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Helmholtz Stereopsis: Exploiting Reciprocity for Surface Reconstruction
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Abstract. We present a method—termed Helmholtz stereopsis—for reconstructing the geometry of objects from
a collection of images. Unlike existing methods for surface reconstruction (e.g., stereo vision, structure from motion,
photometric stereopsis), Helmholtz stereopsis makes no assumptions about the nature of the bidirectional reflectance
distribution functions (BRDFs) of objects. This new method of multinocular stereopsis exploits Helmholtz reci-
procity by choosing pairs of light source and camera positions that guarantee that the ratio of the emitted radiance
to the incident irradiance is the same for corresponding points in the two images. The method provides direct
estimates of both depth and surface normals, and consequently weds the advantages of both conventional stereopsis
and photometric stereopsis. Results from our implementation lend empirical support to our technique.
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1. Introduction

In this paper, we present Helmholtz stereopsis, a novel
method for reconstructing the geometry of a surface
that has arbitrary and unknown surface reflectance.
This method does not make the ubiquitous assump-
tion that the reflectance is Lambertian or of some other
parametric form, and it enables the reconstruction of
surfaces for which the reflectance is anisotropic, and for
which it varies from point to point across the surface.
Helmholtz stereopsis works by exploiting the symme-
try of surface reflectance—pairs of light source and
camera positions are chosen to guarantee that the rela-
tionship between pixel values at corresponding image

points depends only on the shape of the surface (and is
independent of the reflectance).

At a suitable scale, reflectance is accurately de-
scribed by the bidirectional reflectance distribution
function, or BRDF (Nicodemus et al., 1977). The
BRDF of a surface point, denoted fr (î, ê), is the ra-
tio of the outgoing radiance to the incident irradiance.
Here, î is the direction of an incident light ray, and
ê is the direction of the outgoing ray. These are typ-
ically written as directions in a coordinate frame at-
tached to the tangent plane of the surface. It is not an
arbitrary four dimensional function since, in general,
it is symmetric about the incoming and outgoing an-
gles: fr (î, ê) = fr (ê, î). This symmetry condition is a
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generalization of a principle of reciprocity described
by Helmholtz (1925, p. 231) and is commonly referred
to as Helmholtz reciprocity. (It has been pointed out in
the literature that reciprocity may not hold for some
surfaces (Helmholtz, 1925; Clarke and Parry, 1985;
Snyder et al., 1998)—a discussion of these cases is
outside the scope of this paper).

In computer vision and computer graphics, models
are used to simplify the BRDF. In computer vision, the
assumption that surfaces are Lambertian is the basis for
most reconstruction techniques. In computer graphics,
the vast majority of rendered images use the Phong
reflectance model which is composed of an ambient
term, a diffuse (Lambertian) term and an ad hoc spec-
ular term (Phong, 1975). While the isotropic Phong
model captures the reflectance properties of plastics
over a wide range of conditions, it does not effectively
capture the reflectance of materials such as metals and
ceramics, particularly when they have rough surfaces
or a regular surface structure (e.g., parallel grooves).
Much less common are a number of physics-based
parametric models (Oren and Nayar, 1996; Torrance
and Sparrow, 1967; Cook and Torrance, 1981; He et al.,
1992; Koenderink et al., 1999; Ashikhmin et al., 2000),
and each of these only characterizes a limited class of
surfaces. A recent alternative to parametric models is
the measurement of the BRDF and its representation by
a suitable set of basis functions (Koenderink and van
Doorn, 1996). In contrast to these approaches, this pa-
per is concerned with surfaces with arbitrary BRDFs—
those for which we have no information a priori. (Of
course, this includes all of the BRDF models mentioned
above.)

To see how Helmholtz reciprocity can be used for
stereopsis, consider obtaining a pair of images as shown
in Fig. 1. The first image is captured while the object
is illuminated by a single point light source, and the
second image is captured once the camera and light
source positions have been swapped. That is, the cam-
era’s center of projection is moved to the former loca-
tion of the light source, and vice versa. By acquiring
images in this manner, Helmholtz reciprocity ensures
that, for any visible scene point, the ratio of the emitted
radiance (in the direction of the camera) to the incident
irradiance (from the direction of the light source) is the
same for both images. This is not true for general stereo
pairs that are acquired under fixed illumination (unless
the BRDFs of the surfaces are Lambertian).

We will show that three or more pairs of images ac-
quired in this manner provide a matching constraint,

Figure 1. The setup for acquiring a pair of images that exploits
Helmholtz reciprocity. First an image is acquired with the scene
illuminated by a single point source as shown on the left. Then, a
second image is acquired after the positions of the camera and light
source are exchanged as shown on the right.

which leads to a multinocular stereo imaging geom-
etry. These images contain sufficient information to
establish a constraint that can be used to solve the cor-
respondence problem (and thereby solve for depth). In
addition, they contain sufficient information to directly
estimate the surface normal at each point without tak-
ing derivatives of either the images or the depth map.
The direct estimation of surface orientation is similar
to photometric stereopsis, but here the BRDF may be
unknown and arbitrary.

The paper is organized as follows. In the next section,
we derive the relationship between image irradiance
values at corresponding pixels in a reciprocal pair of
images, and demonstrate a special case in which we can
recover depth from a single reciprocal pair. Section 3
describes the complete multinocular reciprocity-based
method in detail. Since the method combines the advan-
tages of conventional multinocular stereopsis (direct
estimation of depth) with those of photometric stereop-
sis (direct estimation of surface normals), the similar-
ities and differences of these methods are summarized
in Section 4 (see Fig. 4). Finally, Section 5 describes
the experimental results of our implementation.

2. Reciprocal Image Pairs

In order to examine the relationship between irradi-
ance values at corresponding image points, consider
the imaging geometry shown in the left half of Fig. 1.
As shown in that figure, ol and or denote the positions of
the camera and light source, respectively. We also de-
note by p and n̂ a point on the surface and its associated



Helmholtz Stereopsis: Exploiting Reciprocity for Surface Reconstruction 217

unit normal vector. The unit vectors v̂l = 1
|ol−p| (ol −p),

and v̂r = 1
|or−p| (or − p) denote the directions from p

to the camera and light source, respectively. Given this
system, the image irradiance at the projection of p is
given by

il = fr (v̂r, v̂l)
n̂ · v̂r

|or − p|2 (1)

where n̂ · v̂r gives the cosine of the angle between the
direction to the light source and the surface normal,

1
|or−p|2 is the 1/r2 fall-off from a unit-strength, isotropic
point light source, and fr is the BRDF.

Now, consider the reciprocal case in which the light
source is positioned at ol, and the camera observes p
from or. In this case, the image irradiance is

ir = fr (v̂l, v̂r)
n̂ · v̂l

|ol − p|2 . (2)

Because of Helmholtz reciprocity, we have
fr (v̂r, v̂l) = fr (v̂l, v̂r), and we can eliminate the BRDF
term in the above two equations to obtain

(
il

v̂l

|ol − p|2 − ir
v̂r

|or − p|2
)

· n̂ = w(d) · n̂ = 0. (3)

In this equation, il and ir are irradiance measure-
ments obtained from a radiometrically calibrated cam-
era. Also, for geometrically calibrated cameras and a
value for the binocular disparity (or equivalently the
depth d), the values for ol and or are known, and the
values for p, v̂l, and v̂r can be computed (we write
w(d) to denote this fact). It follows that only the sur-
face normal n̂ and the depth d are unknown. Note that
the vector w(d) lies in the plane defined by p, or and ol

(the epipolar plane).
Equation (3) provides a constraint on pixel values

of corresponding image points, and unlike similar con-
straints used by conventional stereopsis, this constraint
is independent of the BRDF—it depends solely on the
shape of the object (the depth d and surface normal n̂).
However, given that there are three degrees of freedom
and only a single constraint, we cannot, in general, re-
cover this information from a single pair of images. A
multinocular constraint that enables recovery of both
the depth and the normal field is developed in Section 3.

There are two more things to note about the con-
straint in (3). First, in deriving this constraint we ignore
interreflection effects. Second, an interesting historical
note is that 60 years ago (long before the definition of

the BRDF was introduced), Minnaert (1941) derived
a special case of this constraint that was used to in-
crease the number of lunar reflectance measurements
that could be made from Earth.

As mentioned above, in general we cannot recover
information about the surface from a single pair of im-
ages. However, in the next section we discuss a case
in which a single reciprocal pair can provide enough
information for depth reconstruction.

2.1. A Special Case: Fronto-Parallel Objects

This section describes a special case in which we can
recover the depth of the scene from a single reciprocal
pair. While the limitations may be too great to make this
special case useful in practice, it demonstrates some
important properties of Helmholtz stereopsis.

Consider the reciprocity constraint in (3). When the
stereo rig has a small baseline relative to the scene
depth, we can write

|ol − p|2 ≈ |or − p|2, (4)

and if the surfaces are nearly fronto-parallel, we have

n̂ · v̂l ≈ n̂ · v̂r ≈ 1. (5)

Using these approximations the matching constraint (3)
reduces to

il = ir. (6)

That is, correspondence can be established simply by
comparing pixel intensities across the epipolar lines in
the two images just as in standard stereo vision algo-
rithms. Recall that unlike standard stereo, we have lit
the scene differently for the two images.

Figure 2(a) shows a reciprocal image pair that satis-
fies these assumptions. Note that the specularities oc-
cur at the same locations in both images, as predicted
by Helmholtz reciprocity. Thus, the specularities be-
come features in both images which can actually aid
in establishing correspondence. Also note that shad-
owed regions correspond identically to half-occluded
regions in both images—if a point is in shadow in the
left image, it is not visible in the right image, and vice
versa.

To establish correspondence between the two im-
ages shown in Fig. 2(a), we implemented the “World
II” stereo algorithm described by Belhumeur (1993).
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Figure 2. Result of stereo matching applied to a reciprocal pair: (a)
a stereo pair of images acquired by swapping the camera and light
source, and (b) the disparity map.

We chose this algorithm both because it is intensity
based (not edge-based) and because it implicitly re-
solves half-occluded regions by linking them to depth
discontinuities. The result for our implementation of
this algorithm applied to the stereo pair in Fig. 2(a) is
shown in Fig. 2(b).

We also gathered a standard stereo pair (as shown in
Fig. 3(a)) in which the lighting remained fixed for both
the left and right images. The stereo pair in Fig. 3(a)
differs from that in Fig. 2 only in the illumination—the
positions of the cameras and the scene geometry are
identical. The result for our implementation of the same
algorithm applied to the standard stereo pair is shown
in Fig. 3(b). Note that we used the same procedure to
establish correspondences for the new pair of images.
Although the accuracy of the stereo matching may have
been improved by pre-filtering the images, we avoided
this to make the point that image intensity is very much
viewpoint dependent.

There are two things to note about the results. First,
the reciprocal images in Fig. 2 have significant specu-
larities, but they remain fixed in the images and do not
hinder stereo matching. Contrast this with the images
in Fig. 3. These also have specularities (as seen on the

Figure 3. Result of stereo matching applied to a conventional stereo
pair: (a) a stereo pair from the same camera positions as in Fig. 2,
but under fixed lighting; and (b) the disparity map.

frame and on the glass) and non-Lambertian effects,
but these effects change between images and signifi-
cantly hinder matching. Second, there is little texture
on the background wall, yet the reciprocal images allow
the stereo algorithm to estimate the depth discontinu-
ity at the boundary of the picture frame, because the
half-occluded regions and visible shadows are in
correspondence.

The properties of Helmholtz stereopsis are further
discussed in Section 4, but first we will develop a
multinocular constraint based on (3) that will allow
the recovery of depth and surface normals for general
surfaces.

3. Helmholtz Stereopsis

In this section we describe our method for reconstruct-
ing surfaces with arbitrary BRDFs using a form of
multinocular stereopsis. Before describing Helmholtz
stereopsis, however, it will be helpful to provide a
framework for general n-view stereopsis. (This is a
generalization of the correspondence problem in con-
ventional binocular stereopsis.) Consider n calibrated
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cameras whose centers of projection are located at
oc for c = 1, . . . , n. Define a camera centered at op

to be the principal camera. This camera is used to
parametrize the depth search, and while it could be one
of the cameras located at oc, it need not be a physical
camera (i.e., it can be virtual). Given a point q in the
principal image, there exists a one-parameter family of
n-point sets (q1, . . . , qn)—one point in each of the n
images—that could correspond to q. We parametrize
this family by the depth d , and by defining a discrete
set of possible values for d(d ∈ D = {d0, . . . , dND})
we can index this family of n-point sets, Q(d) =
{qc(d), c = 1, . . . , n}.

A multinocular matching constraint provides a
method of deciding, given a set of image intensities
measured at the points Q(d), whether or not the hypoth-
esized depth value d could correspond to a true surface
point. In the case of traditional dense stereo, the sur-
face is assumed to be Lambertian, and the constraint
is simply I1(q1(d)) = I2(q2(d)) = · · · = In(qn(d))
where Ic(qc) is the intensity at point qc in the image
centered at oc. (Note that many other stereo methods
exist in which the constraint involves filtered intensities
as opposed to the image intensities themselves.)

Using this framework, we can proceed to develop a
matching constraint for reciprocal image pairs. What is
unique to Helmholtz stereopsis, is that this constraint is
independent of the BRDF, and that it allows the direct
recovery of both the depth and surface normals.

Suppose we capture NP reciprocal pairs of images
as described in Section 2, and suppose that each of
these pairs is captured from a different pair of posi-
tions (ol j , or j ), j = 1, . . . , NP. We can form NP lin-
ear constraints like that in (3). Define W(d) ∈ R

NP×3

to be the matrix in which the j th row is given by
w j (d)T = (il j

v̂l j

|ol j −p|2 − ir j
v̂r j

|or j −p|2 )T. Then the set of
constraints from (3) can be expressed as

W(d) n̂ = 0. (7)

Clearly, for a correct depth value d�, the surface nor-
mal lies in the null space of W(d�), and it can be es-
timated from a noisy matrix using singular value de-
composition. In addition, W(d�) will be rank 2, and this
can be used as a necessary condition when searching
for the surface depth (i.e., for solving the correspon-
dence problem). Note that at least three camera/light
source pairs are needed to exploit this constraint.

An implementation of a system that uses this
constraint for surface reconstruction is discussed

in Section 5. Next, we present a comparison of
Helmholtz stereopsis with some existing reconstruc-
tion techniques.

4. Comparison with Existing Methods

In principle, Helmholtz Stereopsis has a number of ad-
vantages when compared to conventional multinocu-
lar stereopsis and photometric stereopsis. This section
compares these methods in four separate categories.
A summary of the information in this section is con-
tained in Fig. 4. While our implementation may not
fully reveal these advantages (we do not make explicit
use of available half-occlusion indicators for detecting
depth discontinuities), we believe that future refine-
ments will.

4.1. Assumed BRDF

Most conventional dense stereo reconstruction meth-
ods assume that scene radiance is independent of view-
ing direction, i.e. that surface reflectance is Lamber-
tian. However, the majority of surfaces are not Lam-
bertian and therefore violate this assumption. For these
surfaces, large-scale changes in scene radiance occur
as specularities shift with viewpoint, and small-scale
changes occur everywhere on the surface. In addition, if
the BRDF is spatially varying, these changes may occur
differently at every point on the surface. Using tradi-
tional dense stereopsis, establishing correspondence in
this situation is difficult, if at all possible. Most sparse,
or feature-based, stereo methods also rely (albeit less
heavily) on the Lambertian assumption—if the BRDF
is arbitarary, the detected feature points may be view-
point or lighting dependent.

Whereas viewpoint is manipulated in conventional
stereopsis, in photometric stereopsis, the viewpoint re-
mains fixed while the illumination is varied. Photo-
metric stereo methods provide an estimate of the field
of surface normals which is then integrated to recover
the surface depth. Similar to conventional multinocu-
lar stereopsis, many photometric methods assume that
the BRDF is Lambertian (Langer and Zucker, 1994;
Silver, 1980; Woodham, 1981). The methods that do
not make this assumption either assume that the BRDF
is completely known a priori, or can be specified us-
ing a small number of parameters (Hayakawa, 1994;
Ikeuchi and Horn, 1981; Nayar et al., 1990; Tagare and
deFigueiredo, 1991). As mentioned in the introduc-
tion, these parametric BRDFs are often derived from
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Figure 4. A comparison of Helmholtz stereopsis with conventional multinocular and photometric stereopsis. A detailed discussion of the
entries in this table is given in Section 4.

physical models of reflectance and are restricted to a
limited class of surfaces. When the form of the BRDF
is unknown, or when the form of the BRDF is spatially
varying, there is insufficient information to reconstruct
both the geometry and the BRDF.

Lu and Little (1999) presented a hybrid method with
controlled lighting and object rotation that was used to
estimate both surface structure and a non-parametric
reflectance map. This is similar to our method in that it:
(1) is an active imaging technique that exploits changes
in viewpoint and illumination; and (2) considers a gen-
eral, non-parametric BRDF. However, the method re-
quires that the BRDF is both isotropic and uniform
across the surface (the present method makes no such
assumptions).

Another reconstruction method for surfaces with ar-
bitrary BRDFs was introduced (along with our prelim-
inary work on Helmholtz stereopsis) by Magda et al.
(2001). In addition to recovering depth, the method
also enables the recovery of a 2-D slice of the apparent
BRDF (a coupling of the reflectance and orientation
information) at each point on the surface. It does not,
however, enable the explicit recovery of the normal
field, and it requires many more images of the object.

The assumptions made about surface reflectance for
three reconstruction techniques—conventional, photo-
metric, and Helmholtz stereopsis—are summarized di-
agrammatically in Fig. 5. Note that many natural sur-
faces actually have surface reflectance in the rightmost
region of the figure and cannot be accurately recon-
structed by conventional techniques.

In Helmholtz stereopsis, because the relationship be-
tween image intensities of corresponding points does
not depend on viewpoint, non-Lambertian radiometric
events such as specularities appear fixed to the surface
of the object. In contrast with conventional stereo (fixed

Figure 5. A summary of the assumptions made about surface
reflectance by three reconstruction techniques. Both conventional
multinocular stereopsis and photometric stereopsis assume the
BRDF is Lambertian or of some other known parametric form. Yet,
many natural surfaces (e.g., human skin, the skin of a fruit, glossy
paint) do not satisfy these assumptions. In contrast to the other meth-
ods, Helmholtz stereopsis makes no assumption about the BRDF.

illumination) images, these radiometric events become
reliable features, and they actually simplify the corre-
spondence problem.

4.2. Recovered Surface Information

In conventional binocular or multinocular stereopsis,
depth is readily computed. Typically, the output of
the system is a discrete set of depth values at pixel
or sub-pixel intervals—a depth map. In most cases,
unless a regularization process is used to smooth the
depth estimates, the normal field found by differenti-
ating the recovered depth map will be very noisy. In-
stead of direct differentiation of the depth map, regu-
larized estimates of the normal field can be obtained,
for example, based on an assumption of local planarity
(Deverney and Faugeras, 1994), or through the use of
an energy functional (Belhumeur, 1996). In contrast to
these methods, photometric stereopsis provides a di-
rect estimate of the field of surface normals which is
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then integrated (in the absence of depth discontinuities)
to obtain a surface. Helmholtz stereopsis is similar to
photometric stereopsis (and different from the regular-
ization techniques used in conventional stereopsis) in
that the normal field is directly estimated on a point-
by-point basis using the photometric variation across
reciprocal image pairs.

In this way, Helmholtz stereopsis combines the ad-
vantages of conventional and photometric methods by
providing both a direct estimate of the surface depth
and the field of surface normals. It also provides infor-
mation about the location of depth discontinuities (see
below). Note that for applications such as image-based
rendering and image-based modeling, a good estimate
of the normal field is critical for computing intensities
and accurately measuring reflectance properties.

4.3. Constant Intensity Regions

Dense stereo and motion methods work best when the
surfaces are highly textured; when they are not tex-
tured, regularization is needed to infer the surface.
This can be achieved, for example, using a statisti-
cal prior (Geiger et al., 1992; Matthies, 1992; Poggio
et al., 1985; Belhumeur, 1996) or through surface evo-
lution (Faugeras and Keriven, 1998). Sparse stereo and
motion methods also have difficulty in these regions.
These methods only reconstruct the geometry of corre-
sponding feature points, so by their nature, they cannot
directly reconstruct smoothly curving surfaces whose
reflectance properties are constant. In contrast, photo-
metric stereo techniques and Helmholtz stereopsis are
unaffected by lack of texture, since they can effectively
estimate the field of normals which is then integrated
to recover depth (see Fig. 6).

4.4. Depth Discontinuities

Depth discontinuities present difficulties for both tra-
ditional and photometric stereopsis. When there is a
depth discontinuity, it does not make sense to integrate
the normal field that is output by photometric stereo
techniques. Likewise, traditional stereo algorithms of-
ten have trouble locating depth discontinuities. This
difficulty arises for two reasons. First, if a background
object has regions of constant intensity and the dis-
continuity in depth occurs within one of these regions,
it is quite difficult to reliably locate the boundary of
the foreground object. Second, depth discontinuities

Figure 6. A summary of the surface properties required for Lam-
bertian surface reconstruction by conventional and Helmholtz stereo
techniques. Even when the BRDF is Lambertian, conventional stere-
opsis is only capable of recovering surface geometry in regions of
texture (i.e., varying albedo) or high curvature (i.e., edges). Neither
photometric stereopsis nor Helmholtz stereopsis suffer from this
limitation.

induce half-occlusion in adjacent regions of the im-
age, and these regions, which are not visible in at
least one of the images, often confuse the matching
process.

Helmholtz stereopsis simplifies the task of detect-
ing depth discontinuities since, as seen in the exam-
ple in Fig. 2, the lighting setup is such that the shad-
owed and half-occluded regions are in correspondence.
The shadowed regions in the images of a Helmholtz
pair can therefore be used to locate depth discontinu-
ities. As shown in that example, if one uses a stereo
matching algorithm that exploits the presence of half-
occluded regions for determining depth discontinuities
(Belhumeur, 1993; Belhumeur and Mumford, 1992;
Cox et al., 1992; Geiger et al., 1992), these shadowed
regions may significantly enhance the quality of the
depth reconstruction.

4.5. Active vs. Passive Imaging

Like photometric stereopsis and unlike conventional
stereopsis, Helmholtz stereopsis is active. The scene is
illuminated in a controlled manner, and images are ac-
quired as lights are turned on and off. Clearly a suitable
optical system can be constructed so that the camera
and light source are not literally moved, but rather a
virtual camera center and light source are co-located.
Alternatively, as will be shown in the next section, a
simple system can be developed that captures multi-
ple reciprocal image pairs with a single camera and a
single light source.
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5. Implementation and Results

In the previous sections a number of claims were made
about the capabilities of Helmholtz stereopsis as a re-
construction technique. This section describes an im-
plementation of a Helmholtz stereo system, and gives
results that support those claims. Specifically, in this
section, we give examples of:

– the reconstruction of surfaces with arbitrary, spa-
tially varying BRDFs (surfaces that are neither
Lambertian nor approximately Lambertian)

– direct recovery of both surface depth and the field of
surface normals

– the reconstruction of surfaces in regions of constant
image brightness

5.1. Capturing Reciprocal Images

To demonstrate Helmholtz stereopsis, we constructed
a system that enables the acquisition of multiple re-
ciprocal image pairs with a single camera and a single
light source. These are mounted on a wheel as shown
schematically in Fig. 7(a). First, suppose an image is
captured with the wheel in the position shown in this
figure. If the wheel is rotated by 180◦ and another im-
age is captured, these two images will form a recip-
rocal pair, and corresponding image irradiance values
will satisfy the constraint in (3). It is clear that we can
capture any number of reciprocal pairs by rotating the
wheel through 360◦ while stopping to capture images
at reciprocal positions.

Figure 7. (a) A wheel is used to capture multiple reciprocal image
pairs employing a single camera and a single light source. By rotating
the wheel through 360◦, any number of fixed-baseline pairs can be
captured. For example, images captured at ol2 and or2 will form a
reciprocal pair. (b) An example of the wheel design shown in (a).
The light source consists of a standard 100 W frosted incandescent
bulb fitted with a small aperture.

A picture of such a system is shown in Fig. 7(b). The
camera is a Nikon Coolpix 990, and the light source
consists of a standard 100 W frosted incandescent bulb
fitted with a small aperture. The camera is both geo-
metrically and radiometrically calibrated. The former
means that the intrinsic parameters and the extrinsic pa-
rameters of each camera position are known, while the
latter means that we know the mapping from scene ra-
diance values to pixel intensities (including optical fall-
off, vignetting, and the radiometric camera response).
Since the lamp is not an ideal isotropic point source,
it also requires a radiometric calibration procedure in
which we determine its radiance as a function of output
direction.

An example of a set of images captured using this
system is shown in Fig. 8. For all results shown in
this paper the diameter of the wheel was 38 cm and
the distance from the center of the wheel to the scene
was approximately 60 cm. The reconstructions were
performed from the viewpoint of a virtual principal
camera located at the center of the wheel. We chose this
camera to be orthographic to ensure uniform sampling
of object space.

5.2. Using the Matching Constraint

In Section 3, we derived a matrix constraint that can be
used to recover the surface depth and orientation corre-
sponding to each pixel q in the principal view. How this
constraint should be used was not specified; there are
a number of possible methods, many of which can be
adapted from conventional stereo algorithms. Our goal
is to demonstrate the feasibility of Helmholtz stereop-
sis in general, so a discussion of possible methods is
outside the scope of this paper. Instead, we have cho-
sen one particularly simple implementation which will
be described here. Results for four different surfaces
follow in the next section.

For each pixel q, and for each depth value d ∈ D =
{d1, d2, . . . , dND} we can construct a matrix Wq(d) as
in (7). If the hypothesized depth corresponds to a true
surface point, this matrix will be rank 2, and the surface
normal will be uniquely determined as the unit vector
that spans its 1-D null space. (Note that since each row
of W (we denote these wT

j ) lies in the epipolar plane
defined by p, ol j , and or j , no two rows of W will be
collinear, so rank(W) ≥ 2).

In the presence of noise, W is generally rank 3, and
we require a measure for the coplanarity of the row vec-
tors wT

j . Since we know that rank(W) ≥ 2, a suitable
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Figure 8. An example of 6 reciprocal images pairs captured using the rig described in Fig. 7. Reciprocal image pairs are arranged vertically.

measure (and one that works well in practice) is the ratio
of the second to third singular values of W. Given a ma-
trix Wq(d), we compute the singular value decompo-
sition W = UΣVT where Σ = diag(σ1, σ2, σ3), σ1 ≥
σ2 ≥ σ3. Then, our support measure used in the depth
search is the ratio

rq(d) = σ2

σ3
. (8)

Note that at correct depth values, the ratio rq(d) will be
large.

The condition shown in (7) is a necessary condition
that will be satisfied by true values of surface depth,
but it is not sufficient. One way to resolve the ambi-
guity is to make some assumptions about the shape of
the surface. (The BRDF remains arbitrary). One of the
simplest methods, analogous to SSD matching in con-
ventional binocular stereo, is to assume that the surface
depth is locally constant. In the search for the depth at
principal image point q◦, we consider the ratio rq(d)
at this point as well as at points in a small rectangular
window W around q◦. Then, the estimated depth at this
point is given by

d�
q◦ = arg max

d∈D

∑
q∈W

rq(d). (9)

Once we have estimated the depth d�, the linear least-
squares estimate of the normal is

n̂�
q◦ = arg min

n̂
‖Wq◦ (d

�)n̂‖2, ‖n̂‖ = 1, (10)

which is simply given by the right singular vector cor-
responding to the smallest singular value of Wq◦ (d

�).
Note that the depth map that is recovered using (9)

will have low resolution due to the assumption of local
depth constancy. This initial estimate of the depth can

be refined using the high frequency information pro-
vided by the field of surface normals. An example of
this will be shown in the next section.

As a final note, this algorithm makes no attempt at de-
tecting half-occluded regions even though this informa-
tion is available through the visible shadows. We have
chosen this method simply to demonstrate that reci-
procity can be exploited for reconstruction. As shown
in the next section, despite the simplicity of the method,
the surface reconstructions are quite good.

5.3. Results

Figures 9–12 show the results of applying this pro-
cedure to four different objects. Each figure consists
of: (a) one of the input images of the object, (b) the
depth recovered using (9), and (c) the recovered field
of surface normals. Note that the viewpoints of the dis-
played images differ slightly from the reconstruction
viewpoints due to the use of a virtual principal camera.

Figure 9 is a demonstration of a surface reconstruc-
tion in the case of nearly constant image brightness.
This surface (a wax candle) is a member of the class
of surfaces described at the top of Fig. 6, and it is an
example of a case in which conventional stereopsis has
difficulty. Notice that Helmholtz stereopsis accurately
estimates the normal field, even though the depth esti-
mates are poor. The poor depth estimates are expected
since at a principal image point q, the ratio rq(d) will
be nearly constant for a small depth interval about the
true surface depth. The normals are accurate, however,
since each corresponding Wq(d) will have nearly the
same null space.

Figure 10 shows the results for a surface that is
clearly non-Lambertian. The specularities on the nose,
teeth and feet attest to this fact. Note that the recon-
struction method is not expected to succeed in regions
of very low albedo (e.g., the background and the iris
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Figure 9. (a) One of 36 input images (18 reciprocal pairs), (b) the recovered depth map, and (c) a quiver plot of the recovered field of surface
normals. As expected, even though we obtain a poor estimate of the depth due to lack of texture, the surface normals are accurately recovered.
(Note that the image in (a) is taken from a position above the principal view used for reconstruction.)

Figure 10. As in the previous figure: (a) one of 34 input images (17 reciprocal pairs), (b) the recovered depth map, and (c) a quiver plot of
the recovered field of surface normals. As evidenced by the specularities in (a), the surface is non-Lambertian. Regions of very small albedo
(e.g., the iris of the eyes, the background) are sensitive to noise and erroneous results are expected there. Elsewhere, the depth and orientation
are accurately recovered. A 9 × 9 window was used in the depth search.
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Figure 11. A reconstruction for the marked interior region of a
ceramic figurine shown in (a). (b) and (c) are the depth map, and
normal field. The low resolution of the depth map is caused by the
11 × 11 window used in the depth search, but this does not affect
the accuracy of the estimated surface normals. Eighteen reciprocal
image pairs were used.

of the eyes) since these regions are very sensitive to
noise.

Figures 11 and 12 show two more examples of sur-
face reconstructions. Again, note that the recovered sur-
face normals are accurate despite the low resolution of
the depth estimates, even in regions of nearly constant
image brightness.

As mentioned at the end of the last section, it is
possible to obtain a more precise surface reconstruc-
tion by integrating the estimated normal field. The ex-
amples above demonstrate that this field is accurately
estimated, even in regions where the depth is not. To
illustrate how surfaces can be reconstructed in this way,
we enforced integrability (using the method of Frankot

Figure 12. A reconstruction for the face of a plastic doll shown
in (a). (b) and (c) are the estimated depth map and normal field.
Eighteen reciprocal image pairs and a 9 × 9 window were used.

Figure 13. The surface that results from integrating the normal field
shown in Fig. 9(c). Every third surface point is shown, and the surface
is rotated for clarity.

and Chellappa (1988) with a Fourier basis) and inte-
grated the vector fields shown in Figs. 9(c) and 12(c).
The results are shown in Figs. 13 and 14. As seen in
these figures, the high resolution information provided
by the surface normals enables the recovery of precise
surface shape—more precise than what we would ex-
pect from most conventional n-view stereo methods.
Note that it would be possible to obtain similar recon-
structions using photometric stereopsis, but this would
require an assumed model of reflectance at each point
of the surfaces.
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Figure 14. Three views of the surface that results from integrating the normal field shown in Fig. 12(c). To demonstrate the accuracy of the
reconstruction, we have refrained from texture-mapping the albedo onto the recovered surface, and a real image taken from each corresponding
viewpoint is displayed. The specularities on the doll’s face clearly show that the surface is non-Lambertian.

6. Conclusion

This paper introduces Helmholtz stereopsis—a sur-
face reconstruction method based on the principle of
Helmholtz reciprocity. The method has two main ad-
vantages over both conventional n-view stereopsis and
photometric stereopsis. First, it allows for the recovery
of the shape of surfaces that have arbitrary, unknown,
and possibly spatially varying BRDFs; and second, it
provides point-wise estimates of both the depth and the
surface normals.

This paper shows empirically that the reciprocity
condition satisfied by the BRDF can be exploited for
surface reconstruction, yet there are a number of possi-
bilities for future work. The method could be adapted
to locate depth discontinuities based on the correspon-

dence between shadowed and half-occluded regions.
This correspondence is a unique and powerful prop-
erty of reciprocal image pairs. In addition, the analysis
and construction of alternative imaging configurations
may identify those that minimize ambiguities or are op-
timal from an estimation standpoint. While the results
from the current implementation are promising, future
improvements can only serve to produce more detailed
and accurate reconstructions. We hope that this will
open future avenues of research that exploit the reci-
procity constraint.
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