
HW 7: Learning Theory II (580.692)

Instructor: René Vidal, Phone: 410-516-7306, E-mail: rvidal@cis.jhu.edu
Grader: Alvina Goh, email: alvina@cis.jhu.edu

Due 11/02/06 beginning of the class

1. Read Chapter 7 until end of 7.1, and Chapter 8 until end of 8.33 of GPCA book. Go to http://www.vision.jhu.edu/gpcabook/
and submit all the typos you find as well as suggestions you may have to improve the quality and/or readability
of the material. You will receive credit for each interesting typo or suggestion you submit.

2. Properties of the Veronese map.

Consider the Veronese map νn : [x1, . . . , xD ]T 7→ [. . . , xn, . . .]T where xn = xn1

1 xn2

2 . . . xnD

D ranges over all

monomials of degree n =
D
∑

i=1

ni in the variables x1, x2, . . . , xD , sorted in the degree-lexicographic order, and

let x, y ∈ R
D .

(a) Inner product invariance: Show that the polynomial kernel k(x, y) = (y>x)n can be written in terms
of the Veronese map as k(x, y) = νn(y)>Mνn(x), where M ∈ R

Mn(D)×Mn(D) is a diagonal matrix,
and its (n1, n2, . . . , nD)th entry is n!

n1!n2!...nD! with
∑D

i=1 ni = n.
Hint: Use the Multinomial Theorem.

(b) Linear invariance:

i. Show that νn(αx+y) =
∑n

i=0 αifi(x, y) where fi(x, y) ∈ R
Mn(D) is a bi-homogenous polynomial

of degree i in x and (n − i) in y for i = 0, . . . , n.
ii. Let Sn be the space of homogeneous polynomials of degree n in D variables. Define the transforma-

tion T : Sn → Sn, such that T (pn(x)) = pn(Ax), where A ∈ R
D×D. Show that the transformation

T is linear.
iii. Show that for all A ∈ R

D×D there exists an Ã ∈ R
Mn(D)×Mn(D) such that for all x, νn(Ax) =

Ãνn(x).
(c) Rotation invariance: Show that for D = 3 and all R ∈ SO(3), there exists R̃ ∈ SO(Mn(D)) such that

for all x, νn(Rx) = R̃M1/2νn(x), where M is the matrix defined in 2(a).
Hint: Consider (y>Rx)n in 2(a), and also apply part (b)iii to νn(R>Rx)

3. 3-D Reconstruction from Multiple Calibrated Orthographic Views.

Let {Xp ∈ R
3}P

p=1 be the coordinates of an unknown set of points lying on a rigidly moving object with
respect to some fixed coordinate system. Let (Rf , Tf ) ∈ SE(3) be the unknown pose of the object at time
f = 1, 2, . . . , F relative to a moving camera observing the object. Let xfp ∈ R

2 be a known measurement of
the orthographic projection of Xp ∈ R

3 in frame f . That is, xfp = MfXp + Vf , where
[

Mf Vf

]

=

[

1 0 0
0 1 0

]

[

Rf Tf

]

(1)

is the projection matrix associated with frame f .

(a) Show that the optimal solution for the 2-D translation Vf ∈ R
2 in the sense of minimizing the reprojection

error is

Vf = xf =
1

P

P
∑

p=1

xfp f = 1, . . . , F. (2)

1



Hint: show that one can assume that X = 1
P

∑P
p=1 Xp = 0 without loss of generality.

(b) Let wfp = xfp − xf be the mean subtracted point correspondences and define a data matrix

W =







w11 · · · w1P

...
...

wF1 · · · wFP






∈ R

2F×P . (3)

Show that the measurement matrix W factors as W = MS, where M =







M1

...
MF






∈ R

2F×3 and S =

[

X1 X2 · · · XP

]

∈ R
3×P are the so-called motion and structure matrices, respectively. Show that

rank(W ) ≤ 3 and rank(M) ≥ 2 and derive conditions on the camera motion and the 3D structure such
that rank(W ) = 3. Under such conditions, propose an algorithm for computing the motion and structure
matrices M = M̃K and S = K−1S̃ up to an unknown invertible matrix K ∈ R

3×3.
(c) Let Q = KKT ∈ R

3×3. Show that the sub-matrix of M̃ consisting of rows 2f − 1 and 2f , M̃2f−1:2f ∈
R

2×3, is such that

M̃2f−1:2fQM̃T
2f−1:2f = I f = 1, . . . , F. (4)

Propose a linear algorithm to compute Q. What is the minimum number of frames needed? Given Q, show
how to compute K up to a rotation. Given such a K show how to compute M , S, Rf and Tf . Is there any
ambiguity in the reconstruction?

4. 3-D Motion Segmentation from Multiple Affine Views.

Let {Xp ∈ R
3}P

p=1 be the coordinates of an unknown set of points lying on a collection of n rigidly moving
object with respect to some fixed coordinate system. Let (Ri

f , T i
f ) ∈ SE(3), for i = 1, . . . , n, be the unknown

poses of the objects at time f = 1, 2, . . . , F relative to a moving camera observing the objects. Let xfp ∈ R
2

be a known measurement of the orthographic projection of Xp ∈ R
3 in frame f .

(a) Show that the P vectors (x>
1p, x

>
2p, · · · , xFp)

> ∈ R
2F live in n subspaces of dimension 2, 3, or 4. Explain

why when n > 1 it is not possible to reduce the dimension of each subspace to 3, as you did in Problem 3.
(b) Use the function gpca from Homework 6 to segment the point correspondences of the following five

video sequences in the course webpage: i) Kanatani1, ii) Kanatani2, iii) Kanatani3, iv) three-cars, v) can-
book. In each case, assume the number of groups is known, plot the grouping of the ordered data given by
GPCA, and report the percentage of misclassified points. Use subplot(5,1,i) to plot all five graphs
on a single figure. Recall that you will need to project the data in R

2F onto a subspace of dimension d.
What is the value for d?

(c) Repeat part (b) using the function ksubspaces that you implemented in Homework 4. Use the result of
GPCA from part (b) to initialize K-subspaces. Use both the data without projection, i.e. the data in R

2F ,
and the projected data in R

d as the input to K-subspaces. Which one is better, projecting or not, and why?

5. Face Clustering with Varying Illumination II.

In HW 4, you assumed that faces are Lambertian for the sake of simplicity and as a consequence, the images of
n individuals taken under several illumination conditions live in n 3-dimensional subspaces of R

P , where P is
the number of pixels. It follows that clustering a set of images of multiple faces according to which individuals
the image belongs to is a subspace clustering problem. On the set of images given in the course web-page,
reduce the dimension using PCA to the first 3 principal components. Now, assume the number of groups is
known, i.e. n = 3, and segment the faces using

(a) GPCA
(b) K-subspaces
(c) K-subspaces initialized by GPCA

Plot the grouping of the ordered data and report the percentage of incorrectly classified images in each case.


