HW 5: Learning Theory II (580.692)

Instructor: René Vidal, Office: 308B Clark, E-mail: *rvidal@cis.jhu.edu* Grader: Dheeraj Singaraju. Office: 319 Clark, E-mail: *dheeraj@cis.jhu.edu*

Due 10/26/06 beginning of the class

- 1. Read Chapter 4 of GPCA book. Go to *http://www.vision.jhu.edu/gpcabook/* and submit all the typos you find as well as suggestions you may have to improve the quality and/or readability of the material. You will receive credit for each interesting typo or suggestion you submit.
- 2. Hyperplane clustering with correspondences: Exercise 4.5 of the book.
- 3. Clustering linear from bilinear varieties: Let $S = \{(\boldsymbol{x}, \boldsymbol{y}) \in \mathbb{R}^D \times \mathbb{R}^D : \boldsymbol{u}^\top \boldsymbol{x} = 0 \lor \boldsymbol{y}^\top A \boldsymbol{x} = 0\}$, where $\boldsymbol{u} \neq \boldsymbol{0}$ and $e_D^\top A = e_D^\top = \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \end{bmatrix}$.
 - (a) Find a polynomial p(x, y) that vanishes on S. How many independent monomials are there in p?
 - (b) Show that p can be written as $p(x, y) = y^{\top} \mathcal{M} \nu_2(x)$. How is \mathcal{M} related to A and u?
 - (c) If D = 3, write the \mathcal{M} explicitly, and show how one can compute \boldsymbol{u} and A from the entries of \mathcal{M} .
 - (d) Let X = {(x_i, y_i) ∈ S}^N_{i=1} be a given data set. Derive an algorithm to compute M from X. Then, derive an algorithm to compute A and u from the derivatives of p with respect to x and y.
 Hint: Explicitly write down the derivatives of the polynomial p(x, y) and inspect the values of these derivatives when u^Tx = 0 and when y^TAx = 0. Also, making clever canonical choices for x and y can make the solution easier.
- 4. Clustering bilinear varieties. Let $S_j = \{(\boldsymbol{x}, \boldsymbol{y}) \in \mathbb{R}^3 \times \mathbb{R}^3 : \boldsymbol{y}^\top F_j \boldsymbol{x} = 0\}$ for j = 1, 2. Assume that for j = 1, 2 there are nonzero vectors $\boldsymbol{e}_1 \neq \boldsymbol{e}_2$ such that $\boldsymbol{e}_j^\top F_j = \boldsymbol{0}^\top$.
 - (a) Show that $y^{\top}Ax = (y \otimes x)^{\top} \operatorname{vec}(A)$, where $\operatorname{vec}(A)$ is the stack of all the rows of A.
 - (b) Let z = y ⊗ x. Find a polynomial p(z) = c^Tν₂(z) that vanishes on S₁ ∪ S₂. How many independent monomials in z are there in p(z)?
 - (c) Find a polynomial p(x, y) = ν₂(y)^T Fν₂(x) that vanishes on S₁ ∪ S₂. How is F related to F₁ and F₂? How many independent monomials in (x, y) are there in p(x, y)? Why does this number not coincide with the one computed in part (b)?
 - (d) Given $X = \{(x_i, y_i) \in S_1 \cup S_2\}_{i=1}^N$, derive an algorithm for computing \mathcal{F} from X using parts (a) & (c).
 - (e) Show that for all $(\boldsymbol{x}, \boldsymbol{y}) \in S_j$, we have $\boldsymbol{e}_j^\top \frac{\partial p}{\partial \boldsymbol{y}}(\boldsymbol{x}, \boldsymbol{y}) = 0$.
 - (f) Given X, let $\ell_i = \frac{\partial p}{\partial y}(x_i, y_i)$. Use part (e) to show that $\{\ell_i\}_{i=1}^N$ live in a union of two planes with normals e_1 and e_2 . How would you compute e_1 and e_2 from $\{\ell_i\}_{i=1}^N$ and cluster the data X into the two groups?
- 5. Implement the GPCA algorithm for hyperplanes. Test it on the datasets on the website. Use the following format

Function [b, group] = gpca(x, n)

- \times D \times N matrix whose columns are the data points
- n number of groups

Returned values

- b $D \times n$ matrix whose columns are the normal vectors
- group $1 \times N$ vector with group membership of each point

Description

Parameters

Hyperplane clustering using GPCA.