
HW 5: Learning Theory II (580.692)

Instructor: René Vidal, Office: 308B Clark, E-mail:rvidal@cis.jhu.edu
Grader: Atiyeh Ghoreyshi. Office: 319 Clark, E-mail:ati@cis.jhu.edu

Due 10/19/06 beginning of the class

1. Read Chapter 4 of GPCA book. Go tohttp://www.vision.jhu.edu/gpcabook/and submit all the typos you find
as well as suggestions you may have to improve the quality and/or readability of the material.You will receive
credit for each interesting typo or suggestion you submit.

2. Mixtures of PPCA

Letx ∈ R
D, y ∈ R

d andǫ ∈ R
D, d ≤ D, be random variables related by the generative modelx = µ+Uy+ǫ,

where the parameters of the model are the meanµ ∈ R
D and the subspace basisU ∈ R

D×d. Assume further
thaty ∼ N(0, I), ǫ ∼ N(0, σ2I) and thaty andǫ are independent.

(a) Is it necessary to assumeU⊤U = I? Why yes, or why no?

(b) Derive the E and M steps of the Expectation Maximization algorithm with y as a latent variable to obtain
estimates of the parametersµ, U andσ from given measurements{xi}N

i=1
.

(c) Show that the measurements{xi}N
i=1

are conditionally independent, given{yi}N
i=1

and thatx ∼ N(µ, Σ)
with Σ = UU⊤ + σ2I. Derive an algorithm for estimatingµ andΣ from {xi}N

i=1
, andU andσ from Σ.

(d) Assume now thatx is drawn from a mixture ofn models of the formx = µj + Ujyj + ǫj with mixing
proportionsπj , where

∑n

j=1
πj = 1. As before, assume thatyj ∼ N(0, I), ǫj ∼ N(0, σ2

j I) andyj

andǫj are independent for allj = 1, . . . , n. Derive the equations of the EM algorithm for estimating the
parameters of the mixture model from data points{xi}N

i=1
.

3. More on Central Clustering and Image Segmentation

(a) Consider thepolysegment algorithm for clustering data inR (Algorithm 4.1, page 62 of GPCA book).
Show that the least squares solution for the vector of coefficientsc = (c1, c2, . . . , cn)⊤ ∈ R

n is

c =
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whereE(xk) = 1

N

∑N

i=1
xk

i is thekth moment of the points{xi}N
i=1

. Show also that whenn = 2 the
roots ofp(x) = x2 + c1x + c2 (the cluster centers) are always real. Can you extend your result ton > 2?

(b) Prove as rigorously as you can thatn = min{j : rank(V i) = j}, i.e. formula 4.4 in GPCA book. The
rigorous proof involves using Hilbert’ Nullstellensatz, which you can find in Appendix B of GPCA book.

(c) Implement thepolysegment algorithm. The format of the function must be
Function [means,group] = polysegment(x,n)
Parameters

x D × N matrix whose columns are the data points withD = 1 or D = 2
n number of groups

Returned values
mean D × n matrix whose columns are the cluster centers
group 1 × N vector with group membership of each point
Description
Computes the clustering of points using polysegment.

1



(d) Use your script from HW4 to generates data inR
2 distributed according to a mixture of two Gaussians

with means(−2,−2) and (2, 2), and common varianceσI. Assume that the mixing proportions are
π1 = π2 = 1/2. Plot the mean number of iterations and the mean error in the estimation of the means as a
function ofσ for σ = 0.1:0.1:1 for 1,000 realizations of 200 points for the following algorithms: Pol-
ysegment, Kmeans randomly initialized, EM randomly initialized, EM initialized with Kmeans. Compare
your results. What are the advantages disadvantages of eachalgorithm?

(e) Usepolysegment,kmeans andEM to segment the images on the course webpage. Use0:1/(n-1):1
as then initial cluster centers forkmeans andEM. Compare your results. What are the advantages disad-
vantages of each algorithm?

4. Line Clustering

Using the formulax = Ujy + Bjs wherey ∼ N(0, σy
2I) ands ∼ N(0, σj

2I), with U1 = [1, 0]⊤, U2 =
[cos(θ), sin(θ)]⊤, B1 = [0, 1]⊤, B2 = [− sin(θ), cos(θ)]⊤, σy = 10, σ1 = σ2 = .5, andθ = 0:15:90,
randomly generate 7 datasets containing 1000 points each, corresponding to different values ofθ .

(a) For each dataset, use classical EM to segment the data points into 2 groups.

(b) For each dataset, usepolysegment adapted for line clustering to cluster the data points.

(c) Plot the percentage of incorrectly classified points as afunction ofθ for each one of the two methods and
comment your results.

5. A closed form solution to two hyperplane clustering

Let p(x) = c⊤ν2(x) = (b⊤1 x)(b⊤

2 x) be the polynomial whose zero set is the union of two hyperplanes inR
D

with normal vectorsb1 andb2.

(a) Show thatp(x) = x⊤Mx whereM = b1b
⊤

2
+ b2b

⊤

1
∈ R

D×D.

(b) WriteM as an explicit function ofc. For example, ifD = 3, then

M =





2c1 c2 c3

c2 2c4 c5

c3 c5 2c6



 (2)

wherec = (c1, c2, c3, c4, c5, c6) is the vector of coefficients.

(c) LetM = UΛU−1 be the eigenvalue decomposition ofM , whereU ∈ SO(3) andΛ diagonal withλ1 ≥
λ2 ≥ · · ·λD. Show thatM is of rank 2, with eigenvaluesλ1 > 0, λ2 < 0 andλj = 0, j = 3, 4, , . . . , D.

(d) Show that the normal vectors can be obtained (up to a scalefactor) as:

[

b1 b2

]

=
[

U1 U2

]

[ √
λ1

√
λ1√

−λ2 −
√
−λ2

]

. (3)


