Computer Vision (600.461/600.661)
Homework 1: Mathematical Background

Instructor: René Vidal

Due 09/11/2014, 11.59PM Eastern

1. Properties of Symmetric Matrices [20pts]. Let S € R™*" be a real symmetric matrix. Fori = 1,...,n, let
(\i, v;) be an eigenvalue-eigenvector pair. Show that:
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All the eigenvalues of S are real, i.e., \; € R [4pts].

ANSWER: Let (A, v) be an eigenvalue-eigenvector pair of S. Then Sv = Avand @' Sv = A||v||?, where
o' is the conjugate transpose of v and \ is the conjugate of \. Since ST = S, wehave ' S = Ao ' and
so " Sv = \||v||?. Therefore, (A — \)|[v||> = 0 with v # 0, and so A = )\, which implies A € R.
Eigenvectors corresponding to distinct eigenvalues are orthogonal, i.e., if A; # A;, then v; L v; [4pts].
ANSWER: Let (\;,v;) and (\;,v;) be two eigenvalue-eigenvector pairs of S. Then, Sv; = \v;,
v/ S = \v, and Sv; = \jv;. Therefore, v, Sv; = v (Sv;) = v (\jv;) = \;(v]v;) = \i(v,]v;).
We then have (\; — ;) (v, v;) = 0. If \; # \;, this equality can hold only if v,/ v; = 0,i.e., v; L v;.
There always exist n orthonormal eigenvectors of S, which form a basis of R™ [4pts].

ANSWER: Let (A1, v1) be any eigenvector-eigenvalue pair of S and let vi- be its orthogonal complement.
Since S is symmetric, vf- is an S-invariant subspace of R", i.e., for all w € 'vf-, we have Sw € 'vf-
because v{ Sw = A\jv]w = 0. Thus, there exists an eigenvector of S in v{. Let vy be such an
eigenvector and let A\ be its corresponding eigenvalue (which need not be different from A;). By the same
argument, v{ N vy is an S-invariant subspace of R”, hence there exists an eigenvector of S in vi N vy
Finite induction finishes the proof.

S is positive definite (positive semidefinite) if and only if all of its eigenvalues are positive (non-negative),
ie, S >=0(S=0),iff Vi=1,2,...,n,\; >0\ > 0) [4pts].

ANSWER: By the previous part, we can choose n eigenvalue-eigenvector pairs {(A;,v;)}?;, such that
v/v; = 0ifi # j and ||v;|| = 1. Since these eigenvectors form a basis for R™, any vector z € R"
can be written as * = >, (av;),0; € R"i = 1,...,n. Thenz' Sz = >, \;a?. Note that if
all \; > 0, then " Sz > 0,Vx € R™ — {0}. Conversely, if z' Sz > 0, then it must be the case that
A; > 0. Otherwise, if e.g., A\; < 0, then UITS’Ul = A1 < 0, which gives a contradiction. Now, similarly if
all\; > 0, then =" Sz > 0,Vz € R". Conversely, if xSz > 0 for all «, then it must be the case that
i > 0, otherwise if A\; < 0, then v{ Sv; = A\; < 0, which would give us a contradiction.

If \; > \y > --- > )\, are the sorted eigenvalues of S ,then max «' Sz = A\;and min z='Sx =\,
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[4pts].

ANSWER: By part (c), we can choose n eigenvectors forming a basis for R™. Then, any vector x € R"
can be written as * = Z;L:l a;v;, where a; € R,i = 1,...,n. We thus have ' & = Z;;l a? and
xSz ="  Na? Since \; < A\ fori =1,...,n,wehavex Sz < \; 1" o = Mz 'z, with
equality occurring when a7 # 0 and g = ... = «,, = 0. Therefore, |H|l|aX1(wTS$) = A;. We can

x||o=
similarly prove that min (x'Sx) = \,, by considering that \,, < \; fori =1,...,n.
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ANSWER: Using the method of Lagrange multipliers, we build the Lagrangian function £(x,\) =
xSz + M\(1 — =Tx). Setting the derivative of £ to zero we obtain 2S5z — 2Ax = 0, which implies
that S = Ax. Therefore, the solution (A, x) should be an eigenvalue-eigenvector pair of S. Moreover,
the optimal value is " Sz = Az "a = ). Therefore, if our goal is to maximize = " Sz, then \ should
be the largest eigenvalue. Conversely, if we wish to minimize = " Sz, A must be the smallest eigenvalue.
Finally, to verify that these are indeed maximum and minimum, we notice that the Hessian of L is given
by H = 2(S — M), sothat x" Hx = 2(x" Sz — Az " x). When A\ = \;, we have that S — \] < 0,
because ' Hx = 2(x ' Sz — Mz 'x) =2(3 1 Ma? =X Yor a?) =30 5 (A — A1)a? < 0. When
X = \,, we have that S — A\ > 0, because ' Hx = Z?;ll()\i —An)aZ > 0.



2. Properties of the SVD [20pts]. Let A = UXV T be the SVD of a matrix A € R™*™ of rank r. Show that:

(@) Avj =ocjujforj=1,...,rand ATu; = ov;forj=1,...,r. [4pts].
ANSWER: Multiplying both sides of A = ULV T by V results in AV = UXV " V. Using the orthonor-
mality property of V,i.e. VTV = I, this reduces to AV = UX. Now in terms of the j — th column of V'
and U, we have Av; = oju;. Likewise, AT = (UZVT)T = VX TUT. After multiplying both sides by
U and using the orthonormality property of U, we obtain ATU = VX T, which results in ATUj = 0;v;.
(b) The range or image of A is spanned by the left singular vectors of A associated with its nonzero singular
values, i.e., range(A) = span{wu;}7_;. [4pts]
ANSWER: The range of A is the set of vectors of the form y = Ax for all x € R™. We can express this
set in terms of the SVD of A as range(A) = {y € R" : y = UXV 'z, € R"}. Letz = XV 'x. We
notice that all entries of z beyond the r-th are zero because o; = 0 for ¢ > r. This means that
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and so the range of A is the span of the first 7 columns of U, i.e., range(A4) = span{u;};_;.

(c) The kernel or null space of A is spanned by the right singular vectors of A associated with its zero singular
values, i.e., ker(A) = span{v;};",. . [4pts]
ANSWER: The kernel of A is defined as ker(A4) = {x € R" : Az = 0}. Now, since Az = ULV "z, we
notice that Az = 0 if and only if XV T@ = 0, and do ker(A) = {z : o;v] z = 0,i = 1,...,n}. Since
o; > 0fori=1,...,r and o; = 0 otherwise, we further have ker(4) = {x : v/ x = 0,i = 1,...,7}.
Therefore, ker(A) is the orthogonal complement to the span of {v,}!_;. Since the vectors {v;}?_; form
an orthonormal basis for R”, we have that ker(A) is the span of {v;}}_,_ , as claimed.

(d) The squared Frobenius norm of A is equal to the sum of the squared singular values of 4, i.e., [|A||% =
y agj = h—1 h- [4pts]
ANSWER: The sum of all the squared elements of a matrix is the trace of AAT. Moreover, trace(AAT)

is equivalent to the sum of all the eigenvalues of AA ", which are the squared singular values of A. Thus:
i a5y = trace(AAT) =33, M {AATYy =370 oF.

(e) The right singular vector of A associated to its smallest singular value, v,,, is a solution to the optimization
problem min || Az||3 such that ||x|» = 1. [4pts]
x

ANSWER: Since ||Az|2 = " AT Az, we can rewrite the optimization problem as minx " Mz s.t.
x

|z||2 = 1, where M = AT A. This is a constrained optimization problem whose Lagrangian is given by

L(z,\) = 2" Mz+A(1—x " z). The first order condition for optimality is % = 2Mx—2Xx = 0. Thus,

Mz = A\x, and so ) is an eigenvalue of M. Multiplying both sides by | gives ' Mz = \x'x = .

Since we are trying to minimize = Ma, A should be the smallest eigenvalue of AT A and 2 should be
the corresponding eigenvector. In other words,  should be the right singular vector of A associated to its

smallest singular value. Finally, the second order condition for a minimum is 2L - 2(M — XI) = 0.

Ox?
This is the case when A = o2 because the eigenvalues of M — A\l are 07 — 02 > Ofori=1....,n.

3. Pseudo-Inverse of a Matrix. [10pts]

(a) Let A = U, %, V." be the compact SVD of a matrix A of rank r. Show that the pseudo-inverse of A is

given by AT = V.2 71U T, [2pts]
ANSWER: By the definition of the compact SVD, we have V., V,. = U, U, = I, and X,. and ! are
diagonal matrices. We then only need to verify all four criteria of the pseudo-inverse matrix as follows:

i. AATA =03V, Vv, S\ UTU 8,V =0,V = A,

ii. AtAAt =V, 270U, S VIV,ECUT =V, 20U = Af,

iii. (AANT = U3, V, Vv, 2 U = (U, UN)T =U,U, = AAT,

iv. (ATA)T = (v, 20 0,5V, = VDT =110 = ATA,



(b)

©

Consider the linear system of equations Az = b, where the matrix A € R™*" is of rank r = rank(A4) =
min{m, n}. Show that x* = ATb minimizes || Az — b||2, where AT is the pseudo-inverse of A. When is
x* the unique solution? [4pts]

ANSWER: We want to find the =* that minimizes || Az — b||2 = (Ax — b) " (Ax — b).The first order
condition for optimality is given by

O[(Ax — b) " (Ax — b))
ox

=0 = ATAz=A"Tb —= (V,2,UNHU,Z.V.)x = (V,%,U)b

— (V2,2 V.)x = (VXU )b (since U U, = Ix,)
= %, V.'x =U'b (pre-multiplying by ¥ 'V." and using V" V. = I,..,.)
— V'x=%"'U"b (pre-multiplying by ¥, 1)

Note that z* = (VX 1U,T)b = ATb is a solution of the above. When A is not full column rank, i.e.,
m < mn, £ is not the only solution of the minimization problem. In fact any vector £* + y, where
y € null(A4) would be a solution to the problem. When A is column full rank, i.e., m > n, * is unique.

If b € range(A), ¥ = ATb is the solution to the optimization problem min ||x||2 such that Az = b.

[4pts]

ANSWER: The Lagrangian is given by £(z,\) = '@ + A\(b — Az), where A € R™ is a vector of
Lagrange multipliers. The first order condition is given by 2 — AT A = 0, which yields & = AT\
Substituting this back into Aw = b we obtain AAT A =b= LU, %, V,'V,5,U' A = 1U, 22U, \ =
b = U\ =252U,b. Therefore, z = 1ATA = LV, S, U\ = V,E,52U,b = A‘gb. Finally, the
Hessian of £ is H = 21 > 0, hence = A'b is a minimum.



