Homework 2 v.1.1: Learning theory II
(BME 580.692, CS 600.462)

Instructor: René Vidal, Phone: 410-516-7306,
E-mail: rvidal@cis.jhu.edu

Due on Thursday September 28th, 2006, beginning of class.

1. Read Chapters 1 and 2 of GPCA book. Go to http://www.vision.jhu.edu/gpcabook/ and
submit all the typos you find as well as suggestions you may have to improve the quality
and/or readability of the material. You will receive credit for each interesting typo
or suggestion you submit.

2. Exercises 2.1 and 2.7 of GPCA book.

3. Face recognition using PCA. In this exercise you will use the AT&T database! (previ-
ously also known as ORL), which contains photos of 40 individuals, with 10 poses for each
individual. Divide all the images in two sets: Set A (images from individuals 1 to 20) and Set
B (images from the others individual, 21 to 40). Subdivide Set A in two parts: the Training
Set (poses from 1 to 5) and the Validation Set (poses from 6 to 10). Notice also that there
are b non-face images (accessible as Individual #41, poses from 1 to 5). We will refer to
these as Set C.

Download the file hw2-06-dataset.zip. This file contains the image database along with the
MATLAB function loadimage.m. Decompress the file and type help loadimage at the
MATLAB prompt to see how to use this function). The function operates as follows.

Function img=loadimage(individual,pose)

Parameters
individual Number of the individual.

pose Number of the pose.
Returned values

img The pixel image loaded from the database.

Description
Read and resize an image from the AT&T database. The database (directory att_faces) must
be in the same directory as this file.

This exercise is composed of two parts: in the first part you are asked to implement some
MATLAB functions. Then, you will use these functions to do the experiments in the second
part. You will receive credit for each one of the functions you write, as well as for your
answers to the questions in the experimental part.

LAT&T Laboratories Cambridge,
http://www.cl.cam.ac.uk/Research/DTG/attarchive/facedatabase.html.

Functions to be implemented

Function [vectorimg,sz]=image2vector (img)

Parameters

img A pixel image loaded with loadimage
Returned values
vectorimg The same image as a vector of double.

sz A vector [m,n] containing the original size of the image.

Description
Form a vector from a loaded image by stacking all the pixel values read columnwise (note that
you will need also to convert the data from the MATLAB type uint8 to double for further
processing).

Function [img]l=vector2image(vectorimg,sz)

Parameters
vectorimg Same as returned by image2vector
sz Same as returned by image2vector
Returned values
img The pixel image corresponding to vectorimg.
Description
The dual function of image2vector.

Function [meanface,efaces,coeffs,sv]=eigenfaces(facevectors)

Parameters
facevectors The images of all the individuals in the training set, nposes for each individual.
Each column is a vector image given by image2vector from the training set.
There should be nposes images for each individual and columns corresponding
to the same individual should appear in succession.
Returned values
meanface Average of the vectors in facevectors.
efaces The principal components from the vectors in facevectors with the average
subtracted.
coeffs The coefficients obtained by projecting facevectors on efaces
sv The singular values given by the SVD.
Description
Computes the “eigenfaces” (the principal components) efaces of the space spanned by the
vectors of facevectors (with the mean meanface subtracted) and, at the same time, the
coefficients of the same vectors projected on the eigenfaces, all using the Singular Value De-
composition (SVD). Returns also the vector of the singular values sv. Can you notice a
difference in between using svd(A) and svd(A,0)7?

Function [imgrec,dist]=reconstruct(img,meanface,efaces)

Parameters
img A pixel image (loaded with loadimage).

meanface Same as the value returned by eigenfaces.

efaces Same as the value returned by eigenfaces.
Returned values

imgrec The pixel image corresponding to img projected on efaces.

dist The distance between img and its projection imgrec.

Description
Given an image, projects it on the principal components contained in efaces and then recovers
the image of the projection (all by taking into account meanface). Returns also the distance
between the given vector and its projection.

Function plotindividuals(coeffs,nposes)

Parameters

coeffs The coefficients of all the images in the database projected on the eigenfaces (as
returned by eigenfaces).

nposes Number of poses for each individual in coeffs.

Description

Displays a three-dimensional plot of the points given by the first three coefficients of each

projection contained in coeffs using a different color/marker for each individual.

Function membership=kNN(labels, distances, k)

Parameters
labels set of labels for each neighbour.

distances distance of each neighbour.
Returned values
membership the label assigned by the k-Nearest Neighbours algorithm.
Description
Implements the k-Nearest Neighbours algorithm. By sorting distances, find the labels of the
k nearest points among all the neighbours. The membership is the label which appear most
often in the k nearest ones. In case of “tie”, the minimum average distance in the k neighbours
is considered.

Function indrec=recognize(img,meanface,efaces,coeffs,nposes,k)

Parameters
img pixel image with the face of the individuals to be recognized.

meanface Same as the value returned by eigenfaces.

efaces Same as the value returned by eigenfaces.

coeffs Same as the value returned by eigenfaces.

nposes Number of poses for each individual used in the computation of the eigenfaces.

k Number of neighbours for the k-Nearest Neighbours algorithm.

Returned values

indrec The index of the recognized individual in the training set.
Description
Computes the distance between the coeflicients of a new image img and the coefficients of all
the vectors in coeffs from the projection onto the subspace spanned by the columns of efaces.
Then, by knowing the order in which the images have been loaded during the training, use
these distances and k-Nearest Neighbours (function kNN) to assign img to one of the individual
in the training set.

Experiments

(a) Using loadimage and imshow, display some images for some individuals and some poses.
What can you note about the images in this database? Under which conditions are the
photos taken (e.g. changes in illumination, pose, expression, etc.)? Quantify if it is
possible. Are the photos “normalized” in some way (e.g. the nose is always at the same
pixel location)?

What is the dimensionality of the vectors returned by image2vector?

(b) Load the images of the Training Set (the other Sets will be used later) and store their
vector representation in a matrix called facevectors (loading all the images is slow
and can take up to a minute).

(¢) Compute the eigenfaces using the function eigenfaces. Plot the singular values. How
can you estimate the number of eigenfaces to use (i.e. the dimensionality of the “face”
subspace)?

(d) Choose three images: one from Set A, Training Set (e.g. individual 1, pose 1), one from
Set A, Validation Set (e.g. individual 2, pose 8) and one from Set B (e.g. individual
23, pose 1). Display and compare the images with their corresponding reconstructions
using n = 30,50 and 100 components. Please, comment.

(e) Using the function plotindividuals, plots the first three coefficients of the vectors
coeffs returned by eigenfaces. What can you notice?

(f) Choose some images from Set A, Validation Set and compare them to the images corre-
sponding to the individual returned by recognize with k¥ = 1 (i.e. Nearest Neighbour
algorithm). Using also the results from the part (e), explain why this system can be
used for face recognition?

