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ABSTRACT
It has been shown recently that rigid or affine dynamics of
curves defined by algebraic equations can be represented
in terms of Riccati dynamics of possibly complex lines. In
this work, we develop new Riccati equations in real vari-
ables for closed-bounded curves and new recursions on
multiplicative scalars in the decomposition of the curve.
A parameter identification scheme has also been proposed,
and the results are verified by simulations.
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1 Introduction

Algebraic curves and surfaces have been used in various
branches of engineering for a long time, but in the past two
decades they have proven very useful in many model-based
applications. Various algebraic and geometric invariants
obtained from implicit models of curves and surfaces have
been studied rather extensively in Computer Vision, espe-
cially for single computation pose estimation, shape track-
ing, 3D surface estimation from multiple images and effi-
cient geometric indexing of large pictorial databases [1]-
[11].

In an earlier paper [6], we have shown that rigid or
affine dynamics of curves defined by implicit polynomial
equations can be represented in terms of Riccati dynamics
of possibly complex lines. The application of this result
was illustrated for planar curves moving in IR3 and for the
perspective projections of these curves on the image plane
of a CCD camera. In this paper, we develop new Riccati
equations in real variables for closed-bounded curves and
obtain some new recursions on parameters. We also pro-
pose a parameter identification scheme for estimating the
rigid motion parameters of a free-form curve. We illus-
trate the validity of our proposed approach by simulations.
There has been a steadily growing literature in robotics on
the problem of line correspondence for line features mov-
ing in IR3, (see [12]- [16]). For some other older references
in the literature on the dynamics of curves, see [17]- [19].

2 Algebraic Curves

Algebraic curves are defined by implicit equations of the
form fn(x, y) = 0, where fn(x, y) is a polynomial in
the variables x, y, i.e. fn(x, y) =

∑
ij aijx

iyj where
0 ≤ i + j ≤ n (n is finite) and the coefficients aij are real
numbers [1]. A monic polynomial fn(x, y) = 0 will be
defined by the condition that an0 = 1. Algebraic curves of
degree 1, 2, 3, 4, . . . are called lines, conics, cubics, quar-
tics, . . . etc. Fig. 1 depicts the boundaries of several two-
dimensional free-form objects with superimposed quartic
algebraic curves.

In the sequel, we will restrict our attention to quartic
curves and note that the results can easily be generalized to
higher degree curves.

3 Decomposed Quartics and Riccati Equa-
tions

As detailed in [4], algebraic curves can be decomposed as
a unique sum of line products. Example of a quartic de-
composition in terms of 6 complex lines is geometrically
shown in Fig. 2.

In [6], we considered a line decomposed planar quar-
tic curve
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obtained from ( 1) by using the following substitutions:
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Figure 1. A group of Free-Form Quartic Curves as Outlines
of 2D Objects: examples include a plane, a van, a glass
vaze, a CD box, a shoe, a car, another vaze, a glider, a
cellular phone, and a hat in above order

Figure 2. A Boomerang Shaped Curve (Solid) and its Com-
plex Line Factors (Dashed)

Let us now consider an affine motion in the cartesian
and in the homogeneous coordinates as follows:
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ȳ
w̄


 =


 a1 a2 b1

a3 a4 b2

0 0 0




︸ ︷︷ ︸
A


 x̄

ȳ
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We obtain the following dynamics on the line para-
meters and on the coefficients α(t) and β(t):
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3.1 Riccati Equations

By differentiating ( 3) with respect to time and using ( 5)
and ( 6), it has also been shown in [6] that line parameters
l4i, k4i, l2i, k2i in the decomposition of the original curve
satisfy coupled Riccati equations, namely

l̇4i = −a2 + (a1 − a4)l4i + a3l
2
4i, i = 1, 2, 3, 4 (9)

k̇4i = −b1− b2l4i +a1k4i +a3l4ik4i, i = 1, 2, 3, 4 (10)

l̇2i = −a2 + (a1 − a4)l2i + a3l
2
2i, i = 1, 2 (11)

k̇2i = −b1 − b2l2i + a1k2i + a3l2ik2i, i = 1, 2 (12)

Note that the line parameters, i.e. slope and intercept,
satisfy coupled Riccati equations with parameters that de-
pend on the motion of the curve. Note also that each of
the lines satisfies the same Riccati Equation initialized at
different points on the state space.

3.2 Riccati Equations in Real Variables for
Closed-Bounded Quartics

For a closed-bounded quartic curve, l4i and k4i have to be
complex. Focusing on these:

l4i = η1i + jη2i, k4i = η3i + jη4i (13)



where η1i = Re(l4i), η2i = Im(l4i), η3i = Re(k4i), η4i =
Im(k4i). Substituting these into ( 9) and ( 10),
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Similarly, we also have the following
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As before, equating the real and the imaginary parts we
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3.3 Recursion on Parameters

In light of (5) and (6),
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Equation (18) can be written in the form of an ordinary
differential equation as follows:
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4 Identification of Motion Parameters

Using vector-matrix notation and dropping the subscript i,
equations ( 14) to ( 17) for a specific complex conjugate
line pair can be recast as
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which is a nonlinear plant of the form

Ẋp = ApXp + Cpf(Xp) + Bpg(u) (20)

where Ap, Bp and Cp are unknown constant matrices, f(.)
and g(.) are known smooth functions of their arguments.
Note in particular that g(u) = −1 is constant in our prob-
lem. To estimate the unknown parameters, we construct an
estimator of the form [20]

˙̂
Xp = AmX̂p+(Âp(t)−Am)Xp+Ĉp(t)f(Xp)+B̂p(t)g(u)

(21)
If the state error and parameter errors are defined as

e(t)
def
= X̂p(t) − Xp(t), Φ(t)

def
= Âp(t) − Ap,

Ψ(t)
def
= Ĉp(t) − Cp, Γ(t)

def
= B̂p(t) − Bp,

then the error equations are given by

ė(t) = Ame(t) + Φ(t)Xp(t) + Ψ(t)f(Xp) + Γ(t)g(u),
(22)

where Am is a stability matrix. The problem is to ad-
just the elements of the matrices Âp(t), Ĉp(t) and B̂p(t)
or equivalently Φ(t),Ψ(t) and Γ(t) so that the quantities
e(t),Φ(t),Ψ(t),Γ(t) tend to zero as t → ∞. We choose
the adaptive laws to be

˙̂
Ap(t) = ˙̂Φ(t) = −Pe(t)XT

p (t)



˙̂
Cp(t) = ˙̂Ψ(t) = −Pe(t)fT (Xp)

˙̂
Bp(t) = ˙̂Γ(t) = −Pe(t)gT (u)

where P is a symmetric positive-definite matrix (P > 0),
which satisfies the Lyapunov equation, namely

AT
mP + PAm = −Q

where Q is a positive-definite matrix (Q > 0). These laws
can be used to ensure the global stability of the overall sys-
tem with the output error tending to zero asymptotically.
However, Lyapunov stability analysis only assures the as-
ymptotic convergence of the state error to zero. The con-
vergence of the parameters to their true values depends on
the persistence excitation of the input u.

5 Simulation Results

In this section we show by simulations that starting from
a sequence of curves, one can identify rigid motion para-
meters by decomposing the curves and using the Riccati
Equations along with coefficient dynamics. Since the de-
composition is essentially noisy with quantization and seg-
mentation errors, it would be nice to see how good the mo-
tion parameters are estimated in presence of noise.

Free-form curves (objects) undergoing some 3D rigid
motion in a fixed plane at a relatively large distance Z = Z0

from a camera have been used to generate data on the im-
age plane of the camera. This fixed plane is assumed to
be perpendicular to the camera optical axis. So the camera
effectively performs a scaled orthographic projection of ob-
ject boundary data. That is the camera space variables can
be expressed in terms of actual 3D position variables by:

x =
f

Z0
X, y =

f

Z0
Y (23)

where f is the focal length of the camera, x, y are the im-
age plane coordinate variables, and X,Y are the actual 3D
space variables. Thus the related dynamics are ẋ = f

Z0
Ẋ

and ẏ = f
Z0

Ẏ , which can be rearranged according to equa-
tion (4) by also using (23) as:(

ẋ
ẏ

)
=

(
0 ω
−ω 0

)
+

f

Z0

(
b1

b2

)
(24)

As a result the image data undergoes the same rotation as
the actual data, but its translation parameters are scaled by
f
Z0

to reflect the effect of scaled orthographic projection.
The resulting projected data are also corrupted by an ad-
ditive noise of zero mean and σ = 0.005 standard devia-
tion to model the effect of quantization errors. Image data
so generated are then modelled by fitting closed-bounded
quartic curves, at each sampling instant, using the fitting
procedure detailed in [21]. Resulting quartic curves are
then decomposed using the unique decomposition theorem
of section 3 to obtain line parameters at each sampling in-
stant. We picked one complex conjugate pair to construct

Figure 3. A Flight bird and its rigid motion

the dynamical system given by (19) and the estimator given
by (21) in Matlab. Then the obtained dynamics are re-
scaled in parallel with (24) for achieving the actual motion
parameters in 3D. Accordingly, the rotational motion pa-
rameter in image plane is directly applied to get the actual
rotation in 3D space, while the translation parameters are
divided by f

Z0
.

To establish the correct correspondence between com-
plex conjugate line pairs in consecutive curves, real inter-
section points (related-points) of these complex lines are
determined and used in the evaluation of defining polyno-
mials. It is known that the correct correspondence between
two sets of related-points can be established by ordering the
values of defining polynomials evaluated at these related-
points [4].

The stability matrix, Am and the positive-definite ma-
trix Q are chosen to be:

Am =




−0.5 0 0 0
0 −0.5 0 0
0 0 −1.0 0
0 0 0 −1.0


 ,

Q =




0.5 0 0 0
0 1.0 0 0
0 0 2.0 0
0 0 0 3.0




The Lyapunov equation is solved to determine the symmet-
ric positive-definite matrix P , which is then used in para-
meter update rules given in section 4. Initial values of the
motion parameters are chosen at random.

A flight bird employed in simulations and its rigid
motion are depicted in Fig. 3 along with superimposed
quartic curves. The actual 3D motion parameters of this
object are a1 = a4 = 0, a2 = −a3 = ω = π/2, b1 =
−3, b2 = 4 for which the above estimation procedure
is applied by shifting to camera plane, and then re-scaling
for the actual motion parameters. Estimated parameters are
plotted against time in Fig. 4. Note that estimated para-
meters converge to their true values with reasonably small
estimation error.

A glider and its rigid motion are depicted in Fig. 5
along with superimposed quartic curves. The parameters
of the actual rigid motion are a1 = a4 = 0, a2 = −a3 =
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Figure 4. Estimated parameters versus Time. True parame-
ters are ω = π/2, b1 = −3 and b2 = 4

Figure 5. A Glider and its rigid motion
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Figure 6. Estimated parameters versus Time. True parame-
ters are ω = −π/3, b1 = 4 and b2 = 0

Figure 7. A Cellular Phone and its rigid motion
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Figure 8. Estimated parameters versus Time. True parame-
ters are ω = −2, b1 = 4 and b2 = 0

ω = −π/3, b1 = 0, b2 = 4. Estimated parameters
are plotted against time in Fig. 6. Note again that estimates
converge to their true values in a relatively short time inter-
val with a relatively small estimation error.

Finally, a mobile cellular phone and its rigid motion
are shown in Fig. 7. Motion parameters are a1 = a4 =
0, a2 = −a3 = ω = −2, b1 = 4, b2 = 0. Estimated
parameters are plotted against time in Fig. 8. Notice the
quick convergence and small estimation errors.

6 Conclusion

We have obtained new Riccati equations in real variables
which can be used for estimating the motion parame-
ters of a free-form closed-bounded curve undergoing rigid
and affine motion. We have also proposed an identifica-
tion/estimation scheme for estimating rigid motion para-
meters. Simulation results have shown that the rigid mo-



tion parameters of a free-form curve can accurately be esti-
mated under noisy conditions. We are working on possible
extensions of our estimation technique to affine and other
motions as well.
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