
Computer Vision (600.461/600.661)
Homework 4: Feature Matching and Optical Flow

Instructor: René Vidal

Due 10/02/2014, 11.59PM Eastern

1. (15 Points) Corner localization via quadratic fit. The second step of SIFT is to fit a quadratic function to
the response of the Difference of Gaussian (DoG) filter applied to the image around each local maximum.
Specifically, if r(x) is the response at pixel x = (x, y), we seek a quadratic function 1

2x
>Qx + b>x + c that

approximates r(x) in a neighborhood of x. We can do this by minimizing the sum of the squares of the fitting
errors

min
Q,b,c

∑
u

w(x + u)(
1

2
(x + u)>Q(x + u) + b>(x + u) + c− r(x + u))2, (1)

where u = (u, v) is the displacement vector in a window around x and w is a weighting function inside
the window (e.g., a Gaussian). Propose a least-squares like algorithm based on the SVD for computing the
parameters Q, b and c. Recall that Q is a 2× 2 symmetric negative definite matrix (to get a maximum).

ANSWER: Let Q =

[
q1 q2

q2 q3

]
and b =

[
b1
b2

]
. To simplify notation, let x + ui =

[
xi
yi

]
for each point in the

neighborhood of x, w(x + ui) = wi and r(x + ui) = ri, i = 1, . . . , N . The problem in (1) can be written as:

min
Q,b,c

∑
i

wi

(
1

2

[
xi yi

] [q1 q2

q2 q3

] [
xi
yi

]
+
[
b1 b2

] [xi
yi

]
− c+ ri

)2

min
Q,b,c

∑
i

wi

(
1

2
(q1x

2
i + 2q2xiyi + q3y

2
i ) + b1xi + b2yi + c− ri

)2

METHOD #1: The above optimization problem can be compactly written as min
g
‖Ag − h‖22, where:

A =


√
w1.

[
1
2x

2
1 x1y1

1
2y

2
1 x1 y1 1

]
...√

wN .
[

1
2x

2
N xNyN

1
2y

2
N xN yN 1

]
 , g =


q1

q2

q3

b1
b2
c

 , h =


√
w1r1

...√
wNrN



Setting the derivative to zero we get A>(Ag − h) = 0 =⇒ g = (A>A)−1A>h, where we assume that A is
full rank 6. Alternatively, we may use the pseudo inverse of A to obtain the solution as g = A†h. Then, letting
A(N×6) = U(N×6)Σ(6×6)V

>
(6×6), the solution to the minimization problem is in the form of g = V Σ−1U>h.

METHOD #2: Taking derivatives with respect to each one of the six variables and setting them to zero we get:

∂J

∂q1
=
∑
i

wi(
1

2
[x2
i , 2xiyi, y

2
i ]
[
q1 q2 q3

]>
+ [xi, yi]

[
b1 b2

]
+ c− ri)x2

i = 0 (2)

∂J

∂q2
=
∑
i

wi(
1

2
[x2
i , 2xiyi, y

2
i ]
[
q1 q2 q3

]>
+ [xi, yi]

[
b1 b2

]
+ c− ri)2xiyi = 0 (3)

∂J

∂q3
=
∑
i

wi(
1

2
[x2
i , 2xiyi, y

2
i ]
[
q1 q2 q3

]>
+ [xi, yi]

[
b1 b2

]
+ c− ri)y2

i = 0 (4)

∂J

∂b1
=
∑
i

wi(
1

2
[x2
i , 2xiyi, y

2
i ]
[
q1 q2 q3

]>
+ [xi, yi]

[
b1 b2

]
+ c− ri)2xi = 0 (5)

∂J

∂b2
=
∑
i

wi(
1

2
[x2
i , 2xiyi, y

2
i ]
[
q1 q2 q3

]>
+ [xi, yi]

[
b1 b2

]
+ c− ri)2yi = 0 (6)
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∂J

∂c
=
∑
i

wi(
1

2
[x2
i , 2xiyi, y

2
i ]
[
q1 q2 q3

]>
+ [xi, yi]

[
b1 b2

]
+ c− ri)2 = 0 (7)

This leads to 6 linear equations. One can write them in matrix form Ãg = h̃,

Ã =
∑
i

wi
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i y
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1
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x2
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 , h̃ =
∑
i

wiri


x2
i

2xiyi
y2
i

2xi
2yi
2

 , g =


q1

q2

q3

b1
b2
c

 (8)

Under the assumption that A ∈ R6×6 is full rank, one can compute g as g = Ã−1h̃.

ENFORCING NEGATIVE DEFINITENESS: Notice that our derivation did not constrain Q to be negative
definite. To enforce that, we need to add the following constraints to the optimization:

q1 ≤ 0, and q1q3 − q2
2 ≥ 0.

Notice that the last constraint is non-linear. Solving the above least squares problem subject to nonlinear con-
straints is out of the scope of the class.

2. (20 Points) Feature point matching under a 2D rigid body motion. Let I1 and I2 be two images related by
an unknown 2D rotation R ∈ SO(2) and an unknown 2D translation t ∈ R2, i.e., I2(x) = I1(Rx + t). Let
{xj}Nj=1 be a set of image points (e.g., corners) extracted from I1. Suppose you have run a feature matching
algorithm and extracted a set of corresponding image points {yj}Nj=1 in I2, i.e., yj ≈ Rxj + t. Propose an
algorithm for computing the unknown transformation (R, t) ∈ SE(2) that minimizes the sum of squared errors:

min
R,t

N∑
j=1

‖yj −Rxj − t‖22. (9)

Specifically, show that the optimal translation is given by t∗ = ȳ−R∗x̄, where x̄ =
∑

xi/N and ȳ =
∑

yi/N ,
and that the optimal rotation is given by R∗ = argminR∈SO(2) ‖Y −RX‖2F , where X =

[
x1 − x̄ · · ·xN − x̄

]
and Y =

[
y1 − ȳ · · ·yN − ȳ

]
. Show that R∗ = argmaxR〈Y,RX〉 = argmaxR trace(Y >RX). Parametrize

R in terms of the rotation angle θ and show that

θ∗ = argmax
θ

trace(X>Y ) cos(θ) + trace(X>
[

0 1
−1 0

]
Y ) sin(θ), (10)

Find the optimal θ and show that the optimal R is given by

R∗ =

 trace(X>Y ) − trace(X>
[

0 1
−1 0

]
Y )

trace(X>
[

0 1
−1 0

]
Y ) trace(X>Y )


√

trace(X>Y )2 + trace(X>
[

0 1
−1 0

]
Y )2

. (11)

ANSWER: To minimize the cost E we set the first derivative to zero as:

∂

∂t
(

N∑
j=1

‖yj −Rxj − t‖22) = −2

N∑
j=1

(yj −Rxj − t) = 0 =⇒ t∗ =
1

N

N∑
j=1

(yj −Rxj) = ȳ −R∗x̄

Substituting this into the cost we have:

min
R

N∑
j=1

‖yj − ȳ −R(xi − x̄)‖22 = ‖Y −RX‖2F = ‖Y ‖2F − 2〈Y,RX〉+ ‖RX‖2
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Since ‖RX‖F = ‖X‖F the first and the last terms are independent on R, and therefore the minimization
problem is equivalent to maximizing the negative of the second term. The dot product 〈Y,RX〉 is equivalent to
the trace(Y >RX), thus: R∗ = argmaxR〈Y,RX〉 = argmaxR trace(Y >RX).

Next, we write the rotation in terms of the angle of rotation as:

R =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
Since

trace(Y >RX) = trace(X>R>Y ) = trace(X>
[

cos(θ) sin(θ)
− sin(θ) cos(θ)

]
Y )

= trace(X>
[
1 0
0 1

] [
cos(θ) 0

0 cos(θ)

]
Y +X>

[
0 1
−1 0

] [
sin(θ) 0

0 sin(θ)

]
Y )

= trace(X>Y ) cos(θ) + trace(X>
[

0 1
−1 0

]
Y ) sin(θ)

= A cos(θ) +B sin(θ)

where A = trace(X>Y ) and B = trace(X>
[

0 1
−1 0

]
Y ), the first order condition for optimality is

∂

∂θ
(A cos(θ) +B sin(θ)) = −A sin(θ) +B cos(θ) = 0 =⇒ tan(θ∗) =

B

A

Hence, we can compute cos(θ∗) and sin(θ∗) as:

cos(θ∗) =
A√

A2 +B2
and sin(θ∗) =

B√
A2 +B2

Thus, the optimal R is as:

R∗ =

 trace(X>Y ) − trace(X>
[

0 1
−1 0

]
Y )

trace(X>
[

0 1
−1 0

]
Y ) trace(X>Y )


√

trace(X>Y )2 + trace(X>
[

0 1
−1 0

]
Y )2

3. (15 Points) Optical flow with changes in illumination. Let I(x, y, t) be a video sequence taken by a moving
camera observing a rigid, static and Lambertian scene. Assume that between two consecutive views there is an
affine change in the image intensities, i.e., the brightness constancy constraint reads

I(x+ u, y + v, t+ 1) = aI(x, y, t) + b, (12)

where u(x, y) and v(x, y) are the optical flow and a(x, y) and b(x, y) represent photometric parameters. Propose
a linear algorithm for estimating (u, v, a, b) from the image brightness I and its spatio-temporal derivatives
Ix, Iy, It. What is the minimum size of a window around each pixel that allows one to solve the problem?

ANSWER: After subtracting I(x, y, t) on both sides, and applying the BCC, we obtain

Ixu+ Iyv + It = (a− 1)I + b,

which reduces to the standard BCC when a = 1 and b = 0. This new BCC can be re-written as

Ixu+ Iyv + (1− a)I − b = −It =⇒
[
Ix Iy I 1

] 
u
v

1− a
−b

 = −It.
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From this equation, we can solve for the parameters θ = (u, v, a, b) in a least squares sense by assuming that θ
is constant on a neighborhood Ω around each pixel. This leads to the following linear system of equations

∑
Ω


I2
x IxIy IxI Ix

IxIy I2
y IyI Iy

IxI IyI I2 I
Ix Iy I 1




u
v

1− a
−b

 = −
∑
Ω


ItIx
ItIy
ItI
It

 .
Since there are four unknowns, we need at least 4 pixels, e.g. a 2 × 2 window. Since odd sized windows are
preferred to compute optical flow at the center of the window, we can use a 3× 3 window.
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