Computer Vision (600.461/600.661) Homework 1: Mathematical Background

Instructor: René Vidal

Due 09/11/2014, 11.59PM Eastern

- 1. Properties of Symmetric Matrices [20pts]. Let $S \in \mathbb{R}^{n \times n}$ be a real symmetric matrix. For i = 1, ..., n, let (λ_i, v_i) be an eigenvalue-eigenvector pair. Show that:
 - (a) All the eigenvalues of S are real, i.e., $\lambda_i \in \mathbb{R}$ [4pts]. **ANSWER:** Let (λ, v) be an eigenvalue-eigenvector pair of S. Then $Sv = \lambda v$ and $\bar{v}^{\top}Sv = \lambda \|v\|^2$, where \bar{v}^{\top} is the conjugate transpose of v and $\bar{\lambda}$ is the conjugate of λ . Since $S^{\top} = S$, we have $\bar{v}^{\top}S = \bar{\lambda}\bar{v}^{\top}$ and so $\bar{\boldsymbol{v}}^{\top} S \boldsymbol{v} = \bar{\lambda} \|\boldsymbol{v}\|^2$. Therefore, $(\lambda - \bar{\lambda}) \|\boldsymbol{v}\|^2 = 0$ with $\boldsymbol{v} \neq 0$, and so $\bar{\lambda} = \lambda$, which implies $\lambda \in \mathbb{R}$.
 - (b) Eigenvectors corresponding to distinct eigenvalues are orthogonal, i.e., if $\lambda_i \neq \lambda_j$, then $v_i \perp v_j$ [4pts]. **ANSWER:** Let (λ_i, v_i) and (λ_j, v_j) be two eigenvalue-eigenvector pairs of S. Then, $Sv_i = \lambda_i v_i$, $\boldsymbol{v}_i^{\top} S = \lambda_i \boldsymbol{v}_i^{\top} \text{ and } S \boldsymbol{v}_j = \lambda_j \boldsymbol{v}_j.$ Therefore, $\boldsymbol{v}_i^{\top} S \boldsymbol{v}_j = \boldsymbol{v}_i^{\top} (S \boldsymbol{v}_j) = \boldsymbol{v}_i^{\top} (\lambda_j \boldsymbol{v}_j) = \lambda_j (\boldsymbol{v}_i^{\top} \boldsymbol{v}_j) = \lambda_i (\boldsymbol{v}_i^{\top} \boldsymbol{v}_j).$ We then have $(\lambda_i - \lambda_i)(v_i^{\top} v_i) = 0$. If $\lambda_i \neq \lambda_i$, this equality can hold only if $v_i^{\top} v_i = 0$, i.e., $v_i \perp v_i$.
 - (c) There always exist n orthonormal eigenvectors of S, which form a basis of \mathbb{R}^n [4pts]. **ANSWER:** Let (λ_1, v_1) be any eigenvector-eigenvalue pair of S and let v_1^{\perp} be its orthogonal complement. Since S is symmetric, v_1^{\perp} is an S-invariant subspace of \mathbb{R}^n , i.e., for all $w \in v_1^{\perp}$, we have $Sw \in v_1^{\perp}$ because $v_1^{\perp}Sw = \lambda_1 v_1^{\perp}w = 0$. Thus, there exists an eigenvector of S in v_1^{\perp} . Let v_2 be such an eigenvector and let λ_2 be its corresponding eigenvalue (which need not be different from λ_1). By the same argument, $v_{\perp}^{\perp} \cap v_{\perp}^{\perp}$ is an S-invariant subspace of \mathbb{R}^n , hence there exists an eigenvector of S in $v_{\perp}^{\perp} \cap v_{\perp}^{\perp}$. Finite induction finishes the proof.
 - (d) S is positive definite (positive semidefinite) if and only if all of its eigenvalues are positive (non-negative), i.e., $S \succ 0$ ($S \succeq 0$), iff $\forall i = 1, 2, \dots, n, \lambda_i > 0$ ($\lambda_i \ge 0$) [4pts]. **ANSWER:** By the previous part, we can choose n eigenvalue-eigenvector pairs $\{(\lambda_i, v_i)\}_{i=1}^n$, such that

 $v_i^{\top} v_j = 0$ if $i \neq j$ and $||v_i|| = 1$. Since these eigenvectors form a basis for \mathbb{R}^n , any vector $x \in \mathbb{R}^n$ can be written as $x = \sum_{i=1}^n (\alpha_i v_i), \alpha_i \in \mathbb{R}^n, i = 1, \dots, n$. Then $x^{\top} S x = \sum_{i=1}^n \lambda_i \alpha_i^2$. Note that if all $\lambda_i > 0$, then $\mathbf{x}^{\top} S \mathbf{x} > 0, \forall \mathbf{x} \in \mathbb{R}^n - \{\mathbf{0}\}$. Conversely, if $\mathbf{x}^{\top} S \mathbf{x} > 0$, then it must be the case that $\lambda_i > 0$. Otherwise, if e.g., $\lambda_1 \leq 0$, then $v_1^\top S v_1 = \lambda_1 \leq 0$, which gives a contradiction. Now, similarly if all $\lambda_i \ge 0$, then $\mathbf{x}^\top S \mathbf{x} \ge 0, \forall \mathbf{x} \in \mathbb{R}^n$. Conversely, if $\mathbf{x}^\top S \mathbf{x} \ge 0$ for all \mathbf{x} , then it must be the case that $\lambda_i \geq 0$, otherwise if $\lambda_1 < 0$, then $v_1^{\top} S v_1 = \lambda_1 < 0$, which would give us a contradiction.

(e) If $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ are the sorted eigenvalues of S, then $\max_{\|\boldsymbol{x}\|_2=1} \boldsymbol{x}^\top S \boldsymbol{x} = \lambda_1$ and $\min_{\|\boldsymbol{x}\|_2=1} \boldsymbol{x}^\top S \boldsymbol{x} = \lambda_n$ [4pts].

ANSWER: By part (c), we can choose n eigenvectors forming a basis for \mathbb{R}^n . Then, any vector $x \in \mathbb{R}^n$ can be written as $\boldsymbol{x} = \sum_{i=1}^{n} \alpha_i \boldsymbol{v}_i$, where $\alpha_i \in \mathbb{R}, i = 1, ..., n$. We thus have $\boldsymbol{x}^\top \boldsymbol{x} = \sum_{i=1}^{n} \alpha_i^2$ and $\boldsymbol{x}^\top S \boldsymbol{x} = \sum_{i=1}^{n} \lambda_i \alpha_i^2$. Since $\lambda_i \leq \lambda_1$ for i = 1, ..., n, we have $\boldsymbol{x}^\top S \boldsymbol{x} \leq \lambda_1 \sum_{i=1}^{n} \alpha_i^2 = \lambda_1 \boldsymbol{x}^\top \boldsymbol{x}$, with equality occurring when $\alpha_1 \neq 0$ and $\alpha_2 = \ldots = \alpha_n = 0$. Therefore, $\max_{\|\boldsymbol{x}\|_2 = 1} (\boldsymbol{x}^\top S \boldsymbol{x}) = \lambda_1$. We can similarly prove that $\min_{\|\boldsymbol{x}\|_2=1} (\boldsymbol{x}^\top S \boldsymbol{x}) = \lambda_n$, by considering that $\lambda_n \leq \lambda_i$ for i = 1, ..., n.

ANSWER: Using the method of Lagrange multipliers, we build the Lagrangian function $\mathcal{L}(\boldsymbol{x},\lambda) =$ $x^T S x + \lambda (1 - x^T x)$. Setting the derivative of \mathcal{L} to zero we obtain $2S x - 2\lambda x = 0$, which implies that $Sx = \lambda x$. Therefore, the solution (λ, x) should be an eigenvalue-eigenvector pair of S. Moreover, the optimal value is $x^{\top}Sx = \lambda x^{\top}x = \lambda$. Therefore, if our goal is to maximize $x^{\top}Sx$, then λ should be the largest eigenvalue. Conversely, if we wish to minimize $x^{\top}Sx$, λ must be the smallest eigenvalue. Finally, to verify that these are indeed maximum and minimum, we notice that the Hessian of \mathcal{L} is given by $H = 2(S - \lambda I)$, so that $\mathbf{x}^{\top} H \mathbf{x} = 2(\mathbf{x}^{\top} S \mathbf{x} - \lambda \mathbf{x}^{\top} \mathbf{x})$. When $\lambda = \lambda_1$, we have that $S - \lambda I \leq 0$, because $\mathbf{x}^{\top}H\mathbf{x} = 2(\mathbf{x}^{\top}S\mathbf{x} - \lambda_1\mathbf{x}^{\top}\mathbf{x}) = 2(\sum_{i=1}^{n}\lambda_i\alpha_i^2 - \lambda_1\sum_{i=1}^{n}\alpha_i^2) = \sum_{i=2}^{n}(\lambda_i - \lambda_1)\alpha_i^2 \le 0$. When $\lambda = \lambda_n$, we have that $S - \lambda I \succeq 0$, because $\mathbf{x}^{\top}H\mathbf{x} = \sum_{i=1}^{n-1}(\lambda_i - \lambda_n)\alpha_i^2 \ge 0$.

2. Properties of the SVD [20pts]. Let $A = U\Sigma V^{\top}$ be the SVD of a matrix $A \in \mathbb{R}^{m \times n}$ of rank r. Show that:

- (a) Av_j = σ_ju_j for j = 1,...,r and A^Tu_j = σv_j for j = 1,...,r. [4pts].
 ANSWER: Multiplying both sides of A = UΣV^T by V results in AV = UΣV^TV. Using the orthonormality property of V, i.e. V^TV = I, this reduces to AV = UΣ. Now in terms of the j th column of V and U, we have Av_j = σ_ju_j. Likewise, A^T = (UΣV^T)^T = VΣ^TU^T. After multiplying both sides by U and using the orthonormality property of U, we obtain A^TU = VΣ^T, which results in A^Tu_j = σ_jv_j.
- (b) The range or image of A is spanned by the left singular vectors of A associated with its nonzero singular values, i.e., range(A) = span{u_i}^r_{i=1}. [4pts]

ANSWER: The range of A is the set of vectors of the form $\boldsymbol{y} = A\boldsymbol{x}$ for all $\boldsymbol{x} \in \mathbb{R}^n$. We can express this set in terms of the SVD of A as range $(A) = \{\boldsymbol{y} \in \mathbb{R}^m : \boldsymbol{y} = U\Sigma V^\top \boldsymbol{x}, \boldsymbol{x} \in \mathbb{R}^n\}$. Let $\boldsymbol{z} = \Sigma V^\top \boldsymbol{x}$. We notice that all entries of \boldsymbol{z} beyond the r-th are zero because $\sigma_i = 0$ for i > r. This means that

$$\boldsymbol{y} = \begin{bmatrix} \boldsymbol{u}_1 & \dots & \boldsymbol{u}_r \end{bmatrix} \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_r \end{bmatrix} \begin{bmatrix} z_1 \\ \vdots \\ z_r \end{bmatrix} = \begin{bmatrix} \boldsymbol{u}_1 & \dots & \boldsymbol{u}_r \end{bmatrix} \boldsymbol{w}, \tag{1}$$

and so the range of A is the span of the first r columns of U, i.e., range(A) = span{ u_i } $_{i=1}^{r}$.

(c) The kernel or null space of A is spanned by the right singular vectors of A associated with its zero singular values, i.e., ker(A) = span{v_i}ⁿ_{i=r+1}. [4pts]

ANSWER: The kernel of A is defined as ker(A) = { $x \in \mathbb{R}^n : Ax = 0$ }. Now, since $Ax = U\Sigma V^\top x$, we notice that Ax = 0 if and only if $\Sigma V^\top x = 0$, and do ker(A) = { $x : \sigma_i v_i^\top x = 0, i = 1, ..., n$ }. Since $\sigma_i > 0$ for i = 1, ..., r and $\sigma_i = 0$ otherwise, we further have ker(A) = { $x : v_i^\top x = 0, i = 1, ..., n$ }. Therefore, ker(A) is the orthogonal complement to the span of { v_i } $_{i=1}^r$. Since the vectors { v_i } $_{i=1}^n$ form an orthonormal basis for \mathbb{R}^n , we have that ker(A) is the span of { v_i } $_{i=r+1}^n$, as claimed.

(d) The squared Frobenius norm of A is equal to the sum of the squared singular values of A, i.e., $||A||_F^2 = \sum_{ij}^r a_{ij}^2 = \sum_{k=1}^r \sigma_k^2$. [4pts]

ANSWER: The sum of all the squared elements of a matrix is the trace of AA^{\top} . Moreover, trace (AA^{\top}) is equivalent to the sum of all the eigenvalues of AA^{\top} , which are the squared singular values of A. Thus: $\sum_{ij} a_{ij}^2 = \operatorname{trace}(AA^{\top}) = \sum_k \lambda_k \{AA^{\top}\} = \sum_{k=1}^r \sigma_k^2$.

(e) The right singular vector of A associated to its smallest singular value, v_n , is a solution to the optimization problem min $||Ax||_2^2$ such that $||x||_2 = 1$. [4pts]

ANSWER: Since $||Ax||_2^2 = x^\top A^\top Ax$, we can rewrite the optimization problem as $\min_x x^\top Mx$ s.t. $||x||_2 = 1$, where $M = A^\top A$. This is a constrained optimization problem whose Lagrangian is given by $\mathcal{L}(x, \lambda) = x^\top M x + \lambda(1 - x^\top x)$. The first order condition for optimality is $\frac{\partial \mathcal{L}}{\partial x} = 2Mx - 2\lambda x = 0$. Thus, $Mx = \lambda x$, and so λ is an eigenvalue of M. Multiplying both sides by x^\top gives $x^\top M x = \lambda x^\top x = \lambda$. Since we are trying to minimize $x^\top M x$, λ should be the smallest eigenvalue of $A^\top A$ and x should be the corresponding eigenvector. In other words, x should be the right singular vector of A associated to its smallest singular value. Finally, the second order condition for a minimum is $\frac{\partial^2 \mathcal{L}}{\partial x^2} = 2(M - \lambda I) \succeq 0$. This is the case when $\lambda = \sigma_n^2$ because the eigenvalues of $M - \lambda I$ are $\sigma_i^2 - \sigma_n^2 \ge 0$ for $i = 1, \ldots, n$.

3. Pseudo-Inverse of a Matrix. [10pts]

(a) Let $A = U_r \Sigma_r V_r^{\top}$ be the compact SVD of a matrix A of rank r. Show that the pseudo-inverse of A is given by $A^{\dagger} = V_r \Sigma_r^{-1} U_r^{\top}$. [2pts]

ANSWER: By the definition of the compact SVD, we have $V_r^{\top}V_r = U_r^{\top}U_r = I$, and Σ_r and Σ_r^{-1} are diagonal matrices. We then only need to verify all four criteria of the pseudo-inverse matrix as follows:

$$\begin{split} & \text{i. } AA^{\dagger}A = U_r\Sigma_rV_r^{\top}V_r\Sigma_r^{-1}U_r^{\top}U_r\Sigma_rV_r^{\top} = U_r\Sigma_rV_r^{\top} = A, \\ & \text{ii. } A^{\dagger}AA^{\dagger} = V_r\Sigma_r^{-1}U_r^{\top}U_r\Sigma_rV_r^{\top}V_r\Sigma_r^{-1}U_r^{\top} = V_r\Sigma_r^{-1}U_r^{\top} = A^{\dagger}, \\ & \text{iii. } (AA^{\dagger})^{\top} = (U_r\Sigma_rV_r^{\top}V_r\Sigma_r^{-1}U_r^{\top})^{\top} = (U_rU_r^{\top})^{\top} = U_rU_r^{\top} = AA^{\dagger}, \\ & \text{iv. } (A^{\dagger}A)^{\top} = (V_r\Sigma_r^{-1}U_r^{\top}U_r\Sigma_rV_r^{\top})^{\top} = (V_rV_r^{\top})^{\top} = V_rV_r^{\top} = A^{\dagger}A. \end{split}$$

(b) Consider the linear system of equations Ax = b, where the matrix A ∈ ℝ^{m×n} is of rank r = rank(A) = min{m,n}. Show that x* = A[†]b minimizes ||Ax - b||₂², where A[†] is the pseudo-inverse of A. When is x* the unique solution? [4pts]

ANSWER: We want to find the x^* that minimizes $||Ax - b||_2^2 = (Ax - b)^\top (Ax - b)$. The first order condition for optimality is given by

$$\frac{\partial [(A\boldsymbol{x} - \boldsymbol{b})^{\top} (A\boldsymbol{x} - \boldsymbol{b})]}{\partial \boldsymbol{x}} = 0 \implies A^{\top} A \boldsymbol{x} = A^{\top} \boldsymbol{b} \implies (V_r \Sigma_r U_r^{\top}) (U_r \Sigma_r V_r^{\top}) \boldsymbol{x} = (V_r \Sigma_r U_r^{\top}) \boldsymbol{b}$$
$$\implies (V_r \Sigma_r \Sigma_r V_r^{\top}) \boldsymbol{x} = (V_r \Sigma_r U_r^{\top}) \boldsymbol{b} \quad (\text{since } U_r^{\top} U_r = I_{r \times r})$$
$$\implies \Sigma_r V_r^{\top} \boldsymbol{x} = U_r^{\top} \boldsymbol{b} \quad (\text{pre-multiplying by } \Sigma_r^{-1} V_r^{\top} \text{ and using } V_r^{\top} V_r = I_{r \times r})$$
$$\implies V_r^{\top} \boldsymbol{x} = \Sigma_r^{-1} U_r^{\top} \boldsymbol{b} \quad (\text{pre-multiplying by } \Sigma_r^{-1})$$

Note that $\boldsymbol{x}^* = (V_r \Sigma_r^{-1} U_r^{\top}) \boldsymbol{b} = A^{\dagger} \boldsymbol{b}$ is a solution of the above. When A is not full column rank, i.e., $m < n, \boldsymbol{x}^*$ is not the only solution of the minimization problem. In fact any vector $\boldsymbol{x}^* + \boldsymbol{y}$, where $\boldsymbol{y} \in \text{null}(A)$ would be a solution to the problem. When A is column full rank, i.e., $m \ge n, \boldsymbol{x}^*$ is unique.

(c) If $\boldsymbol{b} \in \operatorname{range}(A)$, $\boldsymbol{x}^* = A^{\dagger}\boldsymbol{b}$ is the solution to the optimization problem $\min_{\boldsymbol{x}} \|\boldsymbol{x}\|_2^2$ such that $A\boldsymbol{x} = \boldsymbol{b}$. [4pts]

ANSWER: The Lagrangian is given by $\mathcal{L}(\boldsymbol{x}, \lambda) = \boldsymbol{x}^\top \boldsymbol{x} + \lambda(\boldsymbol{b} - A\boldsymbol{x})$, where $\lambda \in \mathbb{R}^m$ is a vector of Lagrange multipliers. The first order condition is given by $2\boldsymbol{x} - A^\top \lambda = 0$, which yields $\boldsymbol{x} = \frac{1}{2}A^\top \lambda$. Substituting this back into $A\boldsymbol{x} = \boldsymbol{b}$ we obtain $\frac{1}{2}AA^\top \lambda = \boldsymbol{b} = \frac{1}{2}U_r \Sigma_r V_r^\top V_r \Sigma_r U_r^\top \lambda \implies \frac{1}{2}U_r \Sigma_r^2 U_r^\top \lambda = \boldsymbol{b} \implies U_r^\top \lambda = 2\Sigma_r^{-2}U_r^\top \boldsymbol{b}$. Therefore, $\boldsymbol{x} = \frac{1}{2}A^\top \lambda = \frac{1}{2}V_r \Sigma_r U_r^\top \lambda = V_r \Sigma_r \Sigma_r^{-2} U_r^\top \boldsymbol{b} = A^\dagger \boldsymbol{b}$. Finally, the Hessian of \mathcal{L} is $H = 2I \succ 0$, hence $\boldsymbol{x} = A^\dagger \boldsymbol{b}$ is a minimum.