Computer Vision (600.461/600.661) Homework 1: Mathematical Background

Instructor: René Vidal

Due 09/11/2014, 11.59PM Eastern

- 1. Properties of Symmetric Matrices [20pts]. Let $S \in \mathbb{R}^{n \times n}$ be a real symmetric matrix. For $i = 1, \ldots, n$, let (λ_i, v_i) be an eigenvalue-eigenvector pair. Show that:
	- (a) All the eigenvalues of S are real, i.e., $\lambda_i \in \mathbb{R}$ [4pts]. **ANSWER:** Let (λ, v) be an eigenvalue-eigenvector pair of S. Then $Sv = \lambda v$ and $\bar{v}^\top S v = \lambda ||v||^2$, where \bar{v}^{\top} is the conjugate transpose of v and $\bar{\lambda}$ is the conjugate of λ . Since $S^{\top} = S$, we have $\bar{v}^{\top}S = \bar{\lambda}\bar{v}^{\top}$ and so $\bar{\bm{v}}^\top S \bm{v} = \bar{\lambda} ||\bm{v}||^2$. Therefore, $(\lambda - \bar{\lambda}) ||\bm{v}||^2 = 0$ with $\bm{v} \neq 0$, and so $\bar{\lambda} = \lambda$, which implies $\lambda \in \mathbb{R}$.
	- (b) Eigenvectors corresponding to distinct eigenvalues are orthogonal, i.e., if $\lambda_i \neq \lambda_j$, then $v_i \perp v_j$ [4pts]. **ANSWER:** Let (λ_i, v_i) and (λ_j, v_j) be two eigenvalue-eigenvector pairs of S. Then, $Sv_i = \lambda_i v_i$, $\mathbf{v}_i^{\top}S = \lambda_i \mathbf{v}_i^{\top}$ and $S\mathbf{v}_j = \lambda_j \mathbf{v}_j$. Therefore, $\mathbf{v}_i^{\top}S\mathbf{v}_j = \mathbf{v}_i^{\top}(S\mathbf{v}_j) = \mathbf{v}_i^{\top}(\lambda_j \mathbf{v}_j) = \lambda_j(\mathbf{v}_i^{\top} \mathbf{v}_j) = \lambda_i(\mathbf{v}_i^{\top} \mathbf{v}_j)$. We then have $(\lambda_i - \lambda_j)(\mathbf{v}_i^{\top} \mathbf{v}_j) = 0$. If $\lambda_i \neq \lambda_j$, this equality can hold only if $\mathbf{v}_i^{\top} \mathbf{v}_j = 0$, i.e., $\mathbf{v}_i \perp \mathbf{v}_j$.
	- (c) There always exist *n* orthonormal eigenvectors of *S*, which form a basis of \mathbb{R}^n [4pts]. **ANSWER:** Let (λ_1, v_1) be any eigenvector-eigenvalue pair of S and let v_1^{\perp} be its orthogonal complement. Since S is symmetric, v_1^{\perp} is an S-invariant subspace of \mathbb{R}^n , i.e., for all $w \in v_1^{\perp}$, we have $Sw \in v_1^{\perp}$
because $v_1^{\top}Sw = \lambda_1v_1^{\top}w = 0$. Thus, there exists an eigenvector of S in v_1^{\top} . Let v eigenvector and let λ_2 be its corresponding eigenvalue (which need not be different from λ_1). By the same argument, $v_1^{\perp} \cap v_2^{\perp}$ is an S-invariant subspace of \mathbb{R}^n , hence there exists an eigenvector of S in $v_1^{\perp} \cap v_2^{\perp}$. Finite induction finishes the proof.
	- (d) S is positive definite (positive semidefinite) if and only if all of its eigenvalues are positive (non-negative), i.e., $S \succ 0$ ($S \succeq 0$), iff $\forall i = 1, 2, ..., n$, $\lambda_i > 0$ ($\lambda_i \geq 0$) [4pts]. **ANSWER:** By the previous part, we can choose *n* eigenvalue-eigenvector pairs $\{(\lambda_i, v_i)\}_{i=1}^n$, such that

 $\mathbf{v}_i^{\top} \mathbf{v}_j = 0$ if $i \neq j$ and $\|\mathbf{v}_i\| = 1$. Since these eigenvectors form a basis for \mathbb{R}^n , any vector $\mathbf{x} \in \mathbb{R}^n$ can be written as $\mathbf{x} = \sum_{i=1}^{n} (\alpha_i \mathbf{v}_i), \alpha_i \in \mathbb{R}^n, i = 1, \dots, n$. Then $\mathbf{x}^\top S \mathbf{x} = \sum_{i=1}^{n} \lambda_i \alpha_i^2$. Note that if all $\lambda_i > 0$, then $x^{\top} S x > 0$, $\forall x \in \mathbb{R}^n - \{0\}$. Conversely, if $x^{\top} S x > 0$, then it must be the case that $\lambda_i > 0$. Otherwise, if e.g., $\lambda_1 \leq 0$, then $\mathbf{v}_1^{\top} S \mathbf{v}_1 = \lambda_1 \leq 0$, which gives a contradiction. Now, similarly if all $\lambda_i \geq 0$, then $x^\top S x \geq 0$, $\forall x \in \mathbb{R}^n$. Conversely, if $x^\top S x \geq 0$ for all x, then it must be the case that $\lambda_i \geq 0$, otherwise if $\lambda_1 < 0$, then $\mathbf{v}_1^{\top} S \mathbf{v}_1 = \lambda_1 < 0$, which would give us a contradiction.

(e) If $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$ are the sorted eigenvalues of S , then $\max_{\|x\|_2=1} x^\top S x = \lambda_1$ and $\min_{\|x\|_2=1} x^\top S x = \lambda_n$ [4pts].

ANSWER: By part (c), we can choose *n* eigenvectors forming a basis for \mathbb{R}^n . Then, any vector $x \in \mathbb{R}^n$ can be written as $x = \sum_{i=1}^{n} \alpha_i v_i$, where $\alpha_i \in \mathbb{R}, i = 1, \ldots, n$. We thus have $x^{\top} x = \sum_{i=1}^{n} \alpha_i^2$ and $x^{\top}Sx = \sum_{i=1}^{n} \lambda_i \alpha_i^2$. Since $\lambda_i \leq \lambda_1$ for $i = 1, \ldots, n$, we have $x^{\top}Sx \leq \lambda_1 \sum_{i=1}^{n} \alpha_i^2 = \lambda_1 x^{\top}x$, with equality occurring when $\alpha_1 \neq 0$ and $\alpha_2 = \ldots = \alpha_n = 0$. Therefore, $\max_{\|\mathbf{x}\|_2=1} (\mathbf{x}^\top S \mathbf{x}) = \lambda_1$. We can similarly prove that $\min_{\|\bm{x}\|_2=1} (\bm{x}^\top S\bm{x}) = \lambda_n$, by considering that $\lambda_n \leq \lambda_i$ for $i = 1, \ldots, n$.

ANSWER: Using the method of Lagrange multipliers, we build the Lagrangian function $\mathcal{L}(x, \lambda)$ = $x^T S x + \lambda (1 - x^T x)$. Setting the derivative of L to zero we obtain $2S x - 2\lambda x = 0$, which implies that $Sx = \lambda x$. Therefore, the solution (λ, x) should be an eigenvalue-eigenvector pair of S. Moreover, the optimal value is $x^{\top} S x = \lambda x^{\top} x = \lambda$. Therefore, if our goal is to maximize $x^{\top} S x$, then λ should be the largest eigenvalue. Conversely, if we wish to minimize $x^{\top} S x$, λ must be the smallest eigenvalue. Finally, to verify that these are indeed maximum and minimum, we notice that the Hessian of $\mathcal L$ is given by $H = 2(S - \lambda I)$, so that $x^{\top} H x = 2(x^{\top} S x - \lambda x^{\top} x)$. When $\lambda = \lambda_1$, we have that $S - \lambda I \preceq 0$, because $\boldsymbol{x}^\top H \boldsymbol{x} = 2(\boldsymbol{x}^\top S \boldsymbol{x} - \lambda_1 \boldsymbol{x}^\top \boldsymbol{x}) = 2(\sum_{i=1}^n \lambda_i \alpha_i^2 - \lambda_1 \sum_{i=1}^n \alpha_i^2) = \sum_{i=2}^n (\lambda_i - \lambda_1) \alpha_i^2 \leq 0$. When $\lambda = \lambda_n$, we have that $S - \lambda I \succeq 0$, because $\boldsymbol{x}^\top H \boldsymbol{x} = \sum_{i=1}^{n-1} (\lambda_i - \lambda_n) \alpha_i^2 \geq 0$.

2. Properties of the SVD [20pts]. Let $A = U\Sigma V^{\top}$ be the SVD of a matrix $A \in \mathbb{R}^{m \times n}$ of rank r. Show that:

- (a) $Av_j = \sigma_j u_j$ for $j = 1, \ldots, r$ and $A^{\top} u_j = \sigma v_j$ for $j = 1, \ldots, r$. [4pts]. **ANSWER:** Multiplying both sides of $A = U\Sigma V^{\top}$ by V results in $AV = U\Sigma V^{\top}V$. Using the orthonormality property of V, i.e. $V^{\top}V = I$, this reduces to $AV = U\Sigma$. Now in terms of the $j - th$ column of V and U, we have $Av_j = \sigma_j u_j$. Likewise, $A^{\top} = (U \Sigma V^{\top})^{\top} = V \Sigma^{\top} U^{\top}$. After multiplying both sides by U and using the orthonormality property of U, we obtain $A^{\top}U = V\Sigma^{\top}$, which results in $A^{\top}u_j = \sigma_j v_j$.
- (b) The range or image of A is spanned by the left singular vectors of A associated with its nonzero singular values, i.e., $\text{range}(A) = \text{span}\{\boldsymbol{u}_i\}_{i=1}^r$. [4pts] **ANSWER:** The range of A is the set of vectors of the form $y = Ax$ for all $x \in \mathbb{R}^n$. We can express this

set in terms of the SVD of A as $\text{range}(A) = \{ \mathbf{y} \in \mathbb{R}^m : \mathbf{y} = U \Sigma V^\top \mathbf{x}, \mathbf{x} \in \mathbb{R}^n \}$. Let $\mathbf{z} = \Sigma V^\top \mathbf{x}$. We notice that all entries of z beyond the r-th are zero because $\sigma_i = 0$ for $i > r$. This means that

$$
\mathbf{y} = \begin{bmatrix} \mathbf{u}_1 & \dots & \mathbf{u}_r \end{bmatrix} \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_r \end{bmatrix} \begin{bmatrix} z_1 \\ \vdots \\ z_r \end{bmatrix} = \begin{bmatrix} \mathbf{u}_1 & \dots & \mathbf{u}_r \end{bmatrix} \mathbf{w}, \tag{1}
$$

and so the range of A is the span of the first r columns of U, i.e., $\text{range}(A) = \text{span}\{\mathbf{u}_i\}_{i=1}^r$.

(c) The kernel or null space of A is spanned by the right singular vectors of A associated with its zero singular values, i.e., $\ker(A) = \text{span}\{v_i\}_{i=r+1}^n$. [4pts]

ANSWER: The kernel of A is defined as $\ker(A) = \{x \in \mathbb{R}^n : Ax = 0\}$. Now, since $Ax = U\Sigma V^{\top}x$, we notice that $A\mathbf{x} = \mathbf{0}$ if and only if $\Sigma V^{\top} \mathbf{x} = 0$, and do $\ker(A) = \{\mathbf{x} : \sigma_i \mathbf{v}_i^{\top} \mathbf{x} = 0, i = 1, \dots, n\}$. Since $\sigma_i > 0$ for $i = 1, \ldots, r$ and $\sigma_i = 0$ otherwise, we further have $\ker(A) = \{ \boldsymbol{x} : \boldsymbol{v}_i^\top \boldsymbol{x} = 0, i = 1, \ldots, r \}.$ Therefore, $\ker(A)$ is the orthogonal complement to the span of $\{v_i\}_{i=1}^r$. Since the vectors $\{v_i\}_{i=1}^n$ form an orthonormal basis for \mathbb{R}^n , we have that $\text{ker}(A)$ is the span of $\{v_i\}_{i=r+1}^n$, as claimed.

(d) The squared Frobenius norm of A is equal to the sum of the squared singular values of A, i.e., $||A||_F^2 =$ $\sum_{ij} a_{ij}^2 = \sum_{k=1}^r \sigma_k^2$. [4pts]

ANSWER: The sum of all the squared elements of a matrix is the trace of AA^{\dagger} . Moreover, trace(AA^{\dagger}) is equivalent to the sum of all the eigenvalues of AA^{\top} , which are the squared singular values of A. Thus: $\sum_{ij} a_{ij}^2 = \text{trace}(AA^{\top}) = \sum_k \lambda_k \{AA^{\top}\} = \sum_{k=1}^r \sigma_k^2.$

(e) The right singular vector of A associated to its smallest singular value, v_n , is a solution to the optimization problem $\min_{\bm{x}} \|A\bm{x}\|_2^2$ such that $\|\bm{x}\|_2 = 1$. [4pts]

ANSWER: Since $||Ax||_2^2 = x^{\top}A^{\top}Ax$, we can rewrite the optimization problem as $\min_{x} x^{\top}Mx$ s.t. $||x||_2 = 1$, where $M = A^{\top}A$. This is a constrained optimization problem whose Lagrangian is given by $\mathcal{L}(\bm{x},\lambda) = \bm{x}^\top M \bm{x} + \lambda (1-\bm{x}^\top \bm{x})$. The first order condition for optimality is $\frac{\partial \mathcal{L}}{\partial \bm{x}} = 2M\bm{x} - 2\lambda \bm{x} = 0$. Thus, $Mx = \lambda x$, and so λ is an eigenvalue of M. Multiplying both sides by x^{\top} gives $x^{\top}Mx = \lambda x^{\top}x = \lambda$. Since we are trying to minimize $x^{\top}Mx$, λ should be the smallest eigenvalue of $A^{\top}A$ and x should be the corresponding eigenvector. In other words, x should be the right singular vector of A associated to its smallest singular value. Finally, the second order condition for a minimum is $\frac{\partial^2 \mathcal{L}}{\partial x^2} = 2(M - \lambda I) \succeq 0$. This is the case when $\lambda = \sigma_n^2$ because the eigenvalues of $M - \lambda I$ are $\sigma_i^2 - \sigma_n^2 \ge 0$ for $i = 1, ..., n$.

3. Pseudo-Inverse of a Matrix. [10pts]

(a) Let $A = U_r \Sigma_r V_r^{\top}$ be the compact SVD of a matrix A of rank r. Show that the pseudo-inverse of A is given by $A^{\dagger} = V_r \Sigma_r^{-1} U_r^{\top}$. [2pts]

ANSWER: By the definition of the compact SVD, we have $V_r^{\top}V_r = U_r^{\top}U_r = I$, and Σ_r and Σ_r^{-1} are diagonal matrices. We then only need to verify all four criteria of the pseudo-inverse matrix as follows:

i.
$$
AA^{\dagger}A = U_r \Sigma_r V_r^{\top} V_r \Sigma_r^{-1} U_r^{\top} U_r \Sigma_r V_r^{\top} = U_r \Sigma_r V_r^{\top} = A
$$
,
\nii. $A^{\dagger}AA^{\dagger} = V_r \Sigma_r^{-1} U_r^{\top} U_r \Sigma_r V_r^{\top} V_r \Sigma_r^{-1} U_r^{\top} = V_r \Sigma_r^{-1} U_r^{\top} = A^{\dagger}$,
\niii. $(AA^{\dagger})^{\top} = (U_r \Sigma_r V_r^{\top} V_r \Sigma_r^{-1} U_r^{\top})^{\top} = (U_r U_r^{\top})^{\top} = U_r U_r^{\top} = AA^{\dagger}$,
\niv. $(A^{\dagger}A)^{\top} = (V_r \Sigma_r^{-1} U_r^{\top} U_r \Sigma_r V_r^{\top})^{\top} = (V_r V_r^{\top})^{\top} = V_r V_r^{\top} = A^{\dagger}A$.

(b) Consider the linear system of equations $Ax = b$, where the matrix $A \in \mathbb{R}^{m \times n}$ is of rank $r = \text{rank}(A) =$ $\min\{m, n\}$. Show that $x^* = A^{\dagger}b$ minimizes $||Ax - b||_2^2$, where A^{\dagger} is the pseudo-inverse of A. When is x^* the unique solution? [4pts]

ANSWER: We want to find the x^* that minimizes $||Ax - b||_2^2 = (Ax - b)^{\top} (Ax - b)$. The first order condition for optimality is given by

$$
\frac{\partial[(Ax - b)^{\top}(Ax - b)]}{\partial x} = 0 \implies A^{\top}Ax = A^{\top}b \implies (V_r \Sigma_r U_r^{\top})(U_r \Sigma_r V_r^{\top})x = (V_r \Sigma_r U_r^{\top})b
$$
\n
$$
\implies (V_r \Sigma_r \Sigma_r V_r^{\top})x = (V_r \Sigma_r U_r^{\top})b \quad \text{(since } U_r^{\top} U_r = I_{r \times r})
$$
\n
$$
\implies \Sigma_r V_r^{\top}x = U_r^{\top}b \quad \text{(pre-multiplying by } \Sigma_r^{-1} V_r^{\top} \text{ and using } V_r^{\top} V_r = I_{r \times r})
$$
\n
$$
\implies V_r^{\top}x = \Sigma_r^{-1} U_r^{\top}b \quad \text{(pre-multiplying by } \Sigma_r^{-1})
$$

Note that $x^* = (V_r \Sigma_r^{-1} U_r^{\top}) b = A^{\dagger} b$ is a solution of the above. When A is not full column rank, i.e., $m < n$, x^* is not the only solution of the minimization problem. In fact any vector $x^* + y$, where $y \in null(A)$ would be a solution to the problem. When A is column full rank, i.e., $m \geq n$, x^* is unique.

(c) If $b \in \text{range}(A)$, $x^* = A^{\dagger}b$ is the solution to the optimization problem $\min_{x} ||x||_2^2$ such that $Ax = b$. [4pts]

ANSWER: The Lagrangian is given by $\mathcal{L}(\bm{x}, \lambda) = \bm{x}^\top \bm{x} + \lambda(\bm{b} - A\bm{x})$, where $\lambda \in \mathbb{R}^m$ is a vector of Lagrange multipliers. The first order condition is given by $2x - A^{\top}\lambda = 0$, which yields $x = \frac{1}{2}A^{\top}\lambda$. Substituting this back into $Ax = b$ we obtain $\frac{1}{2}AA^\top \lambda = b = \frac{1}{2}U_r \Sigma_r V_r^\top V_r \Sigma_r U_r^\top \lambda \implies \frac{1}{2}U_r \Sigma_r^2 U_r^\top \lambda =$ $\mathbf{b} \implies U_r^{\top} \lambda = 2\Sigma_r^{-2} U_r^{\top} \mathbf{b}$. Therefore, $\mathbf{x} = \frac{1}{2} A^{\top} \lambda = \frac{1}{2} V_r \Sigma_r \tilde{U}_r^{\top} \lambda = V_r \Sigma_r \Sigma_r^{-2} U_r^{\top} \mathbf{b} = A^{\top} \mathbf{b}$. Finally, the Hessian of $\mathcal L$ is $H = 2I \succ 0$, hence $x = A^{\dagger} b$ is a minimum.