HW 5: Learning Theory II (580.692)

Instructor: René Vidal, Office: 308B Clark, E-mail: rvidal@cis.jhu.edu Grader: Atiyeh Ghoreyshi. Office: 319 Clark, E-mail: ati@cis.jhu.edu

Due 10/19/06 beginning of the class

1. Read Chapter 4 of GPCA book. Go to *http://www.vision.jhu.edu/gpcabook/* and submit all the typos you find as well as suggestions you may have to improve the quality and/or readability of the material. You will receive credit for each interesting typo or suggestion you submit.

2. Mixtures of PPCA

Let $\boldsymbol{x} \in \mathbb{R}^D$, $\boldsymbol{y} \in \mathbb{R}^d$ and $\boldsymbol{\epsilon} \in \mathbb{R}^D$, $d \leq D$, be random variables related by the generative model $\boldsymbol{x} = \boldsymbol{\mu} + U\boldsymbol{y} + \boldsymbol{\epsilon}$, where the parameters of the model are the mean $\boldsymbol{\mu} \in \mathbb{R}^D$ and the subspace basis $U \in \mathbb{R}^{D \times d}$. Assume further that $\boldsymbol{y} \sim N(\boldsymbol{0}, I)$, $\boldsymbol{\epsilon} \sim N(\boldsymbol{0}, \sigma^2 I)$ and that \boldsymbol{y} and $\boldsymbol{\epsilon}$ are independent.

- (a) Is it necessary to assume $U^{\top}U = I$? Why yes, or why no?
- (b) Derive the E and M steps of the Expectation Maximization algorithm with y as a latent variable to obtain estimates of the parameters μ , U and σ from given measurements $\{x_i\}_{i=1}^N$.
- (c) Show that the measurements $\{x_i\}_{i=1}^N$ are conditionally independent, given $\{y_i\}_{i=1}^N$ and that $x \sim N(\mu, \Sigma)$ with $\Sigma = UU^\top + \sigma^2 I$. Derive an algorithm for estimating μ and Σ from $\{x_i\}_{i=1}^N$, and U and σ from Σ .
- (d) Assume now that \boldsymbol{x} is drawn from a mixture of n models of the form $\boldsymbol{x} = \boldsymbol{\mu}_j + U_j \boldsymbol{y}_j + \boldsymbol{\epsilon}_j$ with mixing proportions π_j , where $\sum_{j=1}^n \pi_j = 1$. As before, assume that $\boldsymbol{y}_j \sim N(\mathbf{0}, I)$, $\boldsymbol{\epsilon}_j \sim N(\mathbf{0}, \sigma_j^2 I)$ and \boldsymbol{y}_j and $\boldsymbol{\epsilon}_j$ are independent for all j = 1, ..., n. Derive the equations of the EM algorithm for estimating the parameters of the mixture model from data points $\{\boldsymbol{x}_i\}_{i=1}^N$.

3. More on Central Clustering and Image Segmentation

(a) Consider the polysegment algorithm for clustering data in \mathbb{R} (Algorithm 4.1, page 62 of GPCA book). Show that the least squares solution for the vector of coefficients $\boldsymbol{c} = (c_1, c_2, \dots, c_n)^{\top} \in \mathbb{R}^n$ is

$$\boldsymbol{c} = \begin{bmatrix} E(\boldsymbol{x}^{2n-2}) & E(\boldsymbol{x}^{2n-3}) & \cdots & E(\boldsymbol{x}^{n-1}) \\ E(\boldsymbol{x}^{2n-3}) & \ddots & & \\ \vdots & & \ddots & \vdots \\ E(\boldsymbol{x}^{n-1}) & E(\boldsymbol{x}^{n-2}) & \cdots & 1 \end{bmatrix}^{-1} \begin{bmatrix} E(\boldsymbol{x}^{2n-1}) \\ E(\boldsymbol{x}^{2n-2}) \\ \vdots \\ E(\boldsymbol{x}^n) \end{bmatrix}.$$
(1)

where $E(\boldsymbol{x}^k) = \frac{1}{N} \sum_{i=1}^{N} x_i^k$ is the *k*th moment of the points $\{x_i\}_{i=1}^{N}$. Show also that when n = 2 the roots of $p(x) = x^2 + c_1 x + c_2$ (the cluster centers) are always real. Can you extend your result to n > 2?

- (b) Prove as rigorously as you can that $n = \min\{j : \operatorname{rank}(V_i) = j\}$, i.e. formula 4.4 in GPCA book. The rigorous proof involves using Hilbert' Nullstellensatz, which you can find in Appendix B of GPCA book.
- (c) Implement the polysegment algorithm. The format of the function must be

Function	[means,group]	=	polysegment(x,n)
----------	---------------	---	------------------

Parameters

- x $D \times N$ matrix whose columns are the data points with D = 1 or D = 2
- n number of groups

Returned values

- mean $D \times n$ matrix whose columns are the cluster centers
- group $1 \times N$ vector with group membership of each point

Description

Computes the clustering of points using polysegment.

- (d) Use your script from HW4 to generates data in ℝ² distributed according to a mixture of two Gaussians with means (-2, -2) and (2, 2), and common variance σI. Assume that the mixing proportions are π₁ = π₂ = 1/2. Plot the mean number of iterations and the mean error in the estimation of the means as a function of σ for σ = 0.1:0.1:1 for 1,000 realizations of 200 points for the following algorithms: Polysegment, Kmeans randomly initialized, EM randomly initialized, EM initialized with Kmeans. Compare your results. What are the advantages disadvantages of each algorithm?
- (e) Use polysegment, kmeans and EM to segment the images on the course webpage. Use 0:1/(n-1):1 as the n initial cluster centers for kmeans and EM. Compare your results. What are the advantages disadvantages of each algorithm?

4. Line Clustering

Using the formula $\boldsymbol{x} = U_j \boldsymbol{y} + B_j \boldsymbol{s}$ where $\boldsymbol{y} \sim N(0, \sigma_y^2 I)$ and $\boldsymbol{s} \sim N(0, \sigma_j^2 I)$, with $U_1 = [1, 0]^\top$, $U_2 = [\cos(\theta), \sin(\theta)]^\top$, $B_1 = [0, 1]^\top$, $B_2 = [-\sin(\theta), \cos(\theta)]^\top$, $\sigma_y = 10$, $\sigma_1 = \sigma_2 = .5$, and $\theta = 0:15:90$, randomly generate 7 datasets containing 1000 points each, corresponding to different values of θ .

- (a) For each dataset, use classical EM to segment the data points into 2 groups.
- (b) For each dataset, use polysegment adapted for line clustering to cluster the data points.
- (c) Plot the percentage of incorrectly classified points as a function of θ for each one of the two methods and comment your results.

5. A closed form solution to two hyperplane clustering

Let $p(\mathbf{x}) = \mathbf{c}^{\top} \nu_2(\mathbf{x}) = (\mathbf{b}_1^{\top} \mathbf{x}) (\mathbf{b}_2^{\top} \mathbf{x})$ be the polynomial whose zero set is the union of two hyperplanes in \mathbb{R}^D with normal vectors \mathbf{b}_1 and \mathbf{b}_2 .

- (a) Show that $p(x) = \mathbf{x}^{\top} M \mathbf{x}$ where $M = \mathbf{b}_1 \mathbf{b}_2^{\top} + \mathbf{b}_2 \mathbf{b}_1^{\top} \in \mathbb{R}^{D \times D}$.
- (b) Write M as an explicit function of c. For example, if D = 3, then

$$M = \begin{bmatrix} 2c_1 & c_2 & c_3 \\ c_2 & 2c_4 & c_5 \\ c_3 & c_5 & 2c_6 \end{bmatrix}$$
(2)

where $c = (c_1, c_2, c_3, c_4, c_5, c_6)$ is the vector of coefficients.

- (c) Let $M = U\Lambda U^{-1}$ be the eigenvalue decomposition of M, where $U \in SO(3)$ and Λ diagonal with $\lambda_1 \ge \lambda_2 \ge \cdots \lambda_D$. Show that M is of rank 2, with eigenvalues $\lambda_1 > 0$, $\lambda_2 < 0$ and $\lambda_j = 0$, $j = 3, 4, \ldots, D$.
- (d) Show that the normal vectors can be obtained (up to a scale factor) as:

$$\begin{bmatrix} \boldsymbol{b}_1 & \boldsymbol{b}_2 \end{bmatrix} = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} \sqrt{\lambda_1} & \sqrt{\lambda_1} \\ \sqrt{-\lambda_2} & -\sqrt{-\lambda_2} \end{bmatrix}.$$
 (3)