
HW 4: Learning Theory II (580.692)

Instructor: René Vidal, Office: 308B Clark, E-mail: rvidal@cis.jhu.edu
Grader: Avinash Ravichandran. Office: 319 Clark, E-mail: avinash@cis.jhu.edu

Due 10/12/06 beginning of the class

1. Read Appendix A and Chapter 3 of GPCA book. Go to http://www.vision.jhu.edu/gpcabook/ and submit all the
typos you find as well as suggestions you may have to improve the quality and/or readability of the material.
You will receive credit for each interesting typo or suggestion you submit.

2. Let θ̂N be the Maximum Likelihood (ML) estimate of θ obtained from N i.i.d. samples {xi}N
i=1 from the

distribution p(x, θ). Show that g(θ̂N ) is a ML estimate of g(θ). What are the conditions than need to be
imposed on g(θ) for g(θ̂N ) to be a ML estimate of g(θ).

3. Central and Subspace Clustering
Let {xi ∈ RD}P

i=1 be a collection of points lying in n affine subspaces

Sj = {x : x = xj
0 + U j

dj
y} j = 1, . . . , n

of dimensions dj , where xj
0 ∈ RD, U j

dj
∈ RD×dj has orthonormal columns, and y ∈ Rdj . Assume that within

each subspace Sj the data is distributed around mj cluster centers {µjk ∈ RD}k=1...mj

j=1...n .

(a) Assume that n, dj and mj are known, propose a clustering algorithm similar to K-means and K-subspaces
to estimate the model parameters xj

0, U j
d , yj

i and µjk, and the segmentation of the data according to the∑n
j=1 mj groups. More specifically, write down the cost function to be minimized, the constraints among

the model parameters (if any), and use Lagrange optimization to find the optimal model parameters given
the segmentation.

(b) Assume that n, dj and mj are unknown. How would you modify the cost function of part (a)?

4. Implementation of Iterative Clustering Algorithms

(a) Investigate the function kmeans in MATLAB, that implements the K-means algorithm for clustering data
distributed around n cluster centers.

(b) Write a function to cluster data drawn from n subspaces using the K-Subspaces algorithm. The format of
the function must be

Function [group,mean,bases] = ksubspaces(x,n,d,N)
Parameters

x D ×N matrix whose columns are the data points
n number of groups
d 1× n vector containing the dimension of each subspace
N number of iterations to stop

Returned values
group 1×N vector with group membership of each point
bases D × dj × n array containing the n matrices U j

dj

mean D × n array containing the mean of the clusters
Description
Computes the clustering of points using K-Subspaces.
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(c) Write a function that implements the EM algorithm for clustering data drawn from a mixture of n Gaus-
sians with mean µj and covariance matrix Σj , for j = 1, . . . , n.

Function [means,sigma,pi,group] = EM(x,n,mu0,sigma0,pi0)
Parameters

x D ×N matrix whose columns are the data points
n number of groups

mu0 (optional) D × n matrix whose columns contain initial cluster centers
sigma0 (optional) D ×D × n matrix with initial cluster covariance matrices

pi0 (optional) 1× n vector with initial mixing proportion
Returned values

mean D × n matrix whose columns are the cluster centers
sigma D ×D × n matrix with the cluster covariance matrices
group 1×N vector with group membership of each point

pi 1× n vector with proportion
Description
Computes the clustering of points using EM.

5. Evaluation of Central Clustering Algorithms

(a) Write a script that generates data in R2 distributed according to a mixture of two Gaussians with means
(−2,−2) and (2, 2), and common variance σI . Assume that the mixing proportions are π1 = π2 = 1/2.

(b) Use your script to draw 200 points with σ = 1 and run the EM algorithm on this dataset starting from
µ1 = (−2.2,−2.2), µ2 = (2.2, 2.2), σ = 0.9, and π = (0.3, 0.7). Plot the negative log-likelihood as a
function of the number of iterations, and make sure it is decreasing. Also plot the estimates of µ1, µ2, σ,
and π as a function of the number of iterations, and make sure they converge to the true values. Try with
other initializations where EM does not converge to the true values.

(c) Now, use your script to generate 1,000 realizations of 200 points for σ = 0.1:0.1:1.

i. Plot the mean number of iterations and the mean error in the estimation of the means as a function of
σ for the following algorithms: Kmeans randomly initialized, EM randomly initialized, EM initial-
ized with Kmeans. If possible, use the convergence criterion in the function kmeans to determine
convergence for EM.

ii. Run Kmeans with multiple random initializations and choose the one giving the minimum error. Plot
a figure with 10 curves of error as a function of sigma for a number of restarts of 1:1:10.

(d) Write a script that generates data in R3 distributed in two subspaces ( XY plane and the XZ plane). Assume
that the mixing proportions are π1 = π2 = 1/2. Plot the mean error in classification as a function of the
number of iteration for 1000, realization of 200 points using K-Subspaces.

6. Image Segmentation

(a) Intensity-based Image Segmentation. Use kmeans and EM to segment the images on the course web-
page. Assuming that the intensities are normalized between 0 and 1, use 0:1/(n-1):1 as the n initial cluster
centers for kmeans and EM.

(b) Texture-based Image Segmentation. Use K-Subspaces, kmeans and EM to segment the tiger and
other images on the course webpage. In each case, use the RGB values in a neighborhood Ω of size w
around each pixel as a feature vector in R3w. You may want to use τ principal components of your feature
vectors to reduce computational complexity. What is the effect of w and τ in the segmentation? Report
the values you use, and plot segmentation results.

7. Face Clustering with Varying Illumination
A material is called Lambertian if its appearance does not change with the viewing direction. An extremely
simplified model for an image of a Lambertian surface illuminated by a distant light source is

I(x) = ρ(x)N(X)T L



where X = (X, Y, Z) ∈ R3 is a point on the surface, N(X) ∈ R3 is the unit vector normal to the surface
at X , x = (X, Y )/Z is the perspective projection of X onto the image plane, and L ∈ R3 is the direction
of the incident light source, and ρ(x) ∈ R+ is the surface albedo, which represents the percentage of incident
light reflected by the surface in any direction. Imagine now you are given F images of a Lambertian object
taken under F different illumination conditions. Prove that these images live in a linear subspace of dimension
3. Interpret the meaning of the subspace basis and coefficients. Derive an algorithm for computing the albedo,
surface normals, and light directions from the F images. Is there any ambiguity in the reconstruction?

Although it is clear that faces are not Lambertian, assume so for the sake of simplicity. As a consequence, the
images of n individuals taken under several illumination conditions live in n 3-dimensional subspaces of RP ,
where P is the number of pixels. It follows that clustering a set of images of multiple faces according to which
individuals the image belongs to is a subspace clustering problem. Apply K-subspaces to the set of images given
in the course web-page, and report the percentage of incorrectly classified images. Also plot and interpret the 3
eigenfaces for each group.


