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Abstract. Recovery of three dimensional (3D) shape and motion of non-static scenes
from a monocular video sequence is important for applications like robot navigation
and human computer interaction. If every point in the scene randomly moves, it is im-
possible to recover the non-rigid shapes. In practice, many non-rigid objects, e.g. the
human face under various expressions, deform with certain structures. Their shapes
can be regarded as a weighted combination of certain shape bases. Shape and mo-
tion recovery under such situations has attracted much interest. Previous work on
this problem [6, 4, 14] utilized only orthonormality constraints on the camera rotations
(rotation constraints). This paper proves that using only the rotation constraints
results in ambiguous and invalid solutions. The ambiguity arises from the fact that
the shape bases are not unique. An arbitrary linear transformation of the bases pro-
duces another set of eligible bases. To eliminate the ambiguity, we propose a set of
novel constraints, basis constraints, which uniquely determine the shape bases. We
prove that, under the weak-perspective projection model, enforcing both the basis and
the rotation constraints leads to a closed-form solution to the problem of non-rigid
shape and motion recovery. The accuracy and robustness of our closed-form solution is
evaluated quantitatively on synthetic data and qualitatively on real video sequences.

1 Introduction

Many years of work in structure from motion have led to significant successes in recovery
of 3D shapes and motion estimates from 2D monocular videos. Many reliable methods have
been proposed for reconstruction of static scenes [13, 11, 15]. However, most biological objects
and natural scenes vary their shapes: expressive faces, people walking beside buildings, etc.
Recovering the structure and motion of these non-rigid objects is a challenging task. The
effects of rigid motion, i.e. 3D rotation and translation, and non-rigid shape deformation,
e.g. stretching, are coupled together in the image measurements. While it is impossible to
reconstruct the shape if the scene deforms arbitrarily, in practice, many non-rigid objects,
e.g. the human face under various expressions, deform with a class of structures.
One class of solutions model non-rigid object shapes as weighted combinations of certain

shape bases that are pre-learned by off-line training [2, 3, 5, 9]. For instance, the geometry of
a face is represented as a weighted combination of shape bases that correspond to various
facial deformations. Then the recovery of shape and motion is simply a model fitting problem.
However, in many applications, e.g. reconstruction of a scene consisting of a moving car and
a static building, the shape bases of the dynamic structure are difficult to obtain before
reconstruction.
Several approaches have been proposed to solve the problem without a prior model [6, 14,

4]. Instead, they treat the model, i.e. shape bases, as part of the unknowns to be solved. They
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try to recover not only the non-rigid shape and motion, but also the shape model. This class
of approaches so far has utilized only the orthonormality constraints on camera rotations
(rotation constraints) to solve the problem. However, as shown in this paper, enforcing
only the rotation constraints leads to ambiguous and invalid solutions. These approaches
thus cannot guarantee the desired solution. They have to either require a priori knowledge
on shape and motion, e.g. constant speed [10], or need non-linear optimization that involves
large number of variables and hence requires a good initial estimate [14, 4].
Intuitively, the above ambiguity arises from the non-uniqueness of the shape bases: an

arbitrary linear transformation of a set of shape bases yields a new set of eligible bases.
Once the bases are determined uniquely, the ambiguity is eliminated. Therefore, instead of
imposing only the rotation constraints, we identify and introduce another set of constraints
on the shape bases (basis constraints), which implicitly determine the bases uniquely. This
paper proves that, under the weak-perspective projection model, when both the basis and
rotation constraints are imposed, a linear closed-form solution to the problem of non-rigid
shape and motion recovery is achieved. Accordingly we develop a factorization method that
applies both the metric constraints to compute the closed-form solution for the non-rigid
shape, motion, and shape bases.

2 Previous Work

Recovering 3D object structure and motion from 2D image sequences has a rich history. Var-
ious approaches have been proposed for different applications. The discussion in this section
will focus on the factorization techniques, which are most closely related to our work.
The factorization method was originally proposed by Tomasi and Kanade [13]. First it

applies the rank constraint to factorize a set of feature locations tracked across the entire
sequence. Then it uses the orthonormality constraints on the rotation matrices to recover the
scene structure and camera rotations in one step. This approach works under the orthographic
projection model. Poelman and Kanade [11] extended it to work under the weak perspective
and para-perspective projection models. Triggs [15] generalized the factorization method to
the recovery of scene geometry and camera motion under the perspective projection model.
These methods work for static scenes.
Costeira and Kanade [8] extended the factorization technique to recover the structure of

multiple independently moving objects. This method factorizes the image locations of certain
features to separate different objects and then individually recovers their shapes. Wolf and
Shashua [17] derived a geometrical constraint, called the segmentation matrix, to reconstruct a
scene containing two independently moving objects from two perspective views. Vidal and his
colleagues [16] extended this approach for dynamic scenes containing multiple independently
moving objects. For reconstruction of dynamic scenes consisting of both static objects and
objects moving along fixed directions, Han and Kanade [10] proposed a factorization-based
method that achieves a unique solution with the assumption of constant velocities. A more
generalized solution to reconstructing the shapes that deform at constant velocity is presented
in [18].
Bregler and his colleagues [6] first introduced the basis representation of non-rigid shapes

to embed the deformation constraints into the scene structure. By analyzing the low rank
of the image measurements, they proposed a factorization-based method that enforces the
orthonormality constraints on camera rotations to reconstruct the non-rigid shape and mo-
tion. Torresani and his colleagues [14] extended the method in [6] to a trilinear optimization
approach. At each step, two of the three types of unknowns, bases, coefficients, and rotations,
are fixed and the remaining one is updated. The method in [6] is used to initialize the op-
timization process. Brand [4] proposed a similar non-linear optimization method that uses
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an extension of the method in [6] for initialization. All the three methods enforce only the
rotation constraints and thus cannot guarantee an optimal solution. Note that both the non-
linear optimization methods involve a large number of variables, e.g. the number of unknown
coefficients equals the product of the number of images and the number of shape bases. The
performance relies on the quality of the initial estimate of the unknowns.

3 Problem Statement

Given 2D locations of P feature points across F frames, {(u, v)Tfp|f = 1, ..., F, p = 1, ..., P},
our goal is to recover the motion of the non-rigid object relative to the camera, including
rotations {Rf |f = 1, ..., F} and translations {tf |f = 1, ..., F}, and its 3D deforming shapes
{(x, y, z)Tfp|f = 1, ..., F, p = 1, ..., P}. Throughout this paper, we assume:
– the deforming shapes can be represented as weighted combinations of shape bases;
– the 3D structure and the camera motion are non-degenerate;
– the camera projection model is the weak-perspective projection model.

We follow the representation of [3, 6]. The non-rigid shapes are represented as weighted
combinations of K shape bases {Bi, i = 1, ...,K}. The bases are 3 × P matrices controlling
the deformation of P points. Then the 3D coordinate of the point p at the frame f is

Xfp = (x, y, z)T
fp = ΣK

i=1cfibip f = 1, ..., F, p = 1, ..., P (1)

where bip is the pth column of Bi and cif is its combination coefficient at the frame f . The
image coordinate of Xfp under the weak perspective projection model is

xfp = (u, v)T
fp = sf (Rf · Xfp + tf ) (2)

where Rf stands for the first two rows of the fth camera rotation and tf = [tfxtfy]T is its
translation relative to the world origin. sf is the scalar of the weak perspective projection.
Replacing Xfp using Eq. (1) and absorbing sf into cfi and tf , we have

xfp =
(
cf1Rf ... cfKRf

)
·
(

b1p

...
bKp

)
+ tf (3)

Suppose the image coordinates of all P feature points across F frames are obtained.
We form a 2F × P measurement matrix W by stacking all image coordinates. Then W =
MB + T [11...1], where M is a 2F × 3K scaled rotation matrix, B is a 3K × P bases matrix,
and T is a 2F × 1 translation vector,

M =




c11R1 ... c1KR1

...
...

...
cF1RF ... cFKRF


 , B =




b11 ... b1P

...
...

...
bK1 ... bKP


 , T =

(
tT
1 ... tT

F

)T
(4)

As in [10, 6], we position the world origin at the scene center and compute the translation
vector by averaging the image projections of all points. We then subtract it from W and
obtain the registered measurement matrix W̃ =MB.
Under the non-degenerate cases, the 2F × 3K scaled rotation matrix M and the 3K × P

shape bases matrix B are both of full rank, respectivelymin{2F, 3K} andmin{3K,P}. Their
product, W̃ , is of rank min{3K, 2F, P}. In practice, the frame number F and point number P
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are usually much larger than the basis number K such that 2F > 3K and P > 3K. Thus the
rank of W̃ is 3K and K is determined by K = rank(W̃ )

3 . We then factorize W̃ into the product
of a 2F ×3K matrix M̃ and a 3K×P matrix B̃, using Singular Value Decomposition (SVD).
This decomposition is only determined up to a non-singular 3K × 3K linear transformation.
The true scaled rotation matrix M and bases matrix B are of the form,

M = M̃ ·G, B = G−1 · B̃ (5)

where the non-singular 3K×3K matrix G is called the corrective transformationmatrix. Once
G is determined,M and B are obtained and thus the rotations, shape bases, and combination
coefficients are recovered.
All the procedures above, except obtaining G, are standard and well-understood [3, 6]. The

problem of nonrigid shape and motion recovery is now reduced to: given the measurement
matrix W , how can we compute the corrective transformation matrix G?

4 Metric Constraints

G is made up of K triple-columns, denoted as gk, k = 1, . . . ,K. Each of them is a 3K × 3
matrix. They are independent on each other because G is non-singular. According to Eq. (4,5),
gk satisfies,

M̃gk =

(
c1kR1

...
cFkRF

)
(6)

Then,

M̃gkg
T
k M̃T =




c21kR1R
T
1 c1kc2kR1R

T
2 . . . c1kcFkR1R

T
F

c1kc2kR2R
T
1 c22kR2R

T
2 . . . c2kcFkR2R

T
F

...
...

. . .
...

c1kcFkRFRT
1 c2kcFkRFRT

2 . . . c2FkRFRT
F


 (7)

We denote gkgk
T by Qk, a 3K × 3K symmetric matrix. Once Qk is determined, gk can be

computed uniquely using SVD. To compute Qk, two types of metric constraints are available
and should be imposed: rotation constraints and basis constraints. While using only
the rotation constraints [6, 4] leads to ambiguous and invalid solutions, enforcing both sets of
constraints results in a linear closed-form solution for Qk.

4.1 Rotation Constraints

The orthonormality constraints on the rotation matrices are one of the most powerful metric
constraints and they have been used in reconstructing the shape and motion for static objects
[13, 11], multiple moving objects [8, 10], and non-rigid deforming objects [6, 14, 4].
According to Eq. (7), we have,

M̃2i−1:2iQkM̃
T
2j−1:2j = cikcjkRiR

T
j , i, j = 1, ...F (8)

where M̃2i−1:2i represents the ith bi-row of M̃ . Due to orthonormality of the rotation matrices,
we have,
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M̃2i−1:2iQkM̃
T
2i−1:2i = c2ikI2×2, i = 1, ..., F (9)

where I2×2 is a 2 × 2 identity matrix. The two diagonal elements of Eq. (9) yield one linear
constraints onQk, since cik is unknown. The two off-diagonal constraints are identical, because
Qk is symmetric. For all F frames, we obtain 2F linear constraints as follows,

M̃2i−1QkM̃
T
2i−1 − M̃2iQkM̃

T
2i = 0, i = 1, ..., F (10)

M̃2i−1QkM̃
T
2i = 0, i = 1, ..., F (11)

Since Qk is symmetric, it contains
(9K2+3K)

2 independent unknowns. It appears that, when

enough images are given, i.e. 2F ≥ (9K2+3K)
2 , the rotation constraints in Eq. (10,11) should

be sufficient to determine Qk via the linear least-square method. However, it is not true
in general. We will show that most of the rotation constraints are redundant and they are
inherently insufficient to resolve Qk.

4.2 Why Are Rotation Constraints Not Sufficient?

Under specific assumptions like static scene or constant speed of deformation, the orthonor-
mality constraints are sufficient to reconstruct the 3D shapes and camera rotations [13, 10]. In
general cases, however, no matter how many images or feature points are given, the solution
of the rotation constraints in Eq. (10,11) is inherently ambiguous.

Definition 1. A 3K × 3K symmetric matrix Y is called a block-skew-symmetric matrix, if
all the diagonal 3 × 3 blocks are zero matrices and each off-diagonal 3 × 3 block is a skew
symmetric matrix.

Yij =

(
0 yij1 yij2

−yij1 0 yij3

−yij2 −yij3 0

)
= −Y T

ij = Y T
ji , i �= j (12)

Yii = 03×3, i, j = 1, ...,K (13)

Each off-diagonal block consists of 3 independent elements. Because Y is symmetric and has
K(K−1)

2 independent off-diagonal blocks, it includes 3K(K−1)
2 independent elements.

Definition 2. A 3K × 3K symmetric matrix Z is called a block-scaled-identity matrix, if
each 3× 3 block is a scaled identity matrix, i.e. Zij = λijI3×3, where λij is the only variable.

Because Z is symmetric, the total number of variables in Z equals the number of independent
blocks, K(K+1)

2 .

Theorem 1. The general solution of the rotation constraints in Eq. (10,11) is GHGT , where
G is the desired corrective transformation matrix, and H is the summation of an arbitrary
block-skew-symmetric matrix and an arbitrary block-scaled-identity matrix.

Proof. Let us denote Q̃ as the general solution of Eq. (10,11). Since G is a non-singular square
matrix, Q̃ can be represented as GHGT , where H = G−1Q̃G−T . We then prove that H must
be the summation of a block-skew-symmetric matrix and a block-scaled-identity matrix.
According to Eq. (5,9),



6 Jing Xiao et al.

c2ikI2×2 = M̃2i−1:2iQ̃M̃T
2i−1:2i

= M̃2i−1:2iGHGT M̃T
2i−1:2i

= M2i−1:2iHMT
2i−1:2i, i = 1, ..., F (14)

H consists of K2 3 × 3 blocks, denoted as Hmn, m,n=1,. . .,K. Combining Eq. (4) and (14),
we have,

RiΣ
K
m=1(c2imHmm + ΣK

n=m+1cimcin(Hmn + HT
mn))RT

i = c2ikI2×2, i = 1, ..., F (15)

Denote the 3×3 symmetric matrix ΣK
m=1(c

2
imHmm+ΣK

n=m+1cimcin(Hmn+HT
mn)) by Γi. Then

Eq. (15) becomes RiΓiR
T
i = c2ikI2×2. Let Γ̃i be its homogeneous solution, i.e. RiΓ̃iR

T
i = 02×2.

Because the two rows of the 2× 3 matrix Ri are orthonormal, we have,

Γ̃i = rT
i3δi + δT

i ri3 (16)

where ri3 is a unitary 1× 3 vector that are orthogonal to both rows of Ri. δi is an arbitrary
1× 3 vector. Apparently Γi = c2ikI3×3 is a particular solution of RiΓiR

T
i = c2ikI2×2. Thus the

general solution of Eq. (15) is,

ΣK
m=1(c2imHmm + ΣK

n=m+1cimcin(Hmn + HT
mn)) = Γi = c2ikI3×3 + αiΓ̃i (17)

where αi is an arbitrary scalar.
As a general solution, Q̃ should work for arbitrary image projection of the non-rigid shape,

i.e. Eq. (17) has to be satisfied for arbitrary coefficients and rotations. Suppose two images
j and l contain the projections of the same 3D shapes as that in image i, but from different
views. All the three images refer to the same coefficients but different rotations respectively.
According to the left side of Eq. (17), Γi, Γj , and Γl are independent on the rotations and
thus equivalent. For image i and j, we have,

c2ikI3×3 + αiΓ̃i = c2ikI3×3 + αjΓ̃j ⇐⇒ αiΓ̃i − αj Γ̃j = 03×3

=⇒ Rj(αiΓ̃i − αj Γ̃j)R
T
j = 02×2 (18)

Γ̃j is the solution of RjΓ̃jR
T
j = 02×2. Thus αiRjΓ̃iR

T
j = 02×2. Similarly, we have αiRlΓ̃iR

T
l =

02×2. Then,

αi(RjΓ̃iR
T
j −RlΓ̃iR

T
l ) = 02×2 (19)

Because Rj and Rl are different, αi has to be zero. We then rewrite Eq. (17) as follows,

ΣK
m=1(c2imHmm + ΣK

n=m+1cimcin(Hmn + HT
mn)) = c2ikI3×3 (20)

Denote (Hmn +HT
mn) by Θmn. Because the right side of Eq. (20) is a scaled identity matrix,

for each off-diagonal element ho
mm and θo

mn, we achieve the following linear equation,

ΣK
m=1(c2imho

mm + ΣK
n=m+1cimcinθ

o
mn)) = 0 (21)
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As a general solution, Eq. (21) has to be satisfied for arbitrary coefficient sets. Given K2

independent sets of coefficients, Eq. (21) leads to a non-singular linear equation set on ho
mm

and θo
mn. The right sides of the equations are all zeros. Thus the solution is a zero vector,

i.e. the off-diagonal elements of Hmm and Θmn are all zeros. Similarly, we can derive the
constraint as Eq. (21) on the difference between any two diagonal elements. Therefore the
difference is zero, i.e. the diagonal elements are all equivalent. We thus have,

Hmm = λmmI3×3, m = 1, ...,K (22)

Hmn + HT
mn = λmnI3×3, m = 1, ...,K, n = m + 1, ...,K (23)

where λmm and λmn are arbitrary scalars. According to Eq. (22), the diagonal block Hmm

is a scaled identity matrix. Due to Eq. (23), Hmn − λmn

2 I3×3 = −(Hmn − λmn

2 I3×3)T , i.e.
Hmn − λmn

2 I3×3 is skew-symmetric. Thus the off-diagonal block Hmn equals the summation
of a scaled identity block, λmn

2 I3×3, and a skew-symmetric block, Hmn− λmn

2 I3×3. Since λmm

and λmn are arbitrary, the entire matrix H is the summation of an arbitrary block-skew-
symmetric matrix and an arbitrary block-scaled-identity matrix.
��
Let Y denote the block-skew-symmetric matrix and Z denote the block-scaled-identity

matrix in H. Since Y and Z respectively contain 3K(K−1)
2 and K(K+1)

2 independent elements,
H include 2K2 −K free elements, i.e. the solution of the rotation constraints has 2K2 −K
degrees of freedom. In rigid cases, i.e. K = 1, the solution is unique, as suggested in [13].
For non-rigid objects, i.e. K > 1, the rotation constraints result in an ambiguous solution
space. This space contains invalid solutions. Specifically, because the desired Qk = gkgk

T is
positive semi-definite, the solution GHGT is not valid when H is not positive semi-definite.
The solution space includes many instances that refer to non-positive-semi-definite H. For
example, when the block-scaled-identity matrix Z is zero, H equals the block-skew-symmetric
matrix Y , which is not positive semi-definite.

4.3 Basis Constraints

The only difference between non-rigid and rigid situations is that the non-rigid shape is
a weighted combination of certain shape bases. The rotation constraints are sufficient for
recovering the rigid shapes, but they cannot determine a unique set of shape bases in the
non-rigid cases. Instead any non-singular linear transformation applied on the bases leads
to another set of eligible bases. Intuitively, the basis non-uniqueness results in the solution
ambiguity of the rotation constraints. We thus introduce the basis constraints that determine
a unique bases set and resolve the ambiguity.
Because the deformable shapes lie in a K-bases linear space, any K independent shapes

in the space form an eligible bases set. We thus select K frames that contain independent
3D shapes, and specify those shapes as a set of bases. The K frames of image measurements
form a 2K × P sub-matrix of W̃ . Its condition number measures the independence of the K
involved shapes. A smaller condition number refers to stronger independence. We thus specify
the 3D shapes in the set of K frames, for which the condition number is the smallest, as the
bases. Note that so far we have not recovered the bases, but decided in which frames they are
located. This step implicitly determines a unique set of bases.
We denote the selected frames as the first K images in the sequence. The corresponding

coefficients are,
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cii = 1, i = 1, ...,K

cij = 0, i, j = 1, ...,K, i �= j (24)

Let Ω denote the set, {(i, j)|i = 1, ...,K; i 	= k; j = 1, ..., F}. According to Eq. (8,24), we
have,

M̃2i−1QkM̃
T
2j−1 =

{
1, i = j = k
0, (i, j) ∈ Ω

(25)

M̃2iQkM̃
T
2j =

{
1, i = j = k
0, (i, j) ∈ Ω

(26)

M̃2i−1QkM̃
T
2j = 0, (i, j) ∈ Ω or i = j = k (27)

M̃2iQkM̃
T
2j−1 = 0, (i, j) ∈ Ω or i = j = k (28)

These 4F (K − 1) linear constraints are called the basis constraints.

5 A Closed-Form Solution

Due to Theorem 1, enforcing the rotation constraints on Qk leads to the ambiguous solution
GHGT . H consists of K2 3 × 3 blocks, Hmn, m,n=1,. . .,K. Hmn contains four independent
entries as follows,

Hmn =

(
h1 h2 h3

−h2 h1 h4

−h3 −h4 h1

)
(29)

Lemma 1 Under non-degenerate situations, Hmn is a zero matrix if,

RiHmnR
T
j = 02×2 (30)

where Ri and Rj are 2× 3 rotation matrices.
Proof. First we prove that the rank ofHmn is at most 2. Due to the orthonormality of rotation
matrices, from Eq. (30), we have,

Hmn = rT
i3δi + δT

j rj3 =
(
rT

i3 δT
j

)( δi

rj3

)
(31)

where ri3 and rj3 respectively are the cross products of the two rows of Ri and those of Rj .
δi and δj are arbitrary 1× 3 vectors. Because both matrices on the right side of Eq. (31) are
at most of rank 2, the rank of Hmn is at most 2.
Next, we prove h1 = 0. Since Hmn is 3×3 matrix of rank 2, its determinant, h1(

∑4
i=1 hi

2),
equals 0. Therefore h1 = 0, i.e. Hmn is a skew-symmetric matrix.
Finally we prove h2 = h3 = h4 = 0. Denote the rows of Ri and Rj as ri1, ri2, rj1, and rj2

respectively. Since h1 = 0, we can rewrite Eq. (30) as follows,(
ri1 · (h × rj1) ri1 · (h × rj2)
ri2 · (h × rj1) ri2 · (h × rj2)

)
= 02×2 (32)
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where h = (−h4 h3 −h2). Eq. (32) means that the vector h is located in the intersection of the
four planes determined by (ri1, rj1), (ri1, rj2), (ri2, rj1), and (ri2, rj2). Under non-degenerate
situations, ri1, ri2, rj1, and rj2 do not lie in the same plane, hence the four planes intersect
at the origin, i.e. h = (−h4 h3 − h2) = 01×3. Therefore Hmn is a zero matrix. ��
Using Lemma 1, we derive the following theorem,

Theorem 2. Enforcing both the basis constraints and the rotation constraints results in a
closed-form solution of Qk.

Proof. According to Theorem 1, using the rotation constraints we achieve the ambiguous
solution of Qk, GHGT . Due to the basis constraints, replacing Qk in Eq. (25∼28) with
GHGT ,

M̃2k−1:2kGHGT M̃T
2k−1:2k = M2k−1:2kHMT

2k−1:2k = I2×2 (33)

M̃2i−1:2iGHGT M̃T
2j−1:2j = M2i−1:2iHMT

2j−1:2j = 02×2, i, j = 1, ...,K, i �= k or j �= k (34)

From Eq. (4), we have,

M2i−1:2iHMT
2j−1:2j = ΣK

m=1Σ
K
n=1cimcjnRiHmnR

T
j , i, j = 1, ..., F (35)

where Hmn is the 3× 3 block of H. According to Eq. (24),

M2i−1:2iHMT
2j−1:2j = RiHijRj

T , i, j = 1, ...,K (36)

Combining Eq. (33,34) and (36), we have,

RkHkkRk
T = I2×2 (37)

RiHijRj
T = 02×2, i, j = 1, ...,K, i �= k or j �= k (38)

By definition, the kth diagonal block Hkk = λkkI3×3. Due to Eq. (37), λkk = 1 and Hkk =
I3×3. According to Lemma 1, all the other blocks, Hij in Eq. (38), are zero matrices. Thus,

GHGT = (g1 . . . gK)H(g1 . . . gK)T

= (0 . . . gk . . . 0)(g1 . . . gK)T

= gkg
T
k = Qk (39)

i.e. a closed-form solution of the desired Qk has been achieved.
��
According to Theorem 2, we compute Qk = gkg

T
k , k = 1, ...,K, by solving the linear equa-

tions, Eq. (10∼11,25∼28), via the least square methods. We then recover gk by decomposing
Qk via SVD. The decomposition of Qk is up to an arbitrary 3×3 orthonormal transformation
Φ, since (gkΦ)(gkΦ)T also equals Qk. This ambiguity arises from the fact that g1, . . ., gK are
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estimated independently under different coordinate systems. To resolve the ambiguity, we
need to transform g1, . . ., gK to be under a single reference coordinate system.
Due to Eq. (6), M2i−1:2igk = cikRi, i = 1, . . . , F . Because the rotation matrix Ri is or-

thonormal, i.e. ‖Ri‖ = 1, we have Ri = ± M2i−1:2igk

‖M2i−1:2igk‖ . The sign of Ri determines which
orientations are in front of the camera. It can be either positive or negative, determined by
the reference coordinate system. Since g1, . . ., gK are estimated independently, they lead to
respective rotation sets, each two of which are different up to a 3 × 3 orthonormal transfor-
mation. We choose one set of the rotations to specify the reference coordinate system. Then
the signs of the other sets of rotations are determined in such a way that these rotations are
consistent with the corresponding references. Finally the orthogonal Procrustes method [12] is
applied to compute the orthonormal transformations from the rotation sets to the reference.
The transformed g1, . . ., gK form the desired corrective transformation G. The coefficients are
then computed by Eq. (6), and the shape bases are recovered by Eq. (5). Their combinations
reconstruct the non-rigid 3D shapes.

6 Performance Evaluation
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Fig. 1. A static cube and 3 points moving along straight lines. (a) Input image. (b) Ground truth 3D
shape and camera trajectory. (c) Reconstruction by the closed-form solution. (d) Reconstruction by
the method in [6]. (e) Reconstruction by the method in [4] after 4000 iterations. (f) Reconstruction
by the tri-linear method [14] after 4000 iterations.

The performance of the closed-form solution was evaluated in a number of experiments.

6.1 Comparison with Three Previous Methods

We first compared the solution with three related methods [6, 4, 14] in a simple noiseless
setting. Fig.1 shows a scene consisting of a static cube and 3 moving points. The measurement
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included 10 points: 7 visible vertices of the cube and 3 moving points. The 3 points moved
along the three axes simultaneously at varying speed. This setting involvedK = 2 shape bases,
one for the static cube and another for the linear motions. While the points were moving,
the camera was rotating around the scene. A sequence of 16 frames were captured. One of
them is shown in Fig.1.(a). Fig.1.(b) demonstrates the ground truth shape in this frame and
the ground truth camera trajectory from the first frame till this frame. The three orthogonal
green bars show the present camera pose and the red bars display the camera poses in the
previous frames. Fig.1.(c) to (f) show the structures and camera trajectories reconstructed
using the closed-form solution, the method in [6], the method in [4], and the tri-linear method
[14], respectively. While the closed-form solution achieved the exact reconstruction with zero
error, all the three previous methods resulted in apparent errors, even for such a simple
noiseless setting.
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Fig. 2. The relative errors on reconstruction of a static cube and 3 points moving along straight
lines. (a) By the closed-form solution. (b) By the method in [6]. (c) By the method in [4] after 4000
iterations. (d) By the trilinear method [14] after 4000 iterations. The scaling of the error axis is
[0%, 100%]. Note that our method achieved zero reconstruction errors.

Fig.2 demonstrates the reconstruction errors of the four methods on camera rotations,
shapes, and image measurements. The error was computed as the percentage relative to the
ground truth, ‖Reconstruction−Truth‖

‖Truth‖ . Note that because the space of rotations is a man-
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ifold, a better error measurement for rotations is the Riemannian distance, d(Ri, Rj) =

acos( [trace(RiR
T
j )−1]

2 ). However it is measured in degrees. For consistency, we used the rel-
ative percentage for all the three reconstruction errors.

6.2 Quantitative Evaluation on Synthetic Data
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Fig. 3. (a)&(b) Reconstruction errors on rotations and shapes under different levels of noise and
deformation strength. (c)&(d) Reconstruction errors on rotations and shapes under different levels
of noise and various basis numbers. Each curve respectively refers to a noise level. The scaling of the
error axis is [0%, 20%].

Our approach was then quantitatively evaluated on the synthetic data. We evaluated the
accuracy and robustness on three factors: deformation strength, number of shape bases, and
noise level. The deformation strength shows how close to rigid the shape is. It is represented
by the mean power ratio between each two bases, i.e. meani,j

(
max(‖Bi‖,‖Bj‖)
min(‖Bi‖,‖Bj‖)

)
. Larger ra-

tio means weaker deformation, i.e. the shape is closer to rigid. The number of shape bases
represents the flexibility of the shape. A bigger basis number means that the shape is more
flexible. Assuming a Gaussian white noise, we represent the noise strength level by the ratio
between the Frobenius norm of the noise and the measurement, i.e. ‖noise‖

‖W̃‖ . In general, when
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noise exists, a weaker deformation leads to better performance, because some deformation
mode is more dominant and the noise relative to the dominant basis is weaker; a bigger basis
number results in poorer performance, because the noise relative to each individual basis is
stronger.
Fig.3.(a) and (b) show the performance of our algorithm under various deformation

strength and noise levels on a two bases setting. The power ratios were respectively 20, 21,
..., and 28. Four levels of Gaussian white noise were imposed. Their strength levels were 0%,
5%, 10%, and 20% respectively. We tested a number of trials on each setting and computed
the average reconstruction errors on the rotations and 3D shapes. The errors were measured
by the relative percentage as in Section 6.1. Fig.3.(c) and (d) show the performance of our
method under different numbers of shape bases and noise levels. The basis number was 2, 3,
... , and 10 respectively. The bases had equal powers and thus none of them was dominant.
The same noise as in the last experiment was imposed.
In both experiments, when the noise level was 0%, the closed-form solution recovered the

exact rotations and shapes with zero error. When there was noise, it achieved reasonable
accuracy, e.g. the maximum reconstruction error was less than 15% when the noise level
was 20%. As we expected, under the same noise level, the performance was better when the
power ratio was larger and poorer when the basis number was bigger. Note that in all the
experiments, the condition number of the linear system consisting of both basis constraints
and rotation constraints had order of magnitude O(10) to O(102), even if the basis number was
big and the deformation was strong. It suggests that our closed-form solution is numerically
stable.

6.3 Qualitative Evaluation on Real Video Sequences

Finally we examined our approach qualitatively on a number of real video sequences. One
example is shown in Fig.4. The sequence was taken of an indoor scene by a handhold camera.
Three objects, a car, a plane, and a toy person, moved along fixed directions and at varying
speeds. The rest of the scene was static. The car and the person moved on the floor and the
plane moved along a slope. The scene structure was composed of two bases, one for the static
objects and another for the linear motions. 32 feature points tracked across 18 images were
used for reconstruction. Two of the them are shown in Fig.4.(a) and (d).
The rank of W̃ was estimated in such a way that 99% of the energy of W̃ could remain

after the factorization using the rank constraint. The number of bases was thus determined by
K = rank(W̃ )

3 . Then the camera rotations and dynamic scene structures were reconstructed
using the proposed method. With the recovered shapes, we could view the scene appearance
from any novel directions. An example is shown in Fig.4.(b) and (e). The wireframes show
the scene shapes and the yellow lines show the trajectories of the moving objects from the
beginning of the sequence until the present frames. The reconstruction was consistent with
our observation, e.g. the plane moved linearly on top of the slope. Fig.4.(c) and (f) show the
reconstruction using the method in [4]. The recovered shapes of the boxes were distorted and
the plane was incorrectly located underneath the slope, as shown in the yellow circles. Note
that occlusion was not taken into account when rendering these images. Thus in the regions
that should be occluded, e.g. the area behind the slope, the stretched texture of the occluding
objects appeared.
Human faces are highly non-rigid objects and 3D face shapes can be regarded as weighted

combinations of certain shape bases that refer to various facial expressions. Thus our approach
is capable of reconstructing the deformable 3D face shapes from the 2D image sequence.
One example is shown in Fig.5. The sequence consisted of 236 images that contained facial
expressions like eye blinking and mouth opening. 60 feature points were tracked using an
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Reconstruction of three moving objects in the static background. (a)&(d) Two input images
with marked features. (b)&(e) Reconstruction by the closed-form solution. The yellow lines show the
recovered trajectories from the beginning of the sequence until the present frames. (c)&(f) Recon-
struction by the method in [4]. The yellow-circled area shows that the plane, which should be on top
of the slope, was mistakenly located underneath the slope.

efficient 2D Active Appearance Model (AAM) method [1]. Fig.5.(a) and (d) display two of
the input images with marked feature points. After reconstructing the shapes and poses, we
could view the 3D face appearances in any novel poses. Two examples are shown respectively
in Fig.5.(b) and (e). Their corresponding 3D shape wireframes, as shown in Fig.5.(c) and
(f), exhibit the recovered facial deformations such as mouth opening and eye closure. Note
that the feature correspondences in these experiments were noisy, especially for those features
on the sides of the face. The reconstruction performance of our approach demonstrates its
robustness to the image noise.

7 Conclusion and Discussion

This paper proposes a linear closed-form solution to the problem of non-rigid shape and
motion recovery from a single-camera video. In particular, we have proven that enforcing
only the rotation constraints results in ambiguous and invalid solutions. We thus introduce
the basis constraints to resolve this ambiguity. We have also proven that imposing both
the linear constraints leads to a unique reconstruction of the non-rigid shape and motion.
The performance of our algorithm is demonstrated by experiments on both simulated data
and real video data. Our algorithm has also been successfully applied to separate the local
deformations from the global rotations and translations in the 3D motion capture data [7].
Currently our approach does not consider the degenerate deformations. A shape basis is

degenerate, if its rank is either 1 or 2, i.e. it limits the shape deformation within a 2D plane.
Degenerate deformations occur in some applications. For example, when a scene consists
of several buildings and one car moving on a straight street, the shape basis referring to
the rank-1 linear motion is degenerate. It is conceivable that, in such degenerate cases, the
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Reconstruction of shapes of human faces carrying expressions. (a)&(d) Input images. (b)&(e)
Reconstructed 3D face appearances in novel poses. (c)&(f) Shape wireframes demonstrating the
recovered facial deformations such as mouth opening and eye closure.

basis constraints cannot completely resolve the ambiguity of the rotation constraints. We
are now exploring how to extend the current method to reconstructing the shapes involving
degenerate deformations. Another limitation of our approach is that we assume the weak
perspective projection model. It would be interesting to see how the proposed solution could
be extended to the full perspective projection model.
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