
Computer Vision (600.461/600.661)
Homework 1: Mathematical Background

Instructor: René Vidal

Due 09/11/2014, 11.59PM Eastern

1. Properties of Symmetric Matrices [20pts]. Let S ∈ Rn×n be a real symmetric matrix. For i = 1, . . . , n, let
(λi,vi) be an eigenvalue-eigenvector pair. Show that:

(a) All the eigenvalues of S are real, i.e., λi ∈ R [4pts].
ANSWER: Let (λ,v) be an eigenvalue-eigenvector pair of S. Then Sv = λv and v̄>Sv = λ‖v‖2, where
v̄> is the conjugate transpose of v and λ̄ is the conjugate of λ. Since S> = S, we have v̄>S = λ̄v̄> and
so v̄>Sv = λ̄‖v‖2. Therefore, (λ− λ̄)‖v‖2 = 0 with v 6= 0, and so λ̄ = λ, which implies λ ∈ R.

(b) Eigenvectors corresponding to distinct eigenvalues are orthogonal, i.e., if λi 6= λj , then vi ⊥ vj [4pts].
ANSWER: Let (λi,vi) and (λj ,vj) be two eigenvalue-eigenvector pairs of S. Then, Svi = λivi,
v>i S = λiv

>
i and Svj = λjvj . Therefore, v>i Svj = v>i (Svj) = v>i (λjvj) = λj(v

>
i vj) = λi(v

>
i vj).

We then have (λi − λj)(v>i vj) = 0. If λi 6= λj , this equality can hold only if v>i vj = 0, i.e., vi ⊥ vj .

(c) There always exist n orthonormal eigenvectors of S, which form a basis of Rn [4pts].
ANSWER: Let (λ1,v1) be any eigenvector-eigenvalue pair of S and let v⊥1 be its orthogonal complement.
Since S is symmetric, v⊥1 is an S-invariant subspace of Rn, i.e., for all w ∈ v⊥1 , we have Sw ∈ v⊥1
because v>1 Sw = λ1v

>
1 w = 0. Thus, there exists an eigenvector of S in v>1 . Let v2 be such an

eigenvector and let λ2 be its corresponding eigenvalue (which need not be different from λ1). By the same
argument, v⊥1 ∩ v⊥2 is an S-invariant subspace of Rn, hence there exists an eigenvector of S in v⊥1 ∩ v⊥2 .
Finite induction finishes the proof.

(d) S is positive definite (positive semidefinite) if and only if all of its eigenvalues are positive (non-negative),
i.e., S � 0 (S � 0), iff ∀i = 1, 2, . . . , n, λi > 0 (λi ≥ 0) [4pts].
ANSWER: By the previous part, we can choose n eigenvalue-eigenvector pairs {(λi,vi)}ni=1, such that
v>i vj = 0 if i 6= j and ‖vi‖ = 1. Since these eigenvectors form a basis for Rn, any vector x ∈ Rn

can be written as x =
∑n

i=1(αivi), αi ∈ Rn, i = 1, . . . , n. Then x>Sx =
∑n

i=1 λiα
2
i . Note that if

all λi > 0, then x>Sx > 0,∀x ∈ Rn − {0}. Conversely, if x>Sx > 0, then it must be the case that
λi > 0. Otherwise, if e.g., λ1 ≤ 0, then v>1 Sv1 = λ1 ≤ 0, which gives a contradiction. Now, similarly if
all λi ≥ 0, then x>Sx ≥ 0,∀x ∈ Rn. Conversely, if x>Sx ≥ 0 for all x, then it must be the case that
λi ≥ 0, otherwise if λ1 < 0, then v>1 Sv1 = λ1 < 0, which would give us a contradiction.

(e) If λ1 ≥ λ2 ≥ · · · ≥ λn are the sorted eigenvalues of S , then max
‖x‖2=1

x>Sx = λ1 and min
‖x‖2=1

x>Sx = λn

[4pts].
ANSWER: By part (c), we can choose n eigenvectors forming a basis for Rn. Then, any vector x ∈ Rn

can be written as x =
∑n

i=1 αivi, where αi ∈ R, i = 1, . . . , n. We thus have x>x =
∑n

i=1 α
2
i and

x>Sx =
∑n

i=1 λiα
2
i . Since λi ≤ λ1 for i = 1, . . . , n, we have x>Sx ≤ λ1

∑n
i=1 α

2
i = λ1x

>x, with
equality occurring when α1 6= 0 and α2 = . . . = αn = 0. Therefore, max

‖x‖2=1
(x>Sx) = λ1. We can

similarly prove that min
‖x‖2=1

(x>Sx) = λn, by considering that λn ≤ λi for i = 1, . . . , n.

ANSWER: Using the method of Lagrange multipliers, we build the Lagrangian function L(x, λ) =
xTSx + λ(1 − xTx). Setting the derivative of L to zero we obtain 2Sx − 2λx = 0, which implies
that Sx = λx. Therefore, the solution (λ,x) should be an eigenvalue-eigenvector pair of S. Moreover,
the optimal value is x>Sx = λx>x = λ. Therefore, if our goal is to maximize x>Sx, then λ should
be the largest eigenvalue. Conversely, if we wish to minimize x>Sx, λ must be the smallest eigenvalue.
Finally, to verify that these are indeed maximum and minimum, we notice that the Hessian of L is given
by H = 2(S − λI), so that x>Hx = 2(x>Sx − λx>x). When λ = λ1, we have that S − λI � 0,
because x>Hx = 2(x>Sx−λ1x>x) = 2(

∑n
i=1 λiα

2
i −λ1

∑n
i=1 α

2
i ) =

∑n
i=2(λi−λ1)α2

i ≤ 0. When
λ = λn, we have that S − λI � 0, because x>Hx =

∑n−1
i=1 (λi − λn)α2

i ≥ 0.
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2. Properties of the SVD [20pts]. Let A = UΣV > be the SVD of a matrix A ∈ Rm×n of rank r. Show that:

(a) Avj = σjuj for j = 1, . . . , r and A>uj = σvj for j = 1, . . . , r. [4pts].
ANSWER: Multiplying both sides of A = UΣV > by V results in AV = UΣV >V . Using the orthonor-
mality property of V , i.e. V >V = I , this reduces to AV = UΣ. Now in terms of the j − th column of V
and U , we have Avj = σjuj . Likewise, A> = (UΣV >)

>
= V Σ>U>. After multiplying both sides by

U and using the orthonormality property of U , we obtain A>U = V Σ>, which results in A>uj = σjvj .

(b) The range or image of A is spanned by the left singular vectors of A associated with its nonzero singular
values, i.e., range(A) = span{ui}ri=1. [4pts]
ANSWER: The range of A is the set of vectors of the form y = Ax for all x ∈ Rn. We can express this
set in terms of the SVD of A as range(A) = {y ∈ Rm : y = UΣV >x,x ∈ Rn}. Let z = ΣV >x. We
notice that all entries of z beyond the r-th are zero because σi = 0 for i > r. This means that

y =
[
u1 . . . ur

] σ1 . . .
σr


z1...
zr

 =
[
u1 . . . ur

]
w, (1)

and so the range of A is the span of the first r columns of U , i.e., range(A) = span{ui}ri=1.

(c) The kernel or null space of A is spanned by the right singular vectors of A associated with its zero singular
values, i.e., ker(A) = span{vi}ni=r+1. [4pts]
ANSWER: The kernel of A is defined as ker(A) = {x ∈ Rn : Ax = 0}. Now, since Ax = UΣV >x, we
notice that Ax = 0 if and only if ΣV >x = 0, and do ker(A) = {x : σiv

>
i x = 0, i = 1, . . . , n}. Since

σi > 0 for i = 1, . . . , r and σi = 0 otherwise, we further have ker(A) = {x : v>i x = 0, i = 1, . . . , r}.
Therefore, ker(A) is the orthogonal complement to the span of {vi}ri=1. Since the vectors {vi}ni=1 form
an orthonormal basis for Rn, we have that ker(A) is the span of {vi}ni=r+1, as claimed.

(d) The squared Frobenius norm of A is equal to the sum of the squared singular values of A, i.e., ‖A‖2F =∑
ij a

2
ij =

∑r
k=1 σ

2
k. [4pts]

ANSWER: The sum of all the squared elements of a matrix is the trace of AA>. Moreover, trace(AA>)
is equivalent to the sum of all the eigenvalues of AA>, which are the squared singular values of A. Thus:∑

ij a
2
ij = trace(AA>) =

∑
k λk{AA>} =

∑r
k=1 σ

2
k.

(e) The right singular vector ofA associated to its smallest singular value, vn, is a solution to the optimization
problem min

x
‖Ax‖22 such that ‖x‖2 = 1. [4pts]

ANSWER: Since ‖Ax‖22 = x>A>Ax, we can rewrite the optimization problem as min
x

x>Mx s.t.

‖x‖2 = 1, where M = A>A. This is a constrained optimization problem whose Lagrangian is given by
L(x, λ) = x>Mx+λ(1−x>x). The first order condition for optimality is ∂L

∂x = 2Mx−2λx = 0. Thus,
Mx = λx, and so λ is an eigenvalue of M . Multiplying both sides by x> gives x>Mx = λx>x = λ.
Since we are trying to minimize x>Mx, λ should be the smallest eigenvalue of A>A and x should be
the corresponding eigenvector. In other words, x should be the right singular vector of A associated to its
smallest singular value. Finally, the second order condition for a minimum is ∂2L

∂x2 = 2(M − λI) � 0.
This is the case when λ = σ2

n because the eigenvalues of M − λI are σ2
i − σ2

n ≥ 0 for i = 1. . . . , n.

3. Pseudo-Inverse of a Matrix. [10pts]

(a) Let A = UrΣrV
>
r be the compact SVD of a matrix A of rank r. Show that the pseudo-inverse of A is

given by A† = VrΣ−1r U>r . [2pts]
ANSWER: By the definition of the compact SVD, we have V >r Vr = U>r Ur = I , and Σr and Σ−1r are
diagonal matrices. We then only need to verify all four criteria of the pseudo-inverse matrix as follows:

i. AA†A = UrΣrV
>
r VrΣ−1r U>r UrΣrV

>
r = UrΣrV

>
r = A,

ii. A†AA† = VrΣ−1r U>r UrΣrV
>
r VrΣ−1r U>r = VrΣ−1r U>r = A†,

iii. (AA†)> = (UrΣrV
>
r VrΣ−1r U>r )> = (UrU

>
r )> = UrU

>
r = AA†,

iv. (A†A)> = (VrΣ−1r U>r UrΣrV
>
r )> = (VrV

>
r )> = VrV

>
r = A†A.
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(b) Consider the linear system of equations Ax = b, where the matrix A ∈ Rm×n is of rank r = rank(A) =
min{m,n}. Show that x∗ = A†b minimizes ‖Ax − b‖22, where A† is the pseudo-inverse of A. When is
x∗ the unique solution? [4pts]
ANSWER: We want to find the x∗ that minimizes ‖Ax − b‖22 = (Ax − b)>(Ax − b).The first order
condition for optimality is given by

∂[(Ax− b)>(Ax− b)]

∂x
= 0 =⇒ A>Ax = A>b =⇒ (VrΣrU

>
r )(UrΣrV

>
r )x = (VrΣrU

>
r )b

=⇒ (VrΣrΣrV
>
r )x = (VrΣrU

>
r )b (since U>r Ur = Ir×r)

=⇒ ΣrV
>
r x = U>r b (pre-multiplying by Σ−1r V >r and using V >r Vr = Ir×r)

=⇒ V >r x = Σ−1r U>r b (pre-multiplying by Σ−1r )

Note that x∗ = (VrΣ−1r U>r )b = A†b is a solution of the above. When A is not full column rank, i.e.,
m < n, x∗ is not the only solution of the minimization problem. In fact any vector x∗ + y, where
y ∈ null(A) would be a solution to the problem. When A is column full rank, i.e., m ≥ n, x∗ is unique.

(c) If b ∈ range(A), x∗ = A†b is the solution to the optimization problem min
x
‖x‖22 such that Ax = b.

[4pts]
ANSWER: The Lagrangian is given by L(x, λ) = x>x + λ(b − Ax), where λ ∈ Rm is a vector of
Lagrange multipliers. The first order condition is given by 2x − A>λ = 0, which yields x = 1

2A
>λ.

Substituting this back into Ax = b we obtain 1
2AA

>λ = b = 1
2UrΣrV

>
r VrΣrU

>
r λ =⇒ 1

2UrΣ2
rU
>
r λ =

b =⇒ U>r λ = 2Σ−2r U>r b. Therefore, x = 1
2A
>λ = 1

2VrΣrU
>
r λ = VrΣrΣ−2r U>r b = A†b. Finally, the

Hessian of L is H = 2I � 0, hence x = A†b is a minimum.
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