral axis. Clearly, there is a lot to be gained from the use of more sophisticated
representations such as those used by [26,27], but this simple experiment suffices
to validate the flexibility and power of our approach on image-based data sets.

5 Discussion

We have introduced “time warping under dynamic constraints” that is an op-
timization scheme to find the time domain deformation of a time series that
best fits another time series while respecting their intrinsic dynamics. This is
achieved by modeling each time series by a different realization of a dynamical
model driven by time-warped versions of the same unknown input. We have
illustrated the relationship to standard “dynamic time warping” and shown em-
pirically that classification performance is improved when dynamic constraints
are taken into account.
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TWDC  Weizmann!Action Dataset  Similarity Matrix 
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Fig. 5. Confusion matrix for 81 sequences and 9 different activities (run, walk,
side, jump, pjump, jack, wave1, wave2, bend) from the Weizmann dataset. For
each row we indicate the first (x) and second (o) nearest neighbors. Numerical
classification scores are reported in the following table. If we consider actions
wave1 and wave2 as one action, the classification result is 88.9%.

On publicly available datasets, our approach mostly performed as well as
expected. On some tasks, however, performance was unexpectedly low. This
was due in part to sampling issues, as some of the non-stationary actions were
available over a long sequence, whereas others were available in short snippets.
Another shortcoming of our approach, just because we have decided to focus
on time domain deformations, is the fact that we do not explicitly model range
(amplitude) transformations. It is obvious that these should also be taken into
account, and there are many ways to do so, depending on the domain and on
the data representation selected. For instance, for image sequences one can pre-
process them to normalize for contrast scalings, and again one could do so as
part of the representation or as part of the matching process. This of course is
not an issue on binary images since the range is normalized, but it is an issue
on geometric conversions of the silhouette where there are, for instance, scale or



Time Warping Under Dynamic Constraints 13

affine variations. Again, one could employ affine-invariant representations or op-
timize with respect to the best matching affine transformation during matching
(or average with respect to a given procrustean distribution).

Our contribution is obviously only a piece of the puzzle of building an effec-
tive, robust and reliable machine to classify actions and events from video, but
we feel that our handling of time domain transformations is well suited for this
task as it represents a sound tradeoff between the simplicity of the model and
its flexibility: It is not as simple as simple linear stationary models, but it is not
as general as fully non-linear models of chaotic dynamics that are employed in
other disciplines such as finance or astrophysics.
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