
Advanced Topics in Machine Learning (600.692)
Homework 2: Principal Component Analysis

Instructor: René Vidal

Due Date: 02/28/2014, 11.59PM Eastern

READING MATERIAL: Chapter 2 and Appendix B.4 of GPCA book.

1. Statistical PCA for Non-Zero Mean Random Variables. Let x ∈ RD be a random vector. Let µx = E(x) ∈
RD and Σx = E(x − µ)(x − µ)> ∈ RD×D be, respectively, the mean and the covariance of x. Define the
principal components of x as the random variables yi = u>i x+ai ∈ R, i = 1, . . . , d ≤ D, where ui ∈ RD is a
unit norm vector, ai ∈ R, and {yi}ni=1 are zero mean, uncorrelated random variables whose variances are such
that Var(y1) ≥ Var(y2) ≥ · · · ≥ Var(yd). Assuming that the eigenvalues of Σx are different from each other,
show that

(a) ai = −u>i µx, i = 1, . . . , d.

(b) u1 is the eigenvector of Σx corresponding to its largest eigenvalue.

(c) u>2 u1 = 0 and u2 is the eigenvector of Σ corresponding to its second largest eigenvalue.

(d) u>i uj = 0 for all i 6= j and ui is the eigenvector of Σx corresponding to its i-th largest eigenvalue.

2. Properties of PCA. Let x ∈ RD be a random vector with covariance matrix Σx ∈ RD×D. Consider a linear
transformation of x:

y = W>x, (1)

where y ∈ Rd and W ∈ RD×d has orthonormal columns. Let Σy = W>ΣxW be the covariance matrix for y.
Show that

(a) The trace of Σy is maximized by W = Ud, where Ud consists of the first d unit eigenvectors of Σx.

(b) The trace of Σy is minimized by W = Ũd, where Ũd consists of the last d unit eigenvectors of Σx.

3. Subspace Angles. Given two d-dimensional subspaces S1 and S2 in RD, define the largest subspace angle θ1
between S1 and S2 to be the largest possible sharp angle (< 90◦) formed by any two vectorsu1,u2 ∈ (S1∩S2)⊥

with u1 ∈ S1 and u2 ∈ S2 respectively. Let U1 ∈ RD×d be an orthogonal matrix whose columns form a basis
for S1 and similarly U2 for S2. Show that if σ1 is the smallest non-zero singular value of the matrixW = U>1 U2,
then we have

cos(θ1) = σ1. (2)

Similarly, one can define the rest of the subspace angles as cos(θi) = σi, i = 2, . . . , d from the rest of the
singular values of W .

Hint: Following the derivation of statistical PCA, find first the smallest angle (largest cosine = largest variance)
and then find the second smallest angle all the way to the largest angle (smallest variance). As your proceed, the
vectors that achieve the second smallest angle need to be chosen to be perpendicular to the vectors that achieve
the smallest angle and so forth, as we did in statistical PCA. Also, let u1 = U1c1 and u2 = U2c2. Show that
you need to optimize cos(θ) = c>1 U

>
1 U2c2 subject to ‖c1‖ = ‖c2‖ = 1. Show (using Lagrange multipliers)

that a necessary condition for optimality is[
0 U>1 U2

U>2 U1 0

] [
c1
c2

]
= λ

[
c1
c2

]
. (3)

Deduce from here that σ = λ2 is a singular value of U>1 U2 with c2 as singular vector.
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4. Ranking of Webpages. PCA is actually used to rank webpages on the Internet by many popular search engines.
One way to see this is to view the Internet as a directed graph G = (V,E), where every webpage, denoted as pi,
is a node in V , and every hyperlink from pi to pj , denoted as eij , is a directed edge in E. We can assign each
webpage pi an “authority” score xi and a “hub” score yi. The “authority” score xi is a scaled sum of the “hub”
scores of other webpages pointing to webpage pi. The “hub” score is the scaled sum of the “authority” scores of
other webpages that webpage pi is pointing out to. Let x and y be the vector of authority scores and hub scores,
respectively. Also, let A be the adjacent matrix of the graph G, i.e., Aij = 1 if eij ∈ E and Aij = 0 otherwise
and consider the following algorithm:

Algorithm 1 (Ranking webpages)
Choose a random vector x, and repeat the following two steps

(a) y′ ← Ax, y ← y′

‖y′‖

(b) x′ ← A>y, x← x′

‖x′‖

Answer the following questions.

(a) Given the definitions of hubs and authorities, justify the algorithm.

(b) Show that unit-norm eigenvectors of AA> (for y) and A>A (for x) give fixed points of the algorithm.

(c) Show that, in general, y and x converge to the unit-norm eigenvectors associated with the maximum eigen-
value of AA> and A>A, respectively. Explain why not any other eigenvector and why the normalization
steps in the algorithm are necessary.

(d) Explain how y and x can be computed from the singular value decomposition of A. Under what circum-
stances would the given algorithm be preferable to using the SVD?

In the literature, this is known as the Hypertext Induced Topic Selection (HITS) algorithm. The same algorithm
can also be used to rank any competitive sports such as football teams and chess players.

5. PPCA by Maximum Likelihood. Study the proof of Theorem 2.8 in great detail and show the missing piece
that is left as an exercise to the reader. More specifically, let λ1, . . . , λD be the eigenvalues of a covariance
matrix Σ ∈ RD×D. Let π : {1, . . . , D} → {1, . . . , D} be a permutation of the first D integers. We would like
to choose d eigenvalues λπ[1], . . . , λπ[d] such that the discarded ones λπ[d+1], . . . , λπ[D] minimize

M(π) = log
(∑D

i=d+1 λπ[i]

D − d

)
−
∑D
i=d+1 log λπ[i]

D − d
. (4)

Use Jensen’s inequality to show thatM is nonnegative and the concavity of the log function to prove thatM is
minimized by choosing λπ[i], i = d+ 1, . . . , D to be contiguous in magnitude.

Submission instructions. Please follow the same instructions as in HW1.

2


