Computer Vision (600.461/600.661) Homework 1: Mathematical Background

Instructor: René Vidal

Due 09/11/2014, 11.59PM Eastern

- 1. Properties of Symmetric Matrices. Let $S \in \mathbb{R}^{n \times n}$ be a real symmetric matrix. Show that:
 - (a) All the eigenvalues of S are real, i.e., $\sigma(S) \subset \mathbb{R}$.
 - (b) Let (λ, v) be an eigenvalue-eigenvector pair. If $\lambda_i \neq \lambda_j$, then $v_i \perp v_j$; i.e., eigenvectors corresponding to distinct eigenvalues are orthogonal.
 - (c) There always exist n orthonormal eigenvectors of S, which form a basis of \mathbb{R}^n .
 - (d) S is positive definite (positive semidefinite) if and only if all of its eigenvalues are positive (non-negative), i.e., S ≻ 0 (S ≥ 0), iff ∀i = 1, 2, ..., n, λ_i > 0 (λ_i ≥ 0).
 - (e) If $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$ are the sorted eigenvalues of S, then $\max_{\|\boldsymbol{x}\|_2=1} \boldsymbol{x}^\top S \boldsymbol{x} = \lambda_1$ and $\min_{\|\boldsymbol{x}\|_2=1} \boldsymbol{x}^\top S \boldsymbol{x} = \lambda_n$.
- 2. Properties of the SVD. Let $A = U\Sigma V^{\top}$ be the SVD of a matrix $A \in \mathbb{R}^{m \times n}$ of rank r. Show that:
 - (a) $A \boldsymbol{v}_j = \sigma_j \boldsymbol{u}_j$ for $j = 1, \dots, r$ and $A^\top \boldsymbol{u}_j = \sigma \boldsymbol{v}_j$ for $j = 1, \dots, r$.
 - (b) The range or image of A is spanned by the left singular vectors of A associated with its nonzero singular values, i.e., range(A) = span{u_i}^r_{i=1}.
 - (c) The kernel or null space of A is spanned by the right singular vectors of A associated with its zero singular values, i.e., $ker(A) = span\{v_i\}_{i=r+1}^{m}$.
 - (d) The squared Frobenius norm of A is equal to the sum of the squared singular values of A, i.e., $||A||_F^2 = \sum_{ij}^r a_{ij}^2 = \sum_{k=1}^r \sigma_k^2$.
 - (e) The right singular vector of A associated to its smallest singular value, v_m , is a solution to the optimization problem $\min_{x \to \infty} ||Ax||_2^2$ such that $||x||_2 = 1$.
- 3. Least Squares. Recall that the pseudo inverse of a matrix A ∈ ℝ^{m×n} is the unique matrix A[†] ∈ ℝ^{n×m} such that: (i) AA[†]A = A, (ii) A[†]AA[†] = A[†], (iii) (AA[†])[⊤] = AA[†], and (iv) (A[†]A)[⊤] = A[†]A. Let A = UΣV[⊤] be the SVD of A, let r = rank(A) and let b ∈ ℝ^m. Show that:
 - (a) The pseudo-inverse of A is given by $A^{\dagger} = V_r \Sigma_r^{-1} U_r^{\top}$, where $A = U_r \Sigma_r V_r^{\top}$ is the compact SVD of A.
 - (b) $x^* = A^{\dagger} b$ is a solution to the optimization problem $\min_{x} ||Ax b||_2^2$. When is x^* the unique solution?
 - (c) If $\boldsymbol{b} \in \operatorname{range}(A)$, $\boldsymbol{x}^* = A^{\dagger} \boldsymbol{b}$ is the solution to the optimization problem $\min_{\boldsymbol{x}} \|\boldsymbol{x}\|_2^2$ such that $A\boldsymbol{x} = \boldsymbol{b}$.

Submission instructions. Send email to vision14jhu@gmail.com with subject 600.461/600.661:HW1 and attachment firstname-lastname-hw1-vision14.tar.gz. The attachment should have the following content:

1. A file called hw1.pdf containing your answers to each one of the analytical questions. If at all possible, you should generate this file using the latex template hw1-vision14.tex. If not possible, you may use another editor, or scan your handwritten solutions. But note that you must submit a single PDF file with all your answers.