
Computer Vision (600.461/600.661)
Homework 5: Two-View Geometry and Optical Flow

Instructor: René Vidal

Due 10/02/2014, 11.59PM Eastern

1. (20 points) Properties of so(3) and SO(3). Given a nonzero vector w = (w1, w2, w3) ∈ R3, one can build a

3× 3 skew-symmetric ŵ =

 0 −w3 w2

w3 0 −w1

−w2 w1 0

 ∈ so(3).

(a) (4 points) Show that rank(ŵ) = 2. What is the vector in the null space of ŵ? Give a geometric interpre-
tation to your result.
ANSWER: Recall from class that any essential matrix is of the form E = ŵR, where R ∈ SO(3), and
must have an SVD of the form UΣV >, where U, V ∈ SO(3) and Σ = diag(‖w‖, ‖w‖, 0). Since ŵ is an
essential matrix with R = I and w 6= 0, it follows that ŵ has two nonzero singular values, hence it must
be of rank two. Now, it is easy to see that ŵw = 0. Thus the vector in the nullspace is the vector w. This
makes sense geometrically because ŵ is the matrix generating the cross product and so ŵw = w×w = 0.

(b) (4 points) Show that ŵ2 = ww> − ‖w‖2I and ŵ3 = −‖w‖2ŵ.
ANSWER:

ŵ2 =

 0 −w3 w2

w3 0 −w1

−w2 w1 0

 0 −w3 w2

w3 0 −w1

−w2 w1 0

 =

−w2
2 − w2

3 w1w2 w1w3

w1w2 −w2
1 − w2

3 w2w3

w1w3 w2w3 −w2
1 − w2

2


=

 w2
1 w1w2 w1w3

w1w2 w2
2 w2w3

w1w3 w2w3 w2
3

−
w2

1 + w2
2 + w2

3 0 0
0 w2

1 + w2
2 + w2

3 0
0 0 w2

1 + w2
2 + w2

3


= ww> − ‖w‖2I

ŵ3 = (ww> − ‖w‖2I)ŵ = 0− ‖w‖2w

where w>ŵ = (w ×w)> = 0>.

(c) (4 points) Assume that a camera moves with a rotation R(t) ∈ SO(3) as a function of time t ∈ R.
Use the relationship R(t)R(t)> = I to show that there exists a skew symmetric matrix ŵ(t) such that
Ṙ(t) = ŵ(t)R(t). Assume now that ŵ(t) ≡ ŵ is constant, i.e., it doesn’t change with time. Show that
the solution to the differential equation Ṙ(t) = ŵR(t) is given by

R(t) = exp(ŵt)R0, t ≥ 0, (1)

where R0 ∈ SO(3) is the initial rotation at t = 0 and exp(A) =
∑∞

n=0
An

n! is the matrix exponential.

ANSWER: We have Ṙ(t)R(t)> + R(t)Ṙ(t)> = 0. Letting S(t) = Ṙ(t)R(t)>, we see that S(t) =
−S(t)>. Therefore, the exists w(t) such that S(t) = ŵ(t). Now if w(t) is constant, then Ṙ = ŵR is a
linear differential equation with constant coefficients. To verify that (1) is the solution to this linear ODE,
we need to verify that (1) it satisfies the initial condition, (2) it satisfies the ODE. It is easy to see that
exp(ŵ0) = I . Therefore, the initial condition is R(0) = R0, which is the initial rotation. Next, notice that

d

dt
exp(ŵt) =

d

dt

∞∑
n=0

ŵn

n!
tn =

∞∑
n=1

ŵn

(n− 1)!
tn−1 =

∞∑
n=0

ŵn+1

n!
tn = ŵ exp(ŵt). (2)

Therefore, the derivative of (1) is Ṙ(t) = ŵ exp(ŵt)R0 = ŵR(t).

1

(d) (4 points) Let R = exp(ŵθ) for some w ∈ R3 such that ‖w‖ = 1. Show that

R = I + sin(θ)ŵ + (1− cos(θ))ŵ2. (3)

ANSWER: Since ‖w‖ = 1, it follows from part b) that ŵ2 = ww> − I and ŵ3 = −ŵ. Moreover,
ŵ4 = −ŵ2, ŵ5 = −ŵ3 = ŵ, ŵ6 = ŵ2, and so on. Therefore,

R = exp(ŵθ) =

∞∑
i=1

ŵiθi

i!
= I +

(ŵθ
1!

+
ŵ3θ3

3!
+

ŵ5θ5

5!
+ . . .

)
+
(ŵ2θ2

2!
+

ŵ4θ4

4!
+

ŵ6θ6

6!
+ . . .

)
= I + ŵ

(θ
1!
− θ3

3!
+
θ5

5!
+ . . .

)
+ ŵ2

(θ2
2!
− θ4

4!
+
θ6

6!
+ . . .

)
= I + sin(θ)ŵ + (1− cos(θ))ŵ2.

(e) (2 points) Show that trace(R) = 1 + 2 cos(θ).
ANSWER: Note that trace(ŵ)=0 and trace(ŵ2)=trace(ww>−‖w‖2I)=‖w‖2−3‖w‖2 = −2‖w‖2.
Then trace(R) = trace(I + sin(θ)ŵ + (1− cos(θ))ŵ2) = 3 + 0− 2(1− cos(θ)) = 1 + 2 cos(θ).

(f) (2 points) Show that w is an eigenvector of R and give a geometric interpretation to your result.
ANSWER: We have that Rw = (I + sin(θ)ŵ + (1 − cos(θ))ŵ2)w = w + 0 + 0. Thus w is an
eigenvector of R with eigenvalue 1. This makes geometric sense because R is a rotation about w and the
axis of rotation is not affected by the rotation.

2. (16 points) Optical flow of a perspective camera.

(a) (8 points) Let x(t) = (x(t), y(t), 1) ∈ P2 be the projection of a fixed point X = (X,Y, Z) ∈ R3

onto a perspective camera moving with rotation R(t) ∈ SO(3) and translation T (t) ∈ R3 at time t,
i.e., x(t) = π(R(t)X + T (t)), where π(X) = X/Z denotes perspective projection. Assume that the
initial pose of the camera is R(0) = I and T (0) = 0. Let w(t) ∈ R3 and v(t) ∈ R3 be, respectively,
the rotational and translational velocities of the camera at time t, and recall that Ṙ(t)R(t)> = ŵ(t) and
Ṫ (t) = v(t). Show that the optical flow induced by the camera at time t = 0 is given by

ẋ = (−x̂ + xeT3 x̂)w +
1

Z
(I − xeT3)v[

ẋ
ẏ

]
=

[
−xy 1 + x2 −y

−(1 + y2) xy x

]
w +

1

Z

[
1 0 −x
0 1 −y

]
v,

(4)

where e3 = (0, 0, 1) ∈ R3, and w and v are the rotational and translational velocities at t = 0.
ANSWER: Let λ(t) denote the depth of point X at time t. We have that λ(t)x(t) = R(t)X + T (t).
Therefore λ̇x + λẋ = ṘX + Ṫ . Moreover, λ(t) = e>3 (R(t)X + T (t)), and so λ̇ = e>3 (ṘX + Ṫ). We
then have

λẋ = ṘX + Ṫ − λ̇x = ṘX + Ṫ − xe>3 (ṘX + Ṫ) = (I − xe>3)(ṘX + Ṫ)

Since at t = 0 we also have Ṙ = ŵ, Ṫ = v, λx = X and λ = Z, and also ŵx = −x̂w, we obtain

ẋ =
1

λ
(I − xe>3)(ŵλx + v) = −(I − xe>3)x̂w +

1

λ
(I − xe>3)v.

The rest follows by direct substitution as

ẋ = −

1 0 −x
0 1 −y
0 0 0

 0 −1 y
1 0 −x
−y x 0

w +
1

Z

1 0 −x
0 1 −y
0 0 0

v

=

 −xy 1 + x2 −y
−(1 + y2) xy x

0 0 0

w +
1

Z

1 0 −x
0 1 −y
0 0 0

 .

2

(b) (7 points) Assume that a perspective camera observes a 3-D plane NTX = d, where N = (n1, n2, n3)
is the normal to the plane and d is the distance from the plane to the camera center. Show that the optical
flow observed by a camera moving with angular and linear velocity w, v is a polynomial of degree 2 in
(x, y) with 8 different coefficients. Find explicit formulae for each one of the coefficients as a function of
w,v,N , d. Under what conditions on w,v,N , d can the optical flow be approximated by an affine flow
model ẋ = Ax + b? Find expressions for A and b as a function of w,v,N , d under those conditions.
ANSWER: Suppose P is a 3-D plane N>X = d with normal N = (nx, ny, nz) observed by a camera
moving with linear and angular velocity w,v. Since x = X/Z, we have N>x = d/Z and so

Z =
d

N>x
=

d

nxx+ nyy + nz
.

Substituting X to the general motion field equation (4) we obtain

[
ẋ
ẏ

]
=

[
−xy 1 + x2 −y

−(1 + y2) xy x

]
w +

nxx+ nyy + nz
d

[
1 0 −x
0 1 −y

]
v,

=

[
a1x

2 + a2xy + a3x+ a4y + a5
a4xy + a5y

2 + a6y + a7x+ a8

] (5)

where the coefficients have the following form

a1 = wy + vznx

d a2 = −wx − vzny

d a3 = 1
d (nxvx − nzvz)

a4 = −wz +
vxny

d a5 = wy + vxnz

d a6 = 1
d (nyvy − nzvz)

a7 = wz +
vynx

d a8 = −wx +
vynz

d .

In order to approximate this model by an affine motion models we can neglect the second order terms
assuming a1 = a2 = a4 = a5 = 0 and obtain a 6 parameter affine motion model

ẋ = a3x+ a4y + a5
ẏ = a6y + a7x+ a8

=⇒ ẋ = Ax + d.

3. (15 points) 8-point algorithm. Implement a function [R,T,X] = twoviewSFM(x1,x2) that reconstructs
camera motion (R,T) ∈ SE(3) and 3D structure X ∈ R3×P from a set of point correspondences x1,x2
∈ P2×P using the 8-point algorithm (Alg. 5.1 of book-MASKS). Test the algorithm on the dataset (x1,x2)
available here. The given point correspondences are noise free, and so your algorithm should be able to recover
the given Rtrue, Ttrue and Xtrue. To evaluate the robustness of your algorithm with noisy data, add Gaussian
noise with standard deviation σ ∈ {0, 10−4, 2 × 10−4, . . . , 10−3}. Be careful to add noise only to the two
pixel coordinates. Repeat the experiment for N = 100 trials. For each trial, compute the the error in rotation,
θR = | acos(trace(R>estRtrue) − 1)/2|, the error in translation θT = | acos(T>estTtrue)|, and the error in 3D
reconstruction θX = | acos(trace(X>estXtrue))| (measured in degrees) between the estimated and the true
quantity. Make sure that ‖T‖2 = 1 and ‖X‖F = 1 before you compute errors.

ANSWER:

1 function [R,T,X] = twoviewSFM(x1,x2)
2 assert(size(x1,1)==size(x2,1), '# of points do not agree.');
3 n=size(x1,2);
4

5 % form the Xi matrix
6 Xi=zeros(n,9);
7 for i = 1:n
8 Xi(i,:) = kron(x1(:,i),x2(:,i))';
9 end

10

11 [¬,¬,V] = svd(Xi);
12 E = reshape(V(:,9),3,3);
13 %SVD of E

3

http://www.vision.jhu.edu/teaching/vision/Data/data-8-point-algorithm.mat

14 [U,¬,V] = svd(E);
15 %Rz(pi/2)
16 RzT = [0 1 0; -1 0 0; 0 0 1];
17 R(:,:,1) = U*RzT*V';
18 skew_T = U*RzT'*diag([1 1 0])*U';
19 T(:,1) = [skew_T(3,2);skew_T(1,3);skew_T(2,1)];
20 %Rz(-pi/2)
21 R(:,:,2) = U*RzT'*V';
22 skew_T = U*RzT*diag([1 1 0])*U';
23 T(:,2) = [skew_T(3,2);skew_T(1,3);skew_T(2,1)];
24 %SVD of -E
25 [U,¬,V] = svd(-E);
26 %Rz(pi/2)
27 RzT = [0 1 0; -1 0 0; 0 0 1];
28 R(:,:,3) = U*RzT*V';
29 skew_T = U*RzT'*diag([1 1 0])*U';
30 T(:,3) = [skew_T(3,2);skew_T(1,3);skew_T(2,1)];
31 %Rz(-pi/2)
32 R(:,:,4) = U*RzT'*V';
33 skew_T = U*RzT*diag([1 1 0])*U';
34 T(:,4) = [skew_T(3,2);skew_T(1,3);skew_T(2,1)];
35

36 % used to store the valid transofrmation
37 R_valid=zeros(3,3);
38 T_valid=zeros(3,1);
39 % find correct transformation
40 valid_count = 0;
41 for i=1:4
42 [valid, lambda1,lambda2] = check(R(:,:,i),T(:,i),x1,x2);
43 if valid == 1
44 R_valid = R(:,:,i);
45 T_valid = T(:,i);
46 fprintf('%d th tranformation is valid\n',i);
47 valid_count = valid_count + 1;
48 end
49 end
50 if valid_count > 1
51 fprintf('something wrong\n');
52 end
53 R=R_valid;
54 T=T_valid;
55 X = x1.*repmat(lambda1(:,1)',3,1);
56 end
57

58 %to check whether the R T is valid and return the depth of each point for
59 %camera 1
60 function [valid,depth1,depth2] = check(R,T,x1,x2)
61 depth = computeDepth(R,T,x1,x2);
62 isLessThanZero = depth < 0;
63 numOfLess = sum(double(isLessThanZero(:)));
64 if numOfLess == 0 && det(R)>0
65 valid = 1;
66 else
67 valid = 0;
68 end
69 depth1 = depth(:,1);
70 depth2 = depth(:,2);
71 end
72

73 %compute the depth of each point for camera 1
74 function depth = computeDepth(R,T,x1,x2)
75 P1 = [R T];
76 P2 = [eye(3) zeros(3,1)];
77 for i=1:size(x1,2)
78 p1 = x1(:,i);
79 p2 = x2(:,i);
80 A = [p1(1,1).*P1(3,:) - P1(1,:); p1(2,1).*P1(3,:) - P1(2,:);p2(1,1).*P2(3,:) - ...

P2(1,:);p2(2,1).*P2(3,:) - P2(2,:)];

4

81 [¬,¬,V] = svd(A);
82 X(:,i) = V(:,4) ./ repmat(V(4,4),4,1);
83 end
84 depth = X(3,:)';
85 depth(:,2) = 1;
86

87 end

1 clear all
2 close all
3 load('data-8-point-algorithm.mat');
4 [Rest,Test,Xest] = twoviewSFM(x1,x2);
5 theta_R = acos(trace(Rest'*R)-1)/2;
6 theta_T = acos(Test'*T);

Submission instructions. Send email to vision14jhu@gmail.com with subject 600.461/600.661:HW5 and attachment
firstname-lastname-hw5-vision14.zip or firstname-lastname-hw5-vision14.tar.gz. The
attachment should have the following content:

1. A file called hw5.pdf containing your answers to each one of the analytical questions. If at all possible, you
should generate this file using the latex template hw1-vision14.tex. If not possible, you may use another editor,
or scan your handwritten solutions. But note that you must submit a single PDF file with all your answers.

2. For coding questions, submit a file called README, which contains instructions on how to run your code. Use
separate directories for each coding problem. Each directory should contain all the functions and scripts you are
asked to write in separate files. For example, for HW2 the structure of what you should submit could look like

(a) README

(b) hw2.pdf

(c) hw2q3: hw2q3c.m, hw2q3e.m

(d) hw2q4: hw2q4b.m, hw2q4c.m

The TA will run your scripts to generate the results. Thus, your script should include all needed plotting com-
mands so that figures pop up automatically. Please make sure that the figure numbers match those you describe
in hw2.pdf. You do not need to submit input or output images. The output images should be automatically
generated by your scripts so that the TA can see the results by just running the scripts. In writing your code, you
should assume that the TA will place the input images in the directory that is relevant to the question solved by
your script. Also, make sure to comment your code properly.

5

mailto:vision14jhu@gmail.com?subject=600.692:HW5
mailto:vision14jhu@gmail.com?subject=600.461/600.661:HW5
http://www.vision.jhu.edu/teaching/vision/vision14/Homeworks/hw1-vision14.tex

