Recent hardware innovations have produced low-powered, embedded devices (also known as motes) which can be equipped with small cameras and that can communicate with neighboring units using wireless interfaces. These motes can organize themselves in a "Smart Camera Network" and represent an attractive platform for applications at the intersection of sensor networks and computer vision.
In our research we aim to find distributed solutions for Computer Vision applications. We have focused on two particular issues: distributed pose averaging and camera network localization and calibration.
Diffusion magnetic resonance imaging (dMRI) is a medical imaging modality used to reconstruct the anatomical network of neuronal fibers in the brain, in vivo. One important goal is to use this fiber network to study anatomical biomarkers related to neurological diseases such as Alzheimer's Disease. In the Vision Lab we apply elements of Machine Learning and Computer Vision to develop computational and mathematical algorithms for dMRI reconstruction, diffusion estimation, fiber segmentation, registration, feature extraction, and disease classification.