
Recovering Non-Rigid 3D Shape from Image Streams

Christoph Bregler Aaron Hertzmann Henning Biermann
Computer Science Department NYU Media Research Lab

Stanford University 719 Broadway, 12th floor
Stanford, CA 94305 New York, NY 10003

bregler@cs.stanford.edu hertzman@mrl.nyu.edu, biermann@mrl.nyu.edu

Abstract
This paper addresses the problem of recovering 3D non-

rigid shape models from image sequences. For example,
given a video recording of a talking person, we would like
to estimate a 3D model of the lips and the full face and its
internal modes of variation. Many solutions that recover
3D shape from 2D image sequences have been proposed;
these so-called structure-from-motion techniques usually
assume that the 3D object is rigid. For example, Tomasi
and Kanades’ factorization technique is based on a rigid
shape matrix, which produces a tracking matrix of rank 3
under orthographic projection. We propose a novel tech-
nique based on a non-rigid model, where the 3D shape
in each frame is a linear combination of a set of basis
shapes. Under this model, the tracking matrix is of higher
rank, and can be factored in a three-step process to yield
pose, configuration and shape. To the best of our knowl-
edge, this is the first model free approach that can recover
from single-view video sequences nonrigid shape model-
s. We demonstrate this new algorithm on several video se-
quences. We were able to recover 3D non-rigid human face
and animal models with high accuracy.

1 Introduction
This paper demonstrates a new technique for recover-

ing 3D non-rigid shape models from 2D image sequences
recorded with a single camera. For example, this technique
can be applied to video recordings of a talking person. It
extracts a 3D model of the human face, including all facial
expressions and lip movements.

Previous work has treated the two problems of recov-
ering 3D shapes from 2D image sequences and of discov-
ering a parameterization of non-rigid shape deformation-
s separately. Most techniques that address the structure-
from-motionproblem are limited to rigid objects. For ex-
ample, Tomasi and Kanade’s factorization technique [14]
recovers a shape matrix from image sequences. Under or-
thographic projection, it can be shown that the 2D tracking
data matrix has rank 3 and can be factored into 3D pose and
3D shape with the use of the singular value decomposition

(SVD). Unfortunately these techniques can not be applied
to nonrigid deforming objects, since they are based on the
rigidity assumption.

Most techniques that learn models of shape variations
do so on the 2D appearance, and do not recover 3D struc-
ture. Popular methods are based on Principal Components
Analysis. If the object deforms with K linear degrees of
freedom, the covariance matrix of the shape measurements
has rank K. The principal modes of variation can be recov-
ered with the use of SVD.

We show how 3D non-rigid shape models can be recov-
ered under scaled orthographic projection. The 3D shape
in each frame is a linear combination of a set of K ba-
sis shapes. Under this model, the 2D tracking matrix is
of rank 3K and can be factored into 3D pose, object con-
figuration and 3D basis shapes with the use of SVD. We
demonstrate the effectiveness of this technique on several
data sets, including challenging recordings of human faces
during speech and varying facial expressions and animal
body motions.

Section 2 summarizes related approaches, Section 3 de-
scribes our algorithm, and Section 4 discusses our experi-
ments.

2 Previous Work
Many solutions have been proposed to the Structure-

from-motionproblem. One of the most influential of these
was proposed by Tomasi and Kanade [14] who demon-
strated the factorization method for rigid objects and or-
thographic projections. Many extensions have been pro-
posed, such as the multi-body factorization method of Co-
seira and Kanade [6] that relaxes the rigidity constraint.
In this method, K independently moving objects are al-
lowed, which results in a tracking matrix of rank 3K and a
permutation algorithm that identifies the submatrix corre-
sponding to each object. More recently, Bascle and Blake
[1] proposed a method for factoring facial expressions and
pose during tracking. Although it exploits the bilinearity
of 3D pose and nonrigid object configuration, it requires
a set of basis images selected before factorization is per-
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formed. The discovery of these basis images is not part of
their algorithm.

Various authors have demonstrated estimation of non-
rigid appearance in 2D using Principal Components Anal-
ysis [15, 10, 3].

The most impressive 3D reconstruction of human faces
was presented by Blanz and Vetter [4]. A high-resolution
3D model of the shape space was obtained by laser scan-
ning a large face database a-priori. Using a hand initial-
ization and iterative matching of shape, texture, and light-
ing, a very detailed 3D face shape could be recovered from
one single image. Based on 2D image sequences, [7] and
[11] were tracking the pose and configuration of human
faces. A 3D face model was given a-priori as well. Basu
[2] demonstrates how the parameters can be iteratively fit-
ted to a video sequence, starting from an initial lip model.
[12, 8] propose methods for recovering the 3D facial model
itself using multiple views.

All existing methods for nonrigid 3D shapes either re-
quire an a-priori model or require multiple views. To the
best of our knowledge, this is the first algorithm that can
tackle this problem without the use of a prior model and
without multiple view or other 3D input. In the next sec-
tion, we demonstrate how a 3D nonrigid shape model can
be recovered from single-view recordings in solving mul-
tiple factorization steps. No a-priori shape model is re-
quired. We demonstrate this technique on various record-
ings of human faces and animals.

3 Factorization Algorithm
We describe the shape of the non-rigid object as a key-

frame basis set S1;S2; :::Sk. Each key-frame Si is a 3�P
matrix describing P points. The shape of a specific config-
uration is a linear combination of this basis set:

S=
K

∑
i=1

li �Si S;Si 2 IR3�P
; li 2 IR (1)

Under a scaled orthographic projection, the P points of a
configuration Sare projected into 2D image points (ui ;vi):

�
u1 u2 ::: uP

v1 v2 ::: vP

�
= R�

 
K

∑
i=1

li �Si

!
+T (2)

R=

�
r1 r2 r3

r4 r5 r6

�
(3)

R contains the first 2 rows of the full 3D camera rotation
matrix, and T is the camera translation. The scale of the
projection is coded in l1; :::lK . As in Tomasi-Kanade, we
eliminate T by subtracting the mean of all 2D points, and
henceforth can assume that S is centered at the origin.

We can rewrite the linear combination in (2) as a matrix-
matrix multiplication:

�
u1 ::: uP

v1 ::: vP

�
=
�

l1R ::: lKR
�
�

2
664

S1

S2

:::

SK

3
775 (4)

We add a temporal index to each 2D point, and denote

the tracked points in frame t as (u(t)i ;v(t)i ). We assume we
have 2D point tracking data over N frames and code them
in the tracking matrix W:

W =

2
66666666664

u(1)1 ::: u(1)P

v(1)1 ::: v(1)P

u(2)1 ::: u(2)P

v(2)1 ::: v(2)P
:::

u(N)1 ::: u(N)P

v(N)1 ::: v(N)P

3
77777777775

Using (4) we can write:

W =

2
6664

l (1)1 R(1)
::: l (1)K R(1)

l (2)1 R(2)
::: l (2)K R(2)

:::

l (N)1 R(N)
::: l (N)K R(N)

3
7775

| {z }
Q

�

2
664

S1

S2

:::

SK

3
775

| {z }
B

(5)

3.1 Basis Shape Factorization
Equation (5) shows that the tracking matrix has rank

3K and can be factored into 2 matrixes: Q contains for
each time frame t the pose R(t) and configuration weights

l (t)1 ; :::; l (t)K . B codes the K key-frame basis shapes Si . The
factorization can be done using singular value decomposi-
tion (SVD) by only considering the first 3K singular vec-
tors and singular values (first 3K columns in U , D, V):

SVD: W2N�P = Û � D̂ �V̂T = Q̂2N�3K
� B̂3K�P (6)

3.2 Factoring Pose from Configuration
In the second step, we extract the camera rotations R(t)

and shape basis weights l (t)i from the matrix Q̂. Although
Q̂ is a 2N�3K matrix, it only contains N(K +6) free vari-
ables. Consider the 2 rows of Q̂ that correspond to one
single time frame t, namely rows 2t � 1 and row 2t ( for
convenience we drop the time index (t)):

q(t) =
h

l (t)1 R(t)
::: l (t)K R(t)

i
=

�
l1r1 l1r2 l1r3 ::: lKr1 lKr2 lKr3

l1r4 l1r5 l1r6 ::: lKr4 lKr5 lKr6

�

2
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We can reorder the elements of q(t) into a new matrix q̄(t):

q̄(t) =

2
664

l1r1 l1r2 l1r3 l1r4 l1r5 l1r6

l2r1 l2r2 l2r3 l2r4 l2r5 l2r6

:::

lKr1 lKr2 lKr3 lKr4 lKr5 lKr6

3
775

=

2
664

l1
l2
:::

lK

3
775 � � r1 r2 r3 r4 r5 r6

�

which shows that q̄(t) is of rank 1 and can be factored into

the pose R̂(t) and configuration weights l (t)i by SVD. We
successively apply the reordering and factorization to all
time blocks of Q̂.
3.3 Adjusting Pose and Shape

In the final step, we need to enforce the orthonormal-
ity of the rotation matrices. As in [14], a linear transfor-
mation G is found by solving a least squares problem1.
The transformation G maps all R̂(t) into an orthonormal
R(t) = R̂(t)

�G. The inverse transformation must be applied
to the key-frame basis B̂ to keep the factorization consis-
tent: Si = G�1

� Ŝi .
We are now done. Given 2D tracking data W, we can

estimate a non-rigid 3D shape matrix with K degrees of
freedom, and the corresponding camera rotations and con-
figuration weights for each time frame.

4 Experiments
Part of this work is motivated by our efforts in image-

based facial animation, but the technique is not limited to
the facial domain only. We collected several videos of peo-
ple speaking sentences with various facial expressions. We
also collected videos of animals in motion, to demonstrate
the generality of this approach. The human face recordings
contain rigid head motions, and non-rigid lip, eye, and oth-
er facial motions. We tracked important facial features with
an appearance-based 2D tracking technique2. Figure 1 and
7 shows example tracking results for video-1 and video-
2. For facial animation, we want explicit control over the
rigid head pose and the implicit facial variations. In the
following, we show how we were able to extract a 3D non-
rigid face model parameterized by these degrees of free-
dom. Video-3 contains a walking giraffe (Figure 9). This
video was tracked by a point feature tracker3.

We applied our method to all three video sequences.
The first is a public broadcast originally recorded on film in
the early 1960’s (video-1) and contains 1213 video frames.

1The least squares
problem enforces orthonormality of all R(t): [r1r2r3]GGT [r1r2r3]

T = 1,
[r4r5r6]GGT [r4r5r6]

T = 1, [r1r2r3]GGT [r4r5r6]
T = 0

2We used a learned PCA-based tracker similar to [10]
3We used for this experiment a tracking approach reported in [13]

Figure 1: Example images from video-1 with overlayed
tracking points. We track the eye brows, upper and lower
eye lids, 5 nose points, outer and inner boundary of the lips,
and the chin contour.

3
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Figure 2: Average pixel SSD error of back-projected face
model for different degrees of freedom: K

The second video was recorded in our lab (video-2) and
contains 1000 video frames. The third video was recorded
in a public zoo and only contains 60 frames. All record-
ings are challenging for 3D reconstructions, since they
contain very few out-of-plane head or body motions. In
a first experiment, we computed the reconstruction error
based on the number of degrees of freedom (K) for video-
1. We factorized the tracking data, and computed the back-
projection of the estimated model, configuration, and pose
into the image. Figure 2 shows the SSD error between
the back-projected points and image measurements. For
K = 16 the error vanishes. For the remainder of the paper,
we set K = 16. Figure 3 and 4 shows for example frames
of video-1 and the reconstructed 3D Smatrix rotated by the
corresponding R(t). To illustrate the 3D data better, we fit
a shaded smooth surface to the 3D shape points.

We also investigated the discovered modes of varia-
tion. We computed the mean and standard deviations of
[l t1; :::; l tK ] in video-1. Figure 5 and 6 shows 4 standard de-
viations of the second and third modes (S1;S2;S3). Mode 1
covers scale change, mode 2 cover some aspect of mouth
opening, and mode 3 covers eye opening. The remaining
modes pick up more subtle and less intuitive variations.

Figure 8 shows the reconstruction results for video-2.

Figure 9 shows example frames of the walking giraffe.
Tracking the complete surface of such an animal is much
more difficult. Although it has very distinct features that
makes it easier to track than other animals, there are still
many local ambiguities to resolve. The reported experi-
ments work in progress. For instance, we could only track
features on the trunk, neck, and head with the technique
in [13], but not the legs. We expect a combination of
several different tracking strategies would be more robust.

Figure 3: 3D reconstructed shape and pose for first frame
of Figure 1

Figure 4: 3D reconstructed shape and pose for last frame
of Figure 1

Figure 5: Variation along mode 2 of the nonrigid face mod-
el. The mouth deforms.

4
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Figure 6: Variation along mode 3 of the nonrigid face mod-
el. The eyes close.

Figure 7: Example images from video-2 with overlayed
tracking points.

Figure 8: Front and side view for the reconstructions from
video-2.

Figure 9: Example frames of the giraffe sequence

Another short-coming is that our technique can not deal
with missing tracks yet (see discussion on our future plan-
s). Therefore we could only track 161 features in a se-
quence of 60 frames total. Figure 10 and 11 shows the 3D
reconstruction. Figure 12 illustrates the first mode of varia-
tion. The 2 different colored surfaces represent 2 opposing
extremes. As you can see, this mode covers some of the
head rotations and a deformation of the trunk due to inter-
nal bone motion. The second mode of variation is much
more subtle and less intuitive (Figure 13).

The results on these 3 video databases are very encour-
aging. Given the limited range of out-of-plane face and
body orientations, the 3D details that we could recover
from the lip shapes and skin deformations are quite sur-
prising.

5 Discussion
We have presented a simple but effective new technique

for recovering 3D non-rigid shape models from 2D image
streams without the use of any a-priori model. It is a three
step procedure using multiple factorizations. We were able
to recover 3D models for video recordings of human faces
and animals. Although these are very encouraging result-
s, we plan to evaluate this technique and its limitations on
larger data sets. We are currently exploring an extension of
this technique such that occluded feature tracks can be han-

5
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Figure 10: 3D reconstruction of the giraffe surface.

Figure 11: Other view of the 3D reconstruction of the gi-
raffe surface.

Figure 12: First mode of shape variation of giraffe model.

Figure 13: Second mode of shape variation of giraffe mod-
el.

6
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dled. For example, [9] demonstrated a technique that deal-
s with missing feature tracks for rigid 3D reconstruction.
It projects a incomplete measurement matrix into a ma-
trix of rank 3. The same technique can be used to project
the incomplete matrix W into a complete matrix of rank
3K. With such extensions, we anticipate to track longer se-
quences that contain many more view angles of the object.

Another interesting aspect that is currently under inves-
tigation is the bias of this technique. In many cases 3D ro-
tation can be compensated with some degrees of freedom
of the basis shape set. Despite this ambiguity, our tech-
nique has a strong bias towards representing as much as
possible with the rotation matrix. The accompanying tech-
nical report [5] will have more details and experiments on
these aspects.

Reconstructing non-rigid models from single-view
video recordings has many potential applications. In addi-
tion, we intend to apply this technique to our image-based
facial and full-body animation system and to a model based
tracking system.

Acknowledgments
We like to thank Ken Perlin, Denis Zorin, and Davi

Geiger for fruitful discussions, and for supporting this re-
search, Clilly Castiglia and Steve Cooney for helping with
the data collection, and New York University, Californi-
a State MICRO program and Interval Research for partial
funding.

References
[1] B. Bascle and A. Blake. Separability of pose and ex-

pression in facial tracking and animation. In Proc.
Int. Conf. Computer Vision, 1998.

[2] S. Basu. A three-dimensional model of muman lip
motion. In EECS Master Thesis, MIT Media Lab Re-
port 417, 1997.

[3] A. Blake, M. Isard, and D. Reynard. Learning to track
the visual motion of contours. In J. Artificial Intelli-
gence, 1995.

[4] Volker Blanz and Thomas Vetter. A morphable mod-
el for the synthesis of 3d faces. Proceedings of SIG-
GRAPH 99, pages 187–194, August 1999. ISBN 0-
20148-560-5. Held in Los Angeles, California.

[5] C. Bregler, A. Hertzmann, and H. Biermann. Re-
covering Non-Rigid 3D Shape from Image Streams.
Technical report, 2000.
http://graphics.stanford.edu/�bregler/nonrig.

[6] J. Costeira and T. Kanade. A multi-body factoriza-
tion method for motion analysis. Int. J. of Computer
Vision, pages 159–180, Sep 1998.

[7] Douglas DeCarlo and Dimitris Metaxas. Deformable
model-based shape and motion analysis from images
using motion residual error. In Proc. Int. Conf. Com-
puter Vision, 1998.

[8] Brian Guenter, Cindy Grimm, Daniel Wood, Hen-
rique Malvar, and Frédéric Pighin. Making faces. In
Michael Cohen, editor, SIGGRAPH 98 Conference
Proceedings, Annual Conference Series, pages 55–
66. ACM SIGGRAPH, Addison Wesley, July 1998.
ISBN 0-89791-999-8.

[9] D. Jacobs. Linear fitting with missing data for
structure-from-motion. In Proc. IEEE. Conf. Com-
puter Vision and Pattern Recognition, 1997.

[10] A. Lanitis, Taylor C.J., Cootes T.F., and Ahmed
T. Automatic interpretation of human faces and
hand gestures using flexible models. In Interna-
tional Workshop on Automatic Face- and Gesture-
Recognition, 1995.

[11] F. Pighin, D. H. Salesin, and R. Szeliski. Resynthesiz-
ing facial animation through 3d model-based track-
ing. In Proc. Int. Conf. Computer Vision, 1999.

[12] Frédéric Pighin, Jamie Hecker, Dani Lischinski,
Richard Szeliski, and David H. Salesin. Synthesiz-
ing realistic facial expressions from photographs. In
Michael Cohen, editor, SIGGRAPH 98 Conference
Proceedings, Annual Conference Series, pages 75–
84. ACM SIGGRAPH, Addison Wesley, July 1998.
ISBN 0-89791-999-8.

[13] J. Shi and C. Tomasi. Good features to track. In
CVPR, 1994.

[14] C. Tomasi and T. Kanade. Shape and motion from
image streams under orthography: a factorization
method. Int. J. of Computer Vision, 9(2):137–154,
1992.

[15] M. Turk and A. Pentland. Eigenfaces for recogni-
tion. Journal of Cognitive Neuroscience, 3(1):71–86,
1991.

7

1063-6919/00 $10.00 � 2000 IEEE 


